An open problem concerning the diophantine equation $a^x + b^y = c^z$

By MAOHUA LE (Zhanjiang)

Abstract. Let r be an odd integer with $r > 1$, and let m be an even integer with $m \equiv 2 \pmod{4}$. Let a, b, c be positive integers satisfying $(a, b, c) = (|V(r)|, |U(r)|, m^2 + 1)$, where $V(r) + U(r)\sqrt{-1} = (m + \sqrt{-1})^r$. In this paper we prove that if c is a prime and either $r \not\equiv 1 \pmod{8}$ and $m > 2r/\pi$ or $r \equiv 1 \pmod{8}$ and $m > 41r^{3/2}$, then the equation $a^x + b^y = c^z$ has only the positive integer solution $(x, y, z) = (2, 2, r)$.

1. Introduction

Let \mathbb{Z}, \mathbb{N} be the sets of all integers and positive integers respectively. Let a, b, c be fixed positive integers such that $\min(a, b, c) > 1$ and $\gcd(a, b, c) = 1$. Let r be an odd integer with $r > 1$. In this paper we consider the equation

$$a^x + b^y = c^z, \quad x, y, z \in \mathbb{N}$$

for the case that a, b and c satisfy

$$a = |V(r)|, \quad b = |U(r)|, \quad c = m^2 + 1,$$

Mathematics Subject Classification: 11D61.

Key words and phrases: pure exponential diophantine equation, number of positive integer solutions.

Supported by the National Natural Science Foundation of China (No. 10271104) and the Guangdong Provincial Natural Science Foundation (No. 04011425).
where \(m \) is an even integer and
\[
V(r) + U(r)\sqrt{-1} = (m + \sqrt{-1})^r. \tag{3}
\]
We see from (3) that \(V(r) \) and \(U(r) \) are integers satisfying
\[
(V(r))^2 + (U(r))^2 = (m^2 + 1)^r, \quad \gcd(V(r), U(r)) = 1, \quad 2 \mid V(r). \tag{4}
\]
It follows that if (2) holds, then
\[
a^2 + b^2 = c^r \tag{5}
\]
and (1) has a solution \((x, y, z) = (2, 2, r)\). In [1], CAO proposed the following problem.

Open Problem. Let \(m \equiv 2 \pmod{4} \) and \(c \) is a prime. It is possible to prove (1) has only the solution \((x, y, z) = (2, 2, r)\) by some elementary methods?

The above mentioned problem is related to a wide conjecture by Terai (see [6], [8]). By the proofs of [1, Corollaries 1 and 2], the answer to the question is “yes” for \(r = 3 \) or 5. In this paper, using some elementary methods, we prove the following theorem.

Theorem 1. If (2) holds, \(r \not\equiv 1 \pmod{8} \), \(m \equiv 2 \pmod{4} \), \(m > 2r/\pi \) and \(c \) is a prime, then (1) has only the solution \((x, y, z) = (2, 2, r)\).

On the other hand, using a lower bound for linear forms in two logarithms given by Laurent, Mignotte and Nesterenko [3], we solve the remained cases as follows.

Theorem 2. If (2) holds, \(r \equiv 1 \pmod{8} \), \(m \equiv 2 \pmod{4} \), \(m > 41r^{3/2} \) and \(c \) is a prime, then (1) has only the solution \((x, y, z) = (2, 2, r)\).

2. Proof of Theorem 1

Lemma 1 ([7, Formula 1.76]). For any positive integer \(n \) and any complex numbers \(\alpha, \beta \), we have
\[
\alpha^n + \beta^n = \sum_{j=0}^{[n/2]} \binom{n}{j} (\alpha + \beta)^{n-2j} (-\alpha \beta)^j,
\]
where
\[
\left[\frac{n}{j}\right] = \frac{(n-j-1)!n}{(n-2j)!j!}, \quad j = 0, 1, \ldots, \left[\frac{n}{2}\right]
\]
are positive integers.

For any positive integer \(n\), let
\[
V(n) = \frac{1}{2}(\varepsilon^n + \bar{\varepsilon}^n), \quad U(n) = \frac{1}{2\sqrt{-1}}(\varepsilon^n - \bar{\varepsilon}^n), \quad (6)
\]
\[
E(n) = \frac{\varepsilon^n + \bar{\varepsilon}^n}{\varepsilon + \bar{\varepsilon}} , \quad F(n) = \frac{\varepsilon^n - \bar{\varepsilon}^n}{\varepsilon - \bar{\varepsilon}}, \quad (7)
\]
where
\[
\varepsilon = m\sqrt{-1}, \quad \bar{\varepsilon} = m - \sqrt{-1}. \quad (8)
\]
Clearly, \(V(n), U(n)\) and \(F(n)\) are integers for any \(n\), and \(E(n)\) is an integer if \(2 \nmid n\).

Lemma 2. If \(m > 2r/\pi\), then \(V(n), U(n), E(n)\) and \(F(n)\) are positive numbers for \(n = 1, 2, \ldots, r\).

Proof. Since \(m^2 + 1 = c\), we see from (8) that
\[
\varepsilon = \sqrt{c}e^{\theta\sqrt{-1}}, \quad \bar{\varepsilon} = \sqrt{c}e^{-\theta\sqrt{-1}}, \quad (9)
\]
where \(\theta\) is a unique real number satisfying
\[
\tan \theta = \frac{1}{m}, \quad 0 < \theta < \frac{\pi}{2}. \quad (10)
\]
Substitute (9) into (6) and (7), we get
\[
V(n) = c^{n/2} \cos(n\theta), \quad U(n) = c^{n/2} \sin(n\theta) \quad (11)
\]
and
\[
E(n) = c^{(n-1)/2} \frac{\cos(n\theta)}{\cos \theta}, \quad F(n) = c^{(n-1)/2} \frac{\sin(n\theta)}{\sin \theta}, \quad (12)
\]
respectively. By (10), we get
\[
0 < \theta = \arctan \frac{1}{m} < \frac{1}{m}. \quad (13)
\]
Hence, if \(m > 2r/\pi\), then \(0 < n\theta < n\pi/2r\). It follows that \(0 < n\theta < \pi/2\) if \(n \leq r\). Thus, by (11) and (12), the lemma is proved. \(\square\)
Lemma 3. If n is an odd integer, then we have

(i) $E(n) \equiv (-1)^{(n-1)/2}n \mod m^2$, $E(n) \equiv (-1)^{(n-1)/2}2^{n-1} \mod c$.

(ii) $E(n) \equiv \begin{cases}
1 \mod 8, & \text{if } m \equiv 2 \mod 4 \text{ and } n \equiv 1, 3 \mod 8 \\
5 \mod 8, & \text{if } m \equiv 2 \mod 4 \text{ and } n \equiv 5, 7 \mod 8 \\
\text{or } m \equiv 0 \mod 4 \text{ and } n \equiv 1, 7 \mod 8,
\end{cases}$

(iii) $F(n) \equiv (-1)^{(n-1)/2} \mod m^2$, $F(n) \equiv (-1)^{(n-1)/2}2^{n-1} \mod c$.

(iv) $F(n) \equiv \begin{cases}
1 \mod 8, & \text{if } n \equiv 1 \mod 4 \\
3 \mod 8, & \text{if } m \equiv 2 \mod 4 \text{ and } n \equiv 3 \mod 4 \\
7 \mod 8, & \text{if } m \equiv 0 \mod 4 \text{ and } n \equiv 3 \mod 4.
\end{cases}$

(V) $E(n) \equiv -c^{(n-1)/2} \mod E(\ell)$, $E(n) \equiv c^{(n-1)/2} \mod F(\ell)$, where $\ell = (n + (-1)^{(n-1)/2})/2$.

Proof. By (8), we get

\[\varepsilon + \bar{\varepsilon} = 2m, \quad \varepsilon - \bar{\varepsilon} = 2\sqrt{-1}, \quad \varepsilon\bar{\varepsilon} = c. \]

(14)

Since $2 \nmid n$, by Lemma 1, we get from (7) that

\[E(n) = \sum_{i=0}^{(n-1)/2} (-1)^i \binom{n}{2i} m^{n-2i-1} = \sum_{i=0}^{(n-1)/2} \binom{n}{i} (2m)^{n-2i-1}(-c)^i, \]

(15)

\[F(n) = \sum_{i=0}^{(n-1)/2} (-1)^i \binom{n}{2i+1} m^{n-2i-1} \]

\[= \sum_{i=0}^{(n-1)/2} \binom{n}{i} (-4m^2)^{(n-1)/2-i}c^i. \]

(16)

Since

\[c \equiv \begin{cases}
1 \mod 8, & \text{if } m \equiv 0 \mod 4 \\
5 \mod 8, & \text{if } m \equiv 2 \mod 4,
\end{cases} \]

(17)
by (15) and (16), we obtain (i)–(iv) immediately.

On the other hand, we get from (6)–(8) that

\[
E(n) = \begin{cases}
2U\left(\frac{n-1}{2}\right)E\left(\frac{n+1}{2}\right) - c^{(n-1)/2}, & \text{if } n \equiv 1 \pmod{4}, \\
2U\left(\frac{n+1}{2}\right)E\left(\frac{n-1}{2}\right) - c^{(n-1)/2}, & \text{if } n \equiv 3 \pmod{4},
\end{cases} \tag{18}
\]

\[
F(n) = \begin{cases}
-4F\left(\frac{n+1}{2}\right)\left(\frac{\varepsilon^{(n+1)/2} - \bar{\varepsilon}^{(n+1)/2}}{\varepsilon^2 - \bar{\varepsilon}^2}\right) + c^{(n-1)/2}, & \text{if } n \equiv 1 \pmod{4}, \\
-4F\left(\frac{n-1}{2}\right)\left(\frac{\varepsilon^{(n-1)/2} - \bar{\varepsilon}^{(n-1)/2}}{\varepsilon^2 - \bar{\varepsilon}^2}\right) + c^{(n-1)/2}, & \text{if } n \equiv 3 \pmod{4},
\end{cases} \tag{19}
\]

where

\[
\frac{\varepsilon^{(n-(-1)^{(n-1)/2})/2} - \bar{\varepsilon}^{(n-(-1)^{(n-1)/2})/2}}{\varepsilon^2 - \bar{\varepsilon}^2}
\]

is an integer. Thus, by (18) and (19), we obtain (v). The lemma is proved. \qed

Lemma 4 ([1, Lemma 3]). If (2) holds an \(m \equiv 2 \pmod{4} \), then we have \((a/c) = -1 \) and \((b/c) = 1 \), where \(*/* \) denotes the Jacobi symbol. Therefore, then the solutions \((x, y, z) \) of (1) satisfy \(2 \mid x \).

Lemma 5. If (2) holds, \(m \equiv 2 \pmod{4} \) and \(m > 2r/\pi \), then we have

\[
\frac{F(r)}{E(r)} = \begin{cases} \ 1, & \text{if } r \equiv 1,3 \pmod{8}, \\
\ -1, & \text{if } r \equiv 5,7 \pmod{8}.
\end{cases} \tag{20}
\]

Proof. Since \(m > 2r/\pi \), by Lemma 2, \(E(n) \) and \(F(n) \) are positive integers for the odd integers \(n \) with \(1 \geq n \geq r \). If \(r \equiv 1 \pmod{4} \), then \((r+1)/2 \) is an odd integer, and by (7), we get

\[
F(r) + E(r) = 2E\left(\frac{r+1}{2}\right)F\left(\frac{r+1}{2}\right). \tag{21}
\]
Hence, by (21), we obtain
\[
\frac{F(r)}{E(r)} = \frac{F(r) + E(r)}{E(r)} = \frac{2}{E(r)} \left(\frac{E(r+1)}{E(r)} \right) \left(\frac{F(r+1)}{E(r)} \right).
\] (22)

On applying Lemma 3 again and again, we get
\[
\frac{2}{E(r)} = \begin{cases}
1, & \text{if } r \equiv 1 \pmod{8}, \\
-1, & \text{if } r \equiv 5 \pmod{8},
\end{cases}
\] (23)

\[
\frac{E(r+1)}{E(r)} = \frac{E(r)}{E(r+1)} = \frac{-c^{(r-1)/2}}{E(r+1)} = \frac{1}{E(r+1)} = 1,
\] (24)

\[
\frac{F(r+1)}{E(r)} = \frac{E(r)}{F(r+1)} = \frac{c^{(r-1)/2}}{F(r+1)} = \frac{1}{F(r+1)} = 1.
\] (25)

The combination (23)–(25) with (22) yields (20) for \(r \equiv 1 \pmod{4} \).

Similarly, if \(r \equiv 3 \pmod{4} \), then \((r - 1)/2 \) is an odd integer and
\[
F(r) - E(r) = 2cE \left(\frac{r - 1}{2} \right) F \left(\frac{r - 1}{2} \right).
\] (26)

Therefore, we get from (26) that
\[
\frac{F(r)}{E(r)} = \frac{F(r) - E(r)}{E(r)} = \frac{2}{E(r)} \left(\frac{c}{E(r)} \right) \left(\frac{E(r+1)}{E(r)} \right) \left(\frac{F(r+1)}{E(r+1)} \right).
\] (27)

By Lemma 3, we obtain
\[
\frac{2}{E(r)} = \begin{cases}
1, & \text{if } r \equiv 3 \pmod{8}, \\
-1, & \text{if } r \equiv 7 \pmod{8},
\end{cases}
\] (28)

\[
\frac{c}{E(r)} = \frac{E(r)}{c} = \frac{(2m)^{r-1}}{c} = \frac{1}{c} = 1,
\] (29)

\[
\frac{E(r+1)}{E(r)} = \frac{E(r)}{r+1} = \frac{-c^{(r-1)/2}}{E(r+1)} = \frac{c}{E(r+1)}
\]
\[
= \frac{E(r+1)}{c} = \frac{(2m)^{(r-3)/2}}{c} = \frac{1}{c} = 1,
\] (30)
An open problem concerning the diophantine equation \(a^x + b^y = c^z \)

\[
\left(\frac{F(r-1)}{E(r)} \right) = \left(\frac{E(r)}{F(r-1)} \right) = \left(\frac{-c^{(r-1)/2}}{F(r-1)} \right) = \left(\frac{c}{F(r-1)} \right)
\]

\[
= \left(\frac{F(r-1)}{c} \right) = \left(\frac{(-1)^{(r-3)/2}2^{r-3}}{c} \right) = \left(\frac{1}{c} \right) = 1. \tag{31}
\]

The combination of (28)–(31) with (27) yields (20) for \(r \equiv 3 \pmod{4} \). Thus, the lemma is proved. \(\square \)

Lemma 6 ([1, Theorem]). If (5) holds, \(b \equiv 3 \pmod{4} \), \(c \equiv 5 \pmod{8} \) and \(c \) is a prime power, then (1) has only the solution \((x, y, z) = (2, 2, r) \).

Lemma 7. Let \(a, b, c \) be fixed positive integers such that \(\min(a, b, c) > 1 \) and \(c \) is an odd prime power, then (1) has at most one solution \((x, y, z) \) satisfying \(2 \mid x \) and \(2 \mid y \).

Proof. This lemma follows directly from the proof of [4, Theorem]. \(\square \)

Proof of Theorem 1. Since \(m > 2r/\pi \), by Lemma 2, we see from (2), (6) and (7) that
\[
a = mE(r), \quad b = F(r), \quad c = m^2 + 1. \tag{32}
\]

Since \(m = 2 \pmod{4} \), by (17) and (iv) of Lemma 3, we get that if \(r \equiv 3 \pmod{4} \), then \(b \equiv 3 \pmod{4} \) and \(c \equiv 5 \pmod{8} \). Therefore, by Lemma 6, the theorem holds for \(r \equiv 3 \pmod{4} \).

Let \((x, y, z) \) be a solution of (1) with \((x, y, z) \neq (2, 2, r) \). Since \(m \equiv 2 \pmod{4} \), by Lemma 4, we have \(2 \mid x \). On the other hand, if \(2 \nmid y \), then from (1) and (32) we get
\[
1 = \begin{cases}
\left(\frac{b}{E(r)} \right), & \text{if } 2 \mid x, \\
\left(\frac{bc}{E(r)} \right), & \text{if } 2 \nmid x.
\end{cases} \tag{33}
\]

Since \((c/E(r)) = 1 \) by (29), we see from (32) and (33) that
\[
\left(\frac{b}{E(r)} \right) = \left(\frac{F(r)}{E(r)} \right) = 1. \tag{34}
\]
However, by Lemma 5, we get \((F(r)/E(r)) = -1\) if \(r \equiv 5 \pmod{8}\). Therefore, we find from (34) that if \(r \equiv 5 \pmod{8}\), then \(2 \mid y\). But, by Lemma 7, it is impossible, since \((x, y, z) \neq (2, 2, r)\). Thus, if \(r \not\equiv 1 \pmod{8}\), then (1) has only the solution \((x, y, z) = (2, 2, r)\). The theorem is proved. \(\square\)

3. Proof of Theorem 2

Lemma 8 ([2]). Let \(p\) be an odd prime, and let \(u, v\) be coprime positive integers. Then we have either \(\gcd(u + v, (u^p + v^p)/(u + v)) = 1\) or \(\gcd(u + v, (u^p + v^p)/(u + v)) = p\). Moreover, if \(p \mid (u^p + v^p)/(u + v)\) then \(p^2 \not\mid (u^p + v^p)/(u + v)\).

Lemma 9. If (32) holds and \(m > 4r/\pi\), then we have \(\max(a, b) < c^{r/2}\) and \(\min(a, b) > c^{(r-1)/2}\).

Proof. Since \(a^2 + b^2 = c^r\), it follows that \(\max(a, b) < c^{r/2}\). Since \(m > 4r/\pi\), we get from (13) that

\[
0 < \sin \theta < \sin(r\theta) < r\theta < \frac{r}{m} < \frac{\pi}{4}.
\]

(35)

Hence, by (12) and (32), we obtain

\[
b = F(r) = c^{(r-1)/2} \frac{\sin(r\theta)}{\sin \theta} > c^{(r-1)/2}.
\]

(36)

On the other hand, by (11), (32) and (35), we get

\[
a = mE(r) = V(r) = c^{r/2} \cos(r\theta) = c^{r/2} (1 - (\sin(r\theta))^2)^{1/2}
\]

\[
> c^{r/2} \left(1 - \frac{\pi^2}{16}\right)^{1/2} > 0.6c^{r/2} > c^{(r-1)/2}.
\]

(37)

Thus, by (36) and (37), we obtain \(\min(a, b) > c^{(r-1)/2}\). The lemma is proved. \(\square\)

Lemma 10. If (32) holds, \(m \equiv 2 \pmod{4}\), \(m > 4r/\pi\) and \(c\) is a prime, then (1) has no solution \((x, y, z)\) with \(2 \mid z\).
An open problem concerning the diophantine equation $a^x + b^y = c^z$.

Proof. Under the assumption, by Lemma 4, we have $2 \mid x$. If $2 \mid z$, then from (1) we get

$$c^{z/2} + a^{z/2} = b_1^y, \quad c^{z/2} - a^{z/2} = b_2^y, \quad b = b_1 b_2, \quad b_1 b_2 \in \mathbb{N}. \quad (38)$$

If follows that

$$b_1^y + b_2^y = 2c^{z/2}. \quad (39)$$

By Lemma 7, (1) has only the solution $(x, y, z) = (2, 2, r)$ satisfying $2 \mid x$ and $2 \mid y$. So we have $2 \nmid y$. If $y > 1$, then $y \geq 3$ and y has an odd prime divisor p. Since c is a prime, by Lemma 8, we get from (39) that

$$b + 1 \geq b_1 + b_2 \geq 2c^{z/2-1} > 2c \quad (40)$$

and

$$c \geq \frac{b_1^y + b_2^y}{b_1^{y/p} + b_2^{y/p}} \geq \frac{b_1^y + b_2^y}{b_1^{y/3} + b_2^{y/3}} = b_1^{2y/3} - b_1^{y/3} + b_2^{2y/3}$$

$$= \left(b_1^{2y/3} - b_2^{2y/3} \right)^2 + b_1^{y/3} b_2^{y/3} \geq b > 2c - 1 > c, \quad (41)$$

a contradiction. So we have $y = 1$.

If $x = 2$ and $y = 1$, then $z < r$ and $b(b-1) \equiv 0 \pmod{c^z}$ by (1). Since $\gcd(b, c) = 1$, we get $b - 1 \equiv 0 \pmod{c^z}$ and $b > b - 1 \geq c^z = a^2 + b > b$, a contradiction. It follows that $x \geq 4$, since $2 \mid x$. Then, by (38), we get

$$b \geq b_1 = c^{z/2} + a^{z/2} > 2a^{z/2} \geq 2a^2. \quad (42)$$

But, by Lemma 9, we have $b < c^{z/2}$ and $2a^2 > 2c^{z-1} > 2c^{z/2}$, since $r \geq 3$. Thus, (42) is impossible. The lemma is proved. \hfill \square

Lemma 11 ([5, Lemma 5]). Let a_1, a_2, b_1, b_2 be positive integers satisfying $\min(a_1, a_2) > 10^3$. Further, let $\Lambda = b_1 \log a_1 - b_2 \log a_2$. If $\Lambda \neq 0$, then we have

$$\log |\Lambda| > -17.61(\log a_1)(\log a_2)(1.7735 + B)^2,$$

where

$$B = \max \left(8.445, 0.2257 + \log \left(\frac{b_1}{\log a_2} + \frac{b_2}{\log a_1} \right) \right).$$
Lemma 12. Let \((x, y, z)\) be a solution of \((1)\). If \(\min(b, c) > 10^3\), \(x = 2\), \(y \geq 3\) and \(b^3 > a^2\), then we have

\[
y < 1856 \log c. \tag{43}
\]

Proof. Since \(a^2 + b^y = c^z\) and \(b^y > a^2\), we get

\[
z \log c = \log(b^y + a^2) = y \log b + \frac{2a^2}{b^y + c^z} \sum_{k=0}^{\infty} \frac{1}{2k + 1} \left(\frac{a^2}{b^y + c^z} \right)^{2k}\]
\[
< y \log b + \frac{2a^2}{b^y + c^z} \sum_{k=0}^{\infty} \frac{3^{-2k}}{2k + 1} = y \log b + \frac{(3 \log 2) a^2}{b^y + c^z} \tag{44}
\]
\[
< y \log b + \frac{1.04a^2}{b^y}.
\]

Let \(\Lambda = z \log c - y \log b\). Then from \((44)\) we get

\[
\log(1.04a^2) - \log |\Lambda| > y \log b. \tag{45}
\]

Since \(\min(b, c) > 10^3\), by Lemma 11, we have

\[
\log |\Lambda| > -17.61(\log b)(\log c)(1.7735 + B)^2, \tag{46}
\]

where

\[
B = \max \left(8.445, 0.2257 + \log \left(\frac{z}{\log b} + \frac{y}{\log c} \right) \right). \tag{47}
\]

If \(B = 8.445\), then from \((44)\) and \((47)\) we obtain

\[
\frac{2y}{\log c} < \frac{z}{\log b} + \frac{y}{\log b} \leq e^{8.2193} < 3712, \tag{48}
\]

whence we get \((43)\).

If \(B > 8.445\), then from \((47)\) we get

\[
B = 0.2257 + \log \left(\frac{z}{\log b} + \frac{y}{\log c} \right). \tag{49}
\]

Substitute \((46)\) and \((49)\) into \((45)\), we get

\[
\log \frac{1.04 + 2 \log a}{(\log b)(\log c)} + 17.61 \left(1.9992 + \log \left(\frac{z}{\log b} + \frac{y}{\log c} \right) \right)^2 > \frac{y}{\log c}. \tag{50}
\]
An open problem concerning the diophantine equation $a^x + b^y = c^z$.

Since $b^3 > a^2$ and $\min(b, c) > 10^3$, we have

$$0.44 > \frac{\log 1.04 + 2 \log a}{(\log b)(\log c)}. \quad (51)$$

By (44), we get

$$0.22 + \frac{2y}{\log c} > \frac{z}{\log b} + \frac{y}{\log c}. \quad (52)$$

Thus, by (50)–(52), we obtain

$$0.44 + 17.61 \left(1.9992 + \log \left(0.22 + \frac{2y}{\log c}\right)\right)^2 > \frac{y}{\log c},$$

whence we conclude that (43) holds. The lemma is proved. \qed

Proof of Theorem 2. Let (x, y, z) be a solution of (1) with $(x, y, z) \neq (2, 2, r)$. Then, by Lemmas 4, 7 and 10, we have $2 \mid x$, $2 \nmid y$ and $2 \nmid z$, respectively. Since $r \equiv 1 \pmod{8}$ and $m > 41r^{3/2} > 4r/\pi$, we see from (32) and (iv) of Lemma 3 that $r \geq 9$ and $b \equiv 1 \pmod{8}$. Further, since $m \equiv 2 \pmod{4}$ and $c \equiv 5 \pmod{8}$, we get from (1) that $a^x \equiv c^z - b^y \equiv 5 - 1 \equiv 4 \pmod{8}$. It follows that $x = 2$. Furthermore, we find from the proof of Lemma 10 that $y \neq 1$ and $y \geq 3$. Since $m > 4r/\pi$, by Lemma 9, we get $b^3 > c^{3(r-1)/2} > c^r > a^2$. Therefore, by Lemma 12, the solution (x, y, z) satisfies (43).

On the other hand, we get from (15), (16) and (32) that

$$a^2 \equiv r^2 m^2 \pmod{m^4}, \quad b^y \equiv 1 - y \left(\frac{r}{2}\right) m^2 \pmod{m^4}, \quad c^z \equiv 1 + zm^2 \pmod{m^4}. \quad (53)$$

Substitute (53) into (1), we obtain

$$\frac{1}{2}r(r - 1)y + z \equiv r^2 \pmod{m^2}. \quad (54)$$

Since $y \geq 3$, we see from (54) that

$$\frac{1}{2}r(r - 1)y + z \geq r^2 + m^2. \quad (55)$$
Since $a^2 + b^2 = c^r$ and $a^2 + b^y = c^z$, we have
\[
c^ry = (a^2 + b^2)^y > a^{2y} + \left(\frac{y}{2}\right)^2 b^y + b^{2y}
\]
\[
> b^{2y} + 2a^2b^y + a^4
\]
\[
= (a^2 + b^y)^2 = c^{2z}.
\]
(56)

It follows that $ry > 2x$. Therefore, by (55), we get
\[
r^2 \left(\frac{y}{2} - 1\right) > m^2.
\]
(57)

The combination of (43) and (57) yields
\[
r^2 > \frac{m^2}{y/2 - 1} > \frac{m^2}{928 \log(m^2 + 1) - 1}.
\]
(58)

Since $m > 41r^{3/2}$, we get from (58) that
\[
928 \log(1681r^3 + 1) > 1681r + 1.
\]
(59)

However, (59) is false if $r \geq 9$. Thus, the theorem is proved. □

Acknowledgements. The author would like to thank the referees for their valuable suggestions.

References

[5] M.-H. Le, On the exponential diophantine equation $(m^3 − 3m)^x + (3m^2 − 1)^y = (m^2 + 1)^z$, Publ. Math. Debrecen 58 (2001), 461–466.
An open problem concerning the diophantine equation $a^x + b^y = c^z$

MAOHUA LE
DEPARTMENT OF MATHEMATICS
ZHANGJIANG NORMAL COLLEGE
29 CUNJIN ROAD, CHIKAN
ZHANJIANG, GUANGDONG
P.R. CHINA

(Received May 22, 2003; final version December 27, 2005)