A problem of Galambos on Oppenheim series expansions

By BAO-WEI WANG (Wuhan) and JUN WU (Wuhan)

Abstract. In this paper, we investigate the Hausdorff dimension of exceptional sets in the metric properties of digits of Oppenheim series expansions and answer a question posed by Galambos.

1. Introduction

For any $x \in (0, 1]$, the algorithm

\[x = x_1, \quad d_n = \lceil 1/x_n \rceil + 1, \quad x_n = 1/d_n + a_n/b_n \cdot x_{n+1}, \]

where $a_n = a_n(d_1, \ldots, d_n)$ and $b_n = b_n(d_1, \ldots, d_n)$ are positive integer valued functions and $\lceil y \rceil$ denotes the integer part of y, leads to the Oppenheim expansion [12]

\[x \sim \frac{1}{d_1} + \frac{a_1}{b_1} \frac{1}{d_2} + \cdots + \frac{a_1 a_2 \cdots a_n}{b_1 b_2 \cdots b_n} \frac{1}{d_{n+1}} + \cdots \]

By (1),

\[\frac{1}{d_n} < x_n \leq \frac{1}{d_n - 1}, \]

and hence by the last equality in (1),

\[d_{n+1} > \frac{a_n}{b_n} d_n (d_n - 1). \]

Mathematics Subject Classification: Primary: 11K55; Secondly: 28A78, 28A80.

Key words and phrases: Oppenheim series expansion, Hausdorff dimension.
The expansion defined by (1) and (2) is convergent and its sum is equal to x.

A sufficient condition for a series on the right hand side in (2) to be the expansion of its sum by the algorithm (1) is (see [12])

$$d_{n+1} \geq \frac{a_n d_n}{b_n} (d_n - 1) + 1 \text{ for all } n \geq 1.$$

Definition 1.1. We call the expansion (2) (obtained by the algorithm (1)) restricted Oppenheim expansion of x if a_n and b_n depend on the last denominator d_n only and if the function

$$h_n(j) = \frac{a_n(j)}{b_n(j)} j(j - 1)$$

is integer-valued, for all $n \geq 1$ and $j \geq 2$.

In the present paper, we deal with restricted Oppenheim expansions only. In this case, (4) and (5) are equivalent.

The representation (2) under (1) was first studied by Oppenheim [12], including Lüroth ([11]), Engel, Sylvester expansions ([2]) and Cantor infinite product ([13]) as special cases. Oppenheim established the arithmetical properties, including the question of rationality of the expansion. The foundations of the metric theory of such expansions were laid down by Galambos [5], [6], [7], [9], see also the monographs of Galambos [8], Schweiger [14], Verbaat [15], Dajani and Kraaikamp [1]. From [8], Chapter 6, it can be seen that the integer approximations $T_n(x)$ to the ratios $d_n(x)/h_{n-1}(d_n-1(x))$ defined by

$$T_n(x) < \frac{d_n(x)}{h_{n-1}(d_n-1(x))} \leq T_n(x) + 1, \quad n \geq 1,$$

where $h_0(x) \equiv 1$, plays an important role in the metric theory of Oppenheim expansions, see Galambos [8] Chapter VI. Moreover, they are stochastically independent and are distributed as the denominators in the Lüroth expansion. Galambos, see [8] Page 132, posed the question to calculate the Hausdorff dimension of the set

$$B_m = \{x \in (0, 1] : 1 \leq T_n(x) \leq m \text{ for all } n \geq 1\}, \quad m \geq 2,$$

and compare this with the Lüroth case. In [16], the second author concerned this problem under the condition $h_n(j)$ is of order t ($t \geq 1$), see [16] for the definition. In this paper, we continue to consider this problem. Under more natural conditions, we obtain the Hausdorff dimension of B_m and thus answer
the question of Galambos. To obtain the lower bound of the Hausdorff dimension of a fractal set, a mass distribution is needed, which is a necessary (and sufficient) tool for this. The mass distribution constructed here is quite technical and subtle.

We use $|\cdot|$ to denote the diameter of a subset of $(0, 1]$, \dim_H to denote the Hausdorff dimension and ‘cl’ the closure of a subset of $(0, 1]$ respectively.

2. Hausdorff dimension of B_m

For any $m \geq 2$, let

$B_m = \{ x \in (0, 1] : 1 \leq T_n(x) \leq m \text{ for all } n \geq 1 \}.

By (7), it is easy to check that

$B_m = \left\{ x \in (0, 1] : 1 < \frac{d_n(x)}{h_{n-1}(d_{n-1}(x))} \leq m + 1 \text{ for all } n \geq 1 \right\}, \quad (8)$

where $h_0(n) \equiv 1$. Thus in order to calculate the Hausdorff dimensions of B_m, $m \geq 2$, it is sufficient to consider the following sets

$C_m = \left\{ x \in (0, 1] : 1 < \frac{d_n(x)}{h_{n-1}(d_{n-1}(x))} \leq m \text{ for all } n \geq 1 \right\}, \quad m \geq 3.$

From now on, we fix $m \geq 3$ be a positive integer.

Lemma 2.1. For any integer $a \geq 1$, let $S(a)$ be determined by the following equation

$\sum_{a \leq b \leq ma} \left(\frac{a}{b(b-1)} \right)^{S(a)} = 1. \quad (9)$

Then

$\lim_{a \to +\infty} S(a) = 1.$

Proof. Since

$\sum_{a < b \leq ma} \left(\frac{a}{b(b-1)} \right) = 1 - \frac{1}{m} < 1,$

we have $S(a) \leq 1$ for all $a \geq 1$.

On the other hand, for any $1/2 < s < 1$,

$\sum_{a < b \leq ma} \left(\frac{a}{b(b-1)} \right)^s \geq \sum_{a \leq b \leq ma} \left(\frac{a}{b(b-1)} \right)^s - \left(\frac{1}{a-1} \right)^s$
\[\int_{a}^{ma} \frac{a^s}{x^{2s}} \, dx = \left(\frac{1}{a-1} \right)^s \]

\[= \frac{1}{1-2s}((ma)^{1-2s} - a^{1-2s}) \cdot a^s - \left(\frac{1}{a-1} \right)^s \]

\[= \frac{(1-m^{1-2s}) \cdot a^{1-s}}{2s-1} - \left(\frac{1}{a-1} \right)^s > 1, \ a \text{ is large enough.} \]

Thus when \(a \) is large enough, \(S(a) > s \). The proof of Lemma 2.1 is finished. \(\square \)

We now state the mass distribution principle, see [4] Proposition 2.3, that will be used later.

Lemma 2.2. Let \(E \subset (0,1] \) be a Borel set and \(\mu \) be a measure with \(\mu(E) > 0 \). If for any \(x \in E \),

\[\liminf_{r \to 0} \frac{\log \mu(B(x,r))}{\log r} \geq s, \]

where \(B(x,r) \) denotes the open ball with center at \(x \) and radius \(r \), then \(\dim_H E \geq s \).

Now we are in the position to prove the main result of this paper.

Theorem 2.3. Suppose \(h_j(d) \geq d - 1 \) for all \(j \geq 1 \) and \(d \geq 2 \), then for each \(m \geq 3 \),

\[\dim_H C_m = 1. \]

Proof. For any \(j \geq 1 \) and \(d \geq 2 \), define

\[G_j(d) = m \cdot h_j(d); \]

\[M_j(m) = G_{j-1} \circ G_{j-2} \circ \cdots \circ G_1(m), \ M_1(m) := m. \]

From the assumption on \(h_j(d) \), it is easy to check that

\[M_j(m) \geq m^j - m^{j-1} - \cdots - m^2 - m \quad \text{for each } j \geq 1, \]

thus

\[\lim_{j \to \infty} M_j(m) = +\infty. \quad (10) \]

For any \(0 < s < 1 \), from Lemma 2.1, since \(\lim_{a \to \infty} S(a) = 1 \), there exists \(a_0 \in \mathbb{N} \) such that for any \(a \geq a_0 \), \(S(a) > s \). By (10), there exists \(k_0 \geq 1 \) such that for any \(k \geq k_0 \),

\[M_k(m) \geq a_0 + 1. \quad (11) \]
Define

\[E_m = \left\{ x \in (0, 1] : d_j(x) = M_j(m) \text{ for all } 1 \leq j \leq k_0, \right. \]
\[\left. \quad \text{and } 1 < \frac{d_{j+1}(x)}{h_j(d_j(x))} \leq m \text{ for all } j \geq k_0 \right\}. \]

It is clear that \(E_m \subset C_m \). Now we estimate the Hausdorff dimension of \(E_m \).

For any \(x \in E_m \), since \(h_j(d) \geq d - 1 \) for all \(j \geq 1 \) and \(d \geq 2 \), by (5), we have,

\[d_k(x) \geq h_{k-1}(d_{k-1}(x)) + 1 \geq d_{k-1}(x) \geq \cdots \geq d_{k_0+1}(x) \]
\[\geq h_{k_0}(d_{k_0}(x)) + 1 \geq d_{k_0}(x) = M_{k_0}(m) \geq a_0 + 1, \quad (12) \]

and

\[h_k(d_k(x)) \geq d_k(x) - 1 \geq a_0. \quad (13) \]

Now we introduce a symbolic space defined as follows:

For any \(k \geq k_0 \), let

\[D_k = \left\{ \sigma = (\sigma_1, \ldots, \sigma_k) \in \mathbb{N}^k : \sigma_j = M_j(m) \text{ for all } 1 \leq j \leq k_0, \right. \]
\[\left. \quad \text{and } 1 < \frac{\sigma_{j+1}}{h_j(\sigma_j)} \leq m \text{ for all } k_0 \leq j \leq k-1 \right\}, \]

and define

\[D = \bigcup_{k=k_0}^{\infty} D_k. \]

For any \(k \geq k_0 \) and \(\sigma = (\sigma_1, \ldots, \sigma_k) \in D_k \), let \(J_\sigma \) and \(I_\sigma \) denote the following closed subintervals of \((0, 1] \):

\[J_\sigma = \bigcup_{h_k(\sigma_k) < d \leq mh_k(\sigma_k)} \text{cl}\{x \in (0, 1] : d_1(x) = \sigma_1, d_2(x) = \sigma_2, \ldots, d_k(x) = \sigma_k, d_{k+1}(x) = d\}, \]
\[I_\sigma = \text{cl}\{x \in (0, 1] : d_1(x) = \sigma_1, \ d_2(x) = \sigma_2, \ldots, d_k(x) = \sigma_k\}, \]

and each \(J_\sigma \) is called an interval of \(k \)th-order. Finally, define

\[E = \bigcap_{k=k_0}^{\infty} \bigcup_{\sigma \in D_k} J_\sigma. \]
It is obvious that
\[E = E_m. \]
From the proof of Theorem 6.1 in [8], we have, for any \(k \geq k_0 \) and \(\sigma \in D_k \),
\[
|I_\sigma| = \frac{a_1(\sigma_1)}{b_1(\sigma_1)} \cdot \frac{a_2(\sigma_2)}{b_2(\sigma_2)} \cdot \ldots \cdot \frac{a_{k-1}(\sigma_{k-1})}{b_{k-1}(\sigma_{k-1})} \cdot \frac{1}{(\sigma_k - 1)\sigma_k},
\]
(14)
thus by (6), we have
\[
|J_\sigma| = \sum_{h_k(\sigma_k) < d \leq mh_k(\sigma_k)} \frac{a_1(\sigma_1)}{b_1(\sigma_1)} \cdot \ldots \cdot \frac{a_k(\sigma_k)}{b_k(\sigma_k)} \cdot \frac{1}{(d - 1)d}
\]
\[
= \frac{a_1(\sigma_1)}{b_1(\sigma_1)} \cdot \ldots \cdot \frac{a_k(\sigma_k)}{b_k(\sigma_k)} \left(\frac{1}{h_k(\sigma_k)} - \frac{1}{mh_k(\sigma_k)} \right)
\]
\[
= \left(1 - \frac{1}{m} \right) \frac{a_1(\sigma_1)}{b_1(\sigma_1)} \cdot \ldots \cdot \frac{a_k(\sigma_k)}{b_k(\sigma_k)} \cdot \frac{1}{h_k(\sigma_k)}
\]
\[
= \left(1 - \frac{1}{m} \right) \frac{a_1(\sigma_1)}{b_1(\sigma_1)} \cdot \ldots \cdot \frac{a_{k-1}(\sigma_{k-1})}{b_{k-1}(\sigma_{k-1})} \cdot \frac{1}{(\sigma_k - 1)\sigma_k},
\]
(15)
For any \(k \geq k_0, \sigma \in D_k \), define
\[
\mu(J_\sigma) = \prod_{i=k_0}^{k-1} \left(\frac{h_i(\sigma_i)}{\sigma_{i+1}(\sigma_{i+1} - 1)} \right)^{S(h_i(\sigma_i))}, \quad \text{if } k \geq k_0 + 1,
\]
(16)
and
\[5\mu(J_\sigma) = 1, \quad \text{if } \sigma \in D_{k_0}. \]
\(\mu \) is a probability mass distribution supported on \(E_m \), because
\[
\sum_{\sigma_{k+1} = h_k(\sigma_k) + 1}^{mh_k(\sigma_k)} \mu(J_{\sigma_1, \sigma_2, \ldots, \sigma_{k+1}})
\]
\[
= \sum_{\sigma_{k+1} = h_k(\sigma_k) + 1}^{mh_k(\sigma_k)} \prod_{i=k_0}^{k} \left(\frac{h_i(\sigma_i)}{\sigma_{i+1}(\sigma_{i+1} - 1)} \right)^{S(h_i(\sigma_i))} = \mu(J_{\sigma_1, \sigma_2, \ldots, \sigma_k}),
\]
and
\[
\sum_{\sigma_{k_0+1} = h_{k_0}(\sigma_{k_0}) + 1}^{mh_{k_0}(\sigma_{k_0})} \mu(J_{\sigma_1, \sigma_2, \ldots, \sigma_{k_0+1}})
\]
A problem of Galambos on Oppenheim series expansions

\[\lim_{r \to 0} \inf \frac{\log \mu(B(x, r))}{\log r} \geq s. \]

(17)

If (17) is proved, by Lemma 2.2, we have \(\dim_H E_m \geq s \). Since \(0 < s < 1 \) is arbitrary, this implies \(\dim_H C_m = 1 \).

Now we prove (17).

For any \(x \in E_m \), there exists \(\sigma = (\sigma_1, \sigma_2, \ldots) \) such that for any \(k \geq k_0 \), \(\sigma(k) := (\sigma_1, \sigma_2, \ldots, \sigma_k) \in D_k \) and \(d_j(x) = \sigma_j \) for each \(j \geq 1 \). Thus

\[x \in J_{\sigma_1, \sigma_2, \ldots, \sigma_k} \]

for all \(k \geq k_0 \).

From the proof of Theorem 6.1 in [8], we have, for any \(k \geq k_0 \), the right endpoint of the interval \(J_{\sigma_1, \sigma_2, \ldots, \sigma_k} \), i.e., \(\max\{y \in (0, 1] : y \in J_{\sigma_1, \sigma_2, \ldots, \sigma_k}\} \), is

\[
\frac{1}{\sigma_1} + \sum_{j=2}^{k} \frac{a_{1}(\sigma_{1})}{b_{1}(\sigma_{1})} \cdot \frac{a_{j-1}(\sigma_{j-1})}{b_{j-1}(\sigma_{j-1})} \cdot \frac{1}{\sigma_j} + \frac{a_{1}(\sigma_{1})}{b_{1}(\sigma_{1})} \cdot \frac{a_{k}(\sigma_{k})}{b_{k}(\sigma_{k})} \cdot \frac{1}{\mu_{k}(\sigma_{k})}.
\]

(18)

The left endpoint of the interval \(J_{\sigma_1, \sigma_2, \ldots, \sigma_k} \), i.e., \(\min\{y \in (0, 1] : y \in J_{\sigma_1, \sigma_2, \ldots, \sigma_k}\} \), is

\[
\frac{1}{\sigma_1} + \sum_{j=2}^{k} \frac{a_{1}(\sigma_{1})}{b_{1}(\sigma_{1})} \cdot \frac{a_{j-1}(\sigma_{j-1})}{b_{j-1}(\sigma_{j-1})} \cdot \frac{1}{\sigma_j} + \frac{a_{1}(\sigma_{1})}{b_{1}(\sigma_{1})} \cdot \frac{a_{k}(\sigma_{k})}{b_{k}(\sigma_{k})} \cdot \frac{1}{\mu_{k}(\sigma_{k})}.
\]

\[
\frac{1}{\sigma_1} + \sum_{j=2}^{k} \frac{a_{1}(\sigma_{1})}{b_{1}(\sigma_{1})} \cdot \frac{a_{j-1}(\sigma_{j-1})}{b_{j-1}(\sigma_{j-1})} \cdot \frac{1}{\sigma_j} + \frac{a_{1}(\sigma_{1})}{b_{1}(\sigma_{1})} \cdot \frac{a_{k}(\sigma_{k})}{b_{k}(\sigma_{k})} \cdot \frac{1}{\mu_{k}(\sigma_{k})}.
\]
Thus by (14), (20) and (21), that is,\
\[
\frac{1}{\sigma_1} + \frac{a_1(\sigma_1)}{b_1(\sigma_1)} \cdot \frac{1}{\sigma_2} + \ldots + \frac{a_1(\sigma_1)}{b_1(\sigma_1)} \cdot \frac{a_{k-1}(\sigma_{k-1})}{b_{k-1}(\sigma_{k-1})} \cdot \left(\frac{1}{\sigma_k} + \frac{1}{m\sigma_k(\sigma_k - 1)} \right).
\] (19)

If \(\sigma_k - 1 > h_{k-1}(\sigma_{k-1})\), from (18), (19), we know the gap between \(J_{\sigma_1,\ldots,\sigma_k}\) and \(J_{\sigma_1,\ldots,\sigma_k-1}\) is

\[
\frac{a_1(\sigma_1)}{b_1(\sigma_1)} \cdot \frac{a_{k-1}(\sigma_{k-1})}{b_{k-1}(\sigma_{k-1})} \cdot \frac{1}{m(\sigma_k - 1)(\sigma_k - 2)}.
\] (20)

In the same way, if \(\sigma_k + 1 \leq mh_{k-1}(\sigma_{k-1})\), from (18), (19), we know the gap between \(J_{\sigma_1,\ldots,\sigma_k}\) and \(J_{\sigma_1,\ldots,\sigma_k-1,\sigma_k+1}\) is

\[
\frac{a_1(\sigma_1)}{b_1(\sigma_1)} \cdot \frac{a_{k-1}(\sigma_{k-1})}{b_{k-1}(\sigma_{k-1})} \cdot \frac{1}{m\sigma_k(\sigma_k - 1)}.
\] (21)

For any \(0 < r < \frac{1}{m}|I_{\sigma_0}| \leq \frac{1}{m}(M_1(m), M_2(m), \ldots, M_{k_0}(m))\), since

\[
(\sigma|k_0) = (M_1(m), M_2(m), \ldots, M_{k_0}(m))
\]

and \(|I_{(\sigma|k)}| \to 0\) as \(k \to \infty\), there exists \(k\) (depends on \(x\)) such that

\[
\frac{1}{m}|I_{(\sigma|k+1)}| < r \leq \frac{1}{m}|I_{(\sigma|k)}|,
\]

that is,

\[
\frac{1}{m} \frac{a_1(\sigma_1)}{b_1(\sigma_1)} \cdot \frac{a_k(\sigma_k)}{b_k(\sigma_k)} \cdot \frac{1}{\sigma_k + 1(\sigma_k + 1 - 1)} < r \leq \frac{1}{m} \frac{a_1(\sigma_1)}{b_1(\sigma_1)} \cdot \frac{a_{k-1}(\sigma_{k-1})}{b_{k-1}(\sigma_{k-1})} \cdot \frac{1}{\sigma_k(\sigma_k - 1)}.
\] (22)

By (14), (20) and (21), \(B(x, r)\) can intersect only one \(k\)th-order interval \(J_{\sigma_1,\ldots,\sigma_k}\).

On the other hand, for every \(h_k(\sigma_k) < j \leq mh_k(\sigma_k)\), from (14), we have

\[
|I_{\sigma_1,\ldots,\sigma_j}| \geq \frac{a_1(\sigma_1)}{b_1(\sigma_1)} \cdot \frac{a_k(\sigma_k)}{b_k(\sigma_k)} \cdot \frac{1}{mh_k(\sigma_k)(mh_k(\sigma_k) - 1)}.
\]

Thus \(B(x, r)\) can intersect at most

\[
\frac{4r(mh_k(\sigma_k))^2}{\frac{a_1(\sigma_1)}{b_1(\sigma_1)} \cdot \frac{a_k(\sigma_k)}{b_k(\sigma_k)}} := l.
\]
Combining (6), (16) and (23), we have thus

\[\mu(B(x,r)) \leq \min \left\{ \mu(J_{\sigma_1,\sigma_2,\ldots,\sigma_k}), \sum_i \mu(J_{\sigma_1,\sigma_2,\ldots,\sigma_i}) \right\}, \]

where the sum is over all \(i \) such that \(\max\{\sigma_{k+1} - l, h_k(\sigma_k) + 1\} \leq i \leq \sigma_{k+1} + l \).

By (16), we have

\[\mu(B(x,r)) \leq \mu(J_{\sigma_1,\sigma_2,\ldots,\sigma_k}) \min \left\{ 1, \sum_i \frac{h_k(\sigma_k)}{i(i-1)} S(h_k(\sigma_k)) \right\} \]

\[\leq \mu(J_{\sigma_1,\sigma_2,\ldots,\sigma_k}) \min \left\{ 1, 2l \left(\frac{1}{h_k(\sigma_k)} \right)^{S(h_k(\sigma_k))} \right\} \]

\[= \mu(J_{\sigma_1,\sigma_2,\ldots,\sigma_k}) \min \left\{ 1, 8r(mh_k(\sigma_k))^2 \frac{a_k(\sigma_k)}{b_k(\sigma_k)} \left(\frac{1}{h_k(\sigma_k)} \right)^{S(h_k(\sigma_k))} \right\} \]

\[\leq \mu(J_{\sigma_1,\sigma_2,\ldots,\sigma_k}) \cdot 1^{1-s} \left(8r(mh_k(\sigma_k))^2 \frac{a_k(\sigma_k)}{b_k(\sigma_k)} \left(\frac{1}{h_k(\sigma_k)} \right)^{S(h_k(\sigma_k))} \right)^s. \]

From (13), we have, for any \(n \geq k_0 \),

\[h_n(\sigma_n) \geq a_0, \]

thus

\[S(h_n(\sigma_n)) \geq s \quad \text{for all } n \geq k_0. \quad (23) \]

Combining (6), (16) and (23), we have

\[\mu(B(x,r)) \leq \prod_{i=k_0}^{k-1} \frac{h_i(\sigma_i)}{\sigma_{i+1}(\sigma_{i+1} - 1)} \left(8r(mh_k(\sigma_k))^2 \frac{a_k(\sigma_k)}{b_k(\sigma_k)} \left(\frac{1}{h_k(\sigma_k)} \right)^{S(h_k(\sigma_k))} \right)^s \]

\[= \left(h_{k_0}(M_{k_0}(m)) \frac{a_{k_0+1}(\sigma_{k_0+1})}{b_{k_0+1}(\sigma_{k_0+1})} \cdots \frac{a_{k-1}(\sigma_{k-1})}{b_{k-1}(\sigma_{k-1})} \frac{1}{h_k(\sigma_k)} \right)^s \]

\[\cdot \left(8r(mh_k(\sigma_k))^2 \frac{a_k(\sigma_k)}{b_k(\sigma_k)} \right)^s \left(\frac{1}{h_k(\sigma_k)} \right)^{S(h_k(\sigma_k))} \]

\[= \left(h_{k_0}(M_{k_0}(m)) \cdot \frac{b_1(M_1(m))}{a_1(M_1(m))} \cdots \frac{b_{k_0}(M_{k_0}(m))}{a_{k_0}(M_{k_0}(m))} \right)^s. \]
\[
8r(mh_k(\sigma_k))^2 \left(\frac{1}{h_k(\sigma_k)} \right)^s \leq c_1 \left(r \cdot h_k(\sigma_k) \left(\frac{1}{h_k(\sigma_k)} \right)^s \right),
\]

where \(c_1 \) is a positive constant which does not depend on \(x \) and \(r \).

From the definition of \(S(a) \), we have

\[
1 = \sum_{a \leq b \leq ma} \left(\frac{a}{b(b-1)} \right)^{S(a)} \geq (m-1)a \left(\frac{1}{ma \cdot ma} \right)^{S(a)} = (m-1)a \left(\frac{1}{m^2a} \right)^{S(a)},
\]

thus

\[
\frac{a}{a^{S(a)}} \leq \frac{m^{2S(a)}}{m - 1} \leq \frac{m^2}{m - 1},
\]

and this implies

\[
h_k(\sigma_k) \left(\frac{1}{h_k(\sigma_k)} \right)^{S(h_k(\sigma_k))} \leq \frac{m^2}{m - 1}.
\]

Therefore

\[
\mu(B(x, r)) \leq c_2^2 \cdot r^s, \quad (24)
\]

where \(c_2 \) is a positive constant which does not depend on \(x \) and \(r \).

From (24), we know (17) holds. This completes the proof of Theorem 2.3. \(\Box \)

From (8) and Theorem 2.3, we have

Corollary 2.4. Suppose \(h_j(d) \geq d - 1 \) for all \(j \geq 1 \) and \(d \geq 2 \), then for each \(m \geq 2 \), we have \(\dim_H B_m = 1 \).

Remark 2.5. Let \(a_n(d_1, \ldots, d_n) = 1, b_n(d_1, \ldots, d_n) = d_n(d_n - 1), \)
\((n = 1, 2, \ldots)\). Then the algorithm (1) leads to the Lüroth expansion of \(x \),

\[
x = \frac{1}{d_1(x)} + \ldots + \frac{1}{d_1(x)(d_1(x) - 1) \ldots d_{n-1}(x)(d_{n-1}(x) - 1)d_n(x)} + \ldots \quad (25)
\]
Here \(h_n(j) = 1 \) and \(T_n(x) = d_n(x) - 1 \). For the L"uroth series, with the help of the theory of self similar set, see [3], Chapter 9, the Hausdorff dimension \(s \) of the \(B_m \) is determined by the following equation

\[
\sum_{2 \leq b \leq m+1} \left(\frac{1}{b(b-1)} \right)^s = 1.
\]

To some extent, L"uroth series expansion stands as a special case to say that the assumption on \(h_j \) in the main theorem is not superfluous. Moreover, we can obtain: if \(l \leq h_j(d_j(x)) \leq L \), for all \(x \in C_m = B_{m-1} \) and \(j \) larger than some fixed integer \(k_0 \), then one can has

\[
0 < \inf_{l \leq a \leq L} S(a) \leq \dim H \{ x \in (0, 1] : 1 \leq T_n(x) \leq m \text{ for all } n \geq 1 \} \leq \sup_{l \leq a \leq L} S(a) < 1.
\]

We now list some special cases which satisfy the assumption in Theorem 2.3.

Example 1. Engel expansion. Let \(a_n(d_1, \ldots, d_n) = 1 \), \(b_n(d_1, \ldots, d_n) = d_n \), \(n = 1, 2, \ldots \). Then (2), together with the algorithm (1), become Engel expansion of \(x \),

\[
x = \frac{1}{d_1(x)} + \frac{1}{d_1(x)d_2(x)} + \cdots + \frac{1}{d_1(x)d_2(x) \cdots d_n(x)} + \cdots. \tag{26}
\]

In this case, \(h_n(j) = j - 1 \) and \(T_n(x) = \frac{d_n(x)}{d_{n-1}(x)^2} - 1 \) if \(\frac{d_n(x)}{d_{n-1}(x)^2} \) is an integer and \(\left[\frac{d_n(x)}{d_{n-1}(x)^2} \right] \) otherwise. By Corollary 2.4, we have for each \(m \geq 2 \),

\[
\dim H \{ x \in (0, 1] : 1 \leq T_n(x) \leq m \text{ for all } n \geq 1 \} = 1.
\]

Example 2. Sylvester expansion. Choose \(a_n(d_1, \ldots, d_n) = 1 \), \(b_n(d_1, \ldots, d_n) = 1 \), \(n = 1, 2, \ldots \). We get the Sylvester expansion of \(x \),

\[
x = \frac{1}{d_1(x)} + \frac{1}{d_2(x)} + \cdots + \frac{1}{d_n(x)} + \cdots. \tag{27}
\]

Here \(h_n(j) = j(j-1) \) and \(T_n(x) = \frac{d_n(x)}{d_{n-1}(x) d_{n-1}(x) - 1} - 1 \) if \(\frac{d_n(x)}{d_{n-1}(x) d_{n-1}(x) - 1} \) is an integer and \(\left[\frac{d_n(x)}{d_{n-1}(x) d_{n-1}(x) - 1} \right] \) otherwise. By Corollary 2.4, we have for each \(m \geq 2 \),

\[
\dim H \{ x \in (0, 1] : 1 \leq T_n(x) \leq m \text{ for all } n \geq 1 \} = 1.
\]
Example 3. Cantor product. Take $a_n(d_1, \ldots, d_n) = d_n + 1$, $b_n(d_1, \ldots, d_n) = d_n$, ($n = 1, 2, \ldots$), the expansion (2) yields the Cantor product,

$$1 + x = \left(1 + \frac{1}{d_1(x)}\right) \left(1 + \frac{1}{d_2(x)}\right) \ldots \left(1 + \frac{1}{d_n(x)}\right) \ldots \quad (28)$$

Here $h_n(j) = j^2 - 1$ and $T_n(x) = \frac{d_n(x)}{d_{n-1}(x)} - 1$ if $\frac{d_n(x)}{d_{n-1}(x)}$ is an integer and $\left[\frac{d_n(x)}{d_{n-1}(x)}\right]$ otherwise. By Corollary 2.4, we have for each $m \geq 2$,

$$\dim_H \{x \in [0, 1] : 1 \leq T_n(x) \leq m \text{ for all } n \geq 1\} = 1.$$

Example 4. Modified Engel expansion. Let $a_n(d_1, \ldots, d_n) = 1$, $b_n(d_1, \ldots, d_n) = d_n - 1$, ($n = 1, 2, \ldots$). We get the modified Engel expansion of x,

$$x = \frac{1}{d_1(x)} + \frac{1}{(d_1(x)-1)(d_2(x)-1)} \ldots \frac{1}{(d_{n-1}(x)-1)d_n(x)} \ldots \quad (29)$$

Thus $h_n(j) = j$ and $T_n(x) = \frac{d_n(x)}{d_{n-1}(x)} - 1$ if $\frac{d_n(x)}{d_{n-1}(x)}$ is an integer and $\left[\frac{d_n(x)}{d_{n-1}(x)}\right]$ otherwise. By Corollary 2.4, we have for each $m \geq 2$,

$$\dim_H \{x \in [0, 1] : 1 \leq T_n(x) \leq m \text{ for all } n \geq 1\} = 1.$$

Example 5. Daróczy–Kátai-Birthday expansion. Choose $a_n(d_1, \ldots, d_n) = d_n$, $b_n(d_1, \ldots, d_n) = 1$, ($n = 1, 2, \ldots$), the resulting series expansion of x takes the form,

$$x = \frac{1}{d_1(x)} + \frac{d_1(x)}{d_2(x)} \ldots \frac{d_1(x)d_2(x) \ldots d_{n-1}(x)}{d_n(x)} \ldots \quad (30)$$

The Daróczy–Kátai-Birthday expansion was introduced for the first time in Galambos [9]. Here $h_n(j) = j^2(j - 1)$ and $T_n(x) = \frac{d_n(x)}{d_{n-1}(x)(d_{n-1}(x)-1)} - 1$ if $\frac{d_n(x)}{d_{n-1}(x)(d_{n-1}(x)-1)}$ is an integer and $\left[\frac{d_n(x)}{d_{n-1}(x)(d_{n-1}(x)-1)}\right]$ otherwise. By Corollary 2.4, we have for each $m \geq 2$,

$$\dim_H \{x \in [0, 1] : 1 \leq T_n(x) \leq m \text{ for all } n \geq 1\} = 1.$$

Remark 2.6. A modification of (1) and (3) to the algorithm $0 < x \leq 1$, $x = x_1$, and

$$\frac{1}{D_n+1} < x_n \leq \frac{1}{D_n}, \quad \frac{1}{D_n} = x_n = \frac{a_n}{b_n} \cdot x_{n+1} \quad (31)$$
A problem of Galambos on Oppenheim series expansions generates an alternating series representation
\[x \sim \frac{1}{D_1} - \frac{a_1}{b_1} \frac{1}{D_2} + \cdots + (-1)^n \frac{a_1 a_2 \ldots a_n}{b_1 b_2 \ldots b_n} \frac{1}{D_{n+1}} + \ldots, \tag{32} \]
called alternating Oppenheim expansion. The metric theory for the alternating Oppenheim expansion was studied recently in [10]. Using the same method, we can get the corresponding results of Theorem 2.3 and Corollary 2.4 for this expansion.

ACKNOWLEDGEMENT. This work was supported by the Kua-Shi-Ji foundation of Educational Committee and the Special Funds for Major State Basic Research Projects of China.

References

Bao-Wei Wang
Department of Mathematics
Wuhan University
Wuhan, Hubei, 430072
P.R. China
E-mail: bwei_wang@yahoo.com.cn

Jun Wu
Department of Mathematics
Huazhong University of Science and Technology
Wuhan, Hubei, 430074
P.R. China
E-mail: wujunyu@public.wh.hb.cn

(Received November 26, 2004; revised July 19, 2005)