Certain curvature restrictions on a quasi Einstein manifold

By GOPAL CHANDRA GHOSH (Kalyani), U. C. DE (Kalyani)
and T. Q. BINH (Debrecen)

Abstract. Quasi Einstein manifold is a simple and natural generalization of Einstein manifold. We prove that a quasi-conformally flat quasi Einstein manifold is of quasi-constant curvature, and that a conformally flat pseudo symmetric manifold is a quasi Einstein manifold. Also conditions are found for a quasi Einstein manifold to be quasi conformally conservative.

Introduction

The notion of quasi Einstein manifold was introduced by M. C. CHAKI and R. K. MAITY [1]. A non-flat Riemannian manifold \((M^n, g)\) \((n > 2)\) is defined to be a quasi Einstein manifold if its Ricci tensor \(S\) of type \((0, 2)\) is not identically zero and satisfies the condition

\[
S(X, Y) = a g(X, Y) + b A(X) A(Y) \tag{1}
\]

where \(a, b\) are scalars of which \(b \neq 0\) and \(A\) is a non-zero 1-form such that

\[
g(X, U) = A(X) \tag{2}
\]

for all vector fields \(X; U\) being a unit vector field. In such a case \(a, b\) are called associated scalars. \(A\) is called the associated 1-form and \(U\) is called

Mathematics Subject Classification: 53C25.

Key words and phrases: quasi Einstein manifold, quasi-constant curvature, quasi-conformal curvature tensor.
the generator of the manifold. An \(n \)-dimensional manifold of this kind is denoted by the symbol \((QE)_n\). If either the 1-form \(A \) or the associated scalar \(b \), or both of them are zero, then the manifold reduces to an Einstein manifold.

A Riemannian manifold of quasi-constant curvature was given by B. Y. Chen and K. Yano [2] as a conformally flat manifold with the curvature tensor \(R^{'} \) of type \((0, 4)\) which satisfies the condition

\[
R^{'}(X, Y, Z, W) = p[g(Y, Z)g(X, W) - g(X, Z)g(Y, W)] + q[g(X, W)T(Y)T(Z) - g(X, Z)T(Y)T(W)] + g(Y, Z)T(X)T(W) - g(Y, W)T(X)T(Z)\]

where \(R^{'}(X, Y, Z, W) = g(R(X, Y)Z, W) \), \(R \) is the curvature tensor of type \((1, 3)\), \(p, q \) are scalar functions, \(T \) is a non-zero 1-form defined by

\[
g(X, \tilde{\rho}) = T(X),
\]

and \(\tilde{\rho} \) is a unit vector field.

It can be easily seen that if the curvature tensor \(R^{'} \) is of the form (3), then the manifold is conformally flat. On the other hand, Gh. Vranceanu [3] defined the notion of almost constant curvature. Later A. L. Mocanu [4] pointed out that the manifold introduced by Chen and Yano and the manifold introduced by Gh. Vranceanu are the same. If \(q = 0 \), then it reduces to a manifold of constant curvature.

The notion of quasi-conformal curvature tensor

\[
C^{*}(X, Y)Z = a_1 R(X, Y)Z + b_1 [S(Y, Z)X - S(X, Z)Y]
+ g(Y, Z)QX - g(X, Z)QY
- \frac{r}{n} \left[\frac{a_1}{n-1} + 2b_1 \right] [g(Y, Z)X - g(X, Z)Y]
\]

was given by Yano and Sawaki [5]. Here \(a_1 \) and \(b_1 \) are constants, \(R \) is the Riemannian curvature tensor of type \((1, 3)\), \(S \) is the Ricci tensor of type \((0, 2)\), \(Q \) is the Ricci operator and \(r \) is the scalar curvature of the manifold. If \(a_1 = 1 \) and \(b_1 = -\frac{1}{n-2} \), then (5) takes the form

\[
C^{*}(X, Y)Z = R(X, Y)Z - \frac{1}{n-2} [S(Y, Z)X - S(X, Z)Y]
\]
Certain curvature restrictions on a quasi Einstein manifold

\[+ g(Y, Z) QX - g(X, Z) QY \]

\[- \frac{r}{(n - 1)(n - 2)} [g(Y, Z) X - g(X, Z) Y] = C(X, Y) Z, \]

where \(C \) is the conformal curvature tensor [6]. Thus the conformal curvature tensor \(C \) is a particular case of the tensor \(C^* \). For this reason \(C^* \) is called the quasi-conformal curvature tensor.

A manifold \((M^n, g) (n > 3)\) shall be called quasi-conformally flat or quasi-conformally conservative according as \(C^* = 0 \) or \(\text{div} \, C^* = 0 \). It is known [7] that a quasi-conformally flat space is either conformally flat or Einstein. Since an Einstein manifold need not be conformally flat, a quasi-conformally flat manifold need not be conformally flat.

A non-flat Riemannian manifold \((M^n, g) (n \geq 2)\) is said to be a pseudo symmetric manifold [8] if its curvature tensor \(R \) satisfies the condition

where \(B \) is a non-zero 1-form,

\[g(X, \tilde{U}) = B(X) \quad \forall X \]

and \(\nabla \) denotes the operator of covariant differentiation with respect to the metric tensor \(g \). Such a manifold is denoted by \((PS)_n (n \geq 2)\). It may be mentioned that Chaki’s pseudo symmetric manifold is different from that of R. Deszcz [9].

It is known [10, p. 93] that a conformally flat Einstein manifold is of constant curvature. In the present paper we have generalized this result to a quasi-conformally flat quasi Einstein manifold and we prove that a quasi-conformally flat \((QE)_n (n > 3)\) is a manifold of quasi-constant curvature. In Section 2 we look for a sufficient condition in order that a \((QE)_n (n > 3)\) may be quasi-conformally conservative. Next we study conformally flat pseudo symmetric manifolds and prove that such a manifold is a quasi Einstein manifold. Finally we obtain a sufficient condition for a pseudo symmetric manifold to be a quasi Einstein manifold.
1. Quasi-conformally flat quasi Einstein manifold

From (5) we get
\[
\begin{align*}
\varphi \kappa (X, Y, Z, W) &= a_1 \varphi \kappa (X, Y, Z, W) + b_1 [S(Y, Z)g(X, W) \\
&- S(X, Z)g(Y, W) + S(X, W)g(Y, Z) - S(Y, W)g(X, Z)] \\
&- \frac{r}{n} \left(\frac{a_1}{n - 1} + 2b_1 \right) [g(Y, Z)g(X, W) - g(X, Z)g(Y, W)].
\end{align*}
\]

where \(\varphi \kappa (X, Y, Z, W) = g(C^*(X, Y)Z, W) \) and \(\varphi \kappa (X, Y, Z, W) = g(R(X, Y)Z, W) \). If the manifold is quasi-conformally flat, then we have
\[
\begin{align*}
\varphi \kappa (X, Y, Z, W) &= \frac{b_1}{a_1} [S(X, Z)g(Y, W) - S(Y, Z)g(X, W) \\
&+ S(Y, W)g(X, Z) - S(X, W)g(Y, Z)] \\
&- \frac{r}{n} \frac{a_1}{a_1 - 1} + 2b_1 \right] [g(Y, Z)g(X, W) - g(X, Z)g(Y, W)].
\end{align*}
\]

Using (1) in (1.2) we have
\[
\begin{align*}
\varphi \kappa (X, Y, Z, W) &= - \left[2b_1 a + \frac{r}{n} \left(\frac{a_1}{n - 1} + 2b_1 \right) \right] [g(Y, Z)g(X, W) \\
&- g(X, Z)g(Y, W)] - b_1 [g(X, W)A(Y)A(Z) - g(Y, W)A(X)A(Z) \\
&+ g(Y, Z)A(X)A(W) - g(X, Z)A(Y)A(W)],
\end{align*}
\]

which implies that the manifold is a manifold of quasi-constant curvature. Hence we can state that

Theorem 1. A quasi-conformally flat quasi Einstein manifold \((QE)_n\) \((n > 3)\) is a manifold of quasi-constant curvature.

2. \((QE)_n\) \((n > 3)\) with divergence free quasi-conformal curvature tensor

In this section we look for a sufficient condition in order that a \((QE)_n\) \((n > 3)\) may be quasi-conformally conservative. Quasi-conformal curvature tensor is said to be conservative [11] if divergence of \(C^*\) vanishes, i.e., \(\text{div} C^* = 0\).
In a \((QE)_n\) if both \(a\) and \(b\) are constant, then contracting (1) we have
\[r = an + b, \text{ i.e. } r = \text{constant}, \]
where \(r\) is the scalar curvature, i.e., \(dr = 0\). Using this from (5) we obtain
\[
(\nabla W C^*)(X, Y, Z) = a_1(\nabla W R)(X, Y)Z + b_1[(\nabla W S)(Y, Z)X
- (\nabla W S)(X, Z)Y + g(Y, Z)(\nabla W Q)X - g(X, Z)(\nabla W Q)Y]. \tag{2.1}
\]

We know that \((\text{div} R)(X, Y, Z) = (\nabla_X S)(Y, Z) - (\nabla_Y S)(X, Z)\) [10], and from (1) we get
\[
(\nabla_X S)(Y, Z) = b[(\nabla_X A)(Y)A(Z) + (\nabla_X A)(Z)A(Y)],
\]
since both \(a\) and \(b\) are constant. Hence contracting (2.1) we obtain
\[
(\text{div} C^*)(X, Y, Z) = 2b(a_1 + b_1)[(\nabla_X A)(Y)A(Z) + (\nabla_X A)(Z)A(Y)
- (\nabla_Y A)(X)A(Z) - (\nabla_Y A)(Z)A(X)] + bb_1[(\nabla_U A)(X)
+ A(X) \text{ div } U]g(Y, Z) - 2bb_1g(X, Z)B(U)A(Y). \tag{2.2}
\]

Imposing the condition that the generator \(U\) of the manifold is a recurrent vector field [12] with associated 1-form \(A\) not being the 1-form of recurrence, gives \(\nabla_X U = B(X)U\), where \(B\) is the 1-form of recurrence. Hence
\[
g(\nabla_X U, Y) = g(B(X)U, Y), \text{ that is,}

(\nabla_X A)(Y) = B(X)A(Y). \tag{2.3}
\]

In view of (2.3), (2.2) is expressed as follows
\[
(\text{div} C^*)(X, Y, Z) = 2b(a_1 + b_1)[B(X)A(Y)A(Z) - B(Z)A(X)A(Y)]
+ 2bb_1B(U)A(X)g(Y, Z) - 2bb_1g(X, Z)B(U)A(Y). \tag{2.4}
\]

Since \((\nabla_X A)(U) = 0\), it follows from (2.3) that \(B(X) = 0\). Hence from (2.4) it follows that \((\text{div} C^*)(X, Y, Z) = 0\). Thus we can state the following:

Theorem 2. If in a \((QE)_n\) \((n > 3)\) the associated scalars are constants and the generator \(U\) of the manifold is a recurrent vector field with the associated 1-form \(A\) not being the 1-form of recurrence, then the manifold is quasi-conformally conservative.
3. Conformally flat pseudo symmetric manifolds

It is known [8] that in a conformally flat \((PS)_n\) \((n \geq 3)\)

\[(n - 1)B(X)S(Y, Z) - (n - 1)B(Y)S(X, Z) - rB(X)g(Y, Z)
+ rB(Y)g(X, Z) + D(X)g(Y, Z) - D(Y)g(X, Z) = 0, \quad (3.1)\]

where \(D\) is a 1-form defined by

\[D(X) = B(QX), \quad (3.2)\]

\(Q\) denotes the symmetric endomorphism of the tangent space at each point corresponding to the Ricci tensor \(S\), i.e. \(g(QX, Y) = S(X, Y)\) for every vector fields \(X, Y\). Putting \(Z = \tilde{U}\) in (3.1), where \(g(X, \tilde{U}) = B(X)\) we get

\[B(X)D(Y) - B(Y)D(X) = 0. \quad (3.3)\]

Hence

\[D(X) = tB(X), \quad (3.4)\]

where \(t\) is a scalar. Using (3.4), it follows from (3.1) that

\[S(Y, Z) = \frac{r - t}{n - 1}g(Y, Z) + \frac{nt - r}{(n - 1)B(U)}B(Y)B(Z) \quad (3.5)\]

which implies that the manifold is a quasi Einstein manifold. Thus we state

Theorem 3. A conformally flat pseudo symmetric manifold \((PS)_n\) \((n \geq 3)\) is a quasi Einstein manifold.

4. Sufficient condition for a pseudo symmetric manifold to be a quasi Einstein manifold

Now contracting (7) we get

\[(\nabla_X S)(Y, Z) = 2B(X)S(Y, Z) + B(Y)S(X, Z) + B(Z)S(Y, X)
+ B(R(X, Y)Z) + B(R(X, Z)Y). \quad (4.1)\]
In a Riemannian manifold, a vector field ρ defined by $g(X, \rho) = A(X)$ for any vector field X is said to be a concircular vector field [12] if

$$(\nabla_X A)(Y) = \alpha g(X, Y) + \omega(X)A(Y),$$

(4.2)

where α is a non-zero scalar and ω is a closed 1-form. If ρ is a unit vector, then the equation (4.2) can be written as

$$(\nabla_X A)(Y) = \alpha [g(X, Y) - A(X)A(Y)].$$

(4.3)

We suppose that a $(PS)_n$ admits a unit concircular vector field defined by (4.3), where α is a non-zero constant. Applying the Ricci idetity to (4.3) we obtain

$$A(R(X,Y)Z) = -\alpha^2 [g(X,Z)A(Y) - g(Y,Z)A(X)].$$

(4.4)

Putting $Y = Z = e_i$ in (4.4), and taking summation over i, $1 \leq i \leq n$, where $\{e_i\}$ is an orthonormal basis of the tangent space at each point of the manifold, we get

$$A(QX) = (n-1)\alpha^2 A(X),$$

where Q is the Ricci operator defined by $g(QX, Y) = S(X, Y)$, which implies

$$S(X, \rho) = (n-1)\alpha^2 A(X).$$

(4.5)

From (4.5) we have

$$(\nabla_Y S)(X, \rho) = (n-1)\alpha^3 g(X,Y) - \alpha S(X, Y).$$

(4.6)

Using (4.4) we obtain

$$g(R(X,Y)Z, \rho) = -\alpha^2 g(X,Z)A(Y) - g(Y,Z)A(X)]$$

or,

$$g(R(Z,\rho)X,Y) = -\alpha^2 [g(X,Z)g(Y,\rho) - g(Z,Y)A(X)]$$

or,

$$R(Z,\rho)X = -\alpha^2 [g(X,Z)\rho - A(X)Z],$$

which implies

$$B(R(Z,\rho)X) = -\alpha^2 [g(X,Z)B(\rho) - A(X)B(Z)]$$

i.e.,

$$B(R(X,\rho)Y) = -\alpha^2 [g(X,Y)B(\rho) - A(Y)B(X)].$$

(4.7)
Similarly we have

\[B(R(X,Y)\rho) = -\alpha^2[A(Y)B(X) - A(X)B(Y)]. \] (4.8)

In (4.1) putting \(Z = \rho \) and using (4.5),(4.6), (4.7) and (4.8) we have

\[-(\alpha + B(\rho))S(X,Y) = -[\alpha^2B(\rho) + (n-1)\alpha^3]g(X,Y) \]
\[+ 2(n-1)\alpha^2B(X)A(Y) + n\alpha^2B(Y)A(X). \] (4.9)

Putting \(Y = \rho \) in (4.9) and using (4.5) we have

\[B(\rho)A(X) + (n-1)A(X) = 0 \quad \forall X \]
\[\text{i.e.} \quad B(X) = -\frac{B(\rho)}{n-1}A(X). \] (4.10)

Let us impose the condition

\[\alpha + B(\rho) \neq 0. \] (4.11)

Putting (4.10) in (4.9) we obtain

\[S(X,Y) = \frac{\alpha^2[B(\rho) + (n-1)\alpha]}{\alpha + B(\rho)}g(X,Y) + \frac{(3n-2)B(\alpha)}{(\alpha + B(\rho))(n-1)}A(X)A(Y) \]
\[\text{i.e.} \quad S(X,Y) = ag(X,Y) + bA(X)A(Y), \] (4.12)

where \(a = \frac{\alpha^2[B(\rho) + (n-1)\alpha]}{\alpha + B(\rho)} \) and \(b = \frac{(3n-2)B(\alpha)}{(\alpha + B(\rho))(n-1)} \).

Thus we can state

Theorem 4. *If a pseudo symmetric manifold admits a unit concircular vector field whose associated scalar is a non-zero constant and satisfying the condition (4.11), then the manifold reduces to a quasi Einstein manifold.*

Acknowledgement. The first author is grateful to C. S. I. R. for providing a fellowship under sanction no. F. No. 9/106(72)/2003-EMR-I
References