Abstract. We prove a result concerning additive n-commuting maps on prime rings and then apply it to n-commuting linear generalized differential polynomials.

1. Results

Throughout, unless specially stated, R always denotes a prime ring with center Z. We let U be the maximal ring of right quotients of R and let Q stand for the symmetric Martindale quotient ring of R. The center C of U (and Q) is called the extended centroid of R. See [3] for its details. An additive map $d : R \to R$ is called a derivation if $(xy)^d = x^d y + xy^d$ for all $x, y \in R$. A map $f : R \to U$ is called n-commuting on a subset S of R, where n is a positive integer, if $[f(x), x^n] = 0$ for all $x \in S$. The map f is merely called commuting if it is 1-commuting. The study of these mappings was initiated by Posner’s Theorem: The existence of a nonzero derivation commuting on R implies the commutativity of R [21, Theorem 2]. More related results have been obtained in [17]–[19], [4], [5], [13]–[6]. Also, see [11], [1], [2] for n-commuting maps. Applying [2, Theorem 1.1] and [1, Theorem 4.4] we have the result: Let R be a prime
ring such that either \(\text{char } R = 0 \) or a prime \(p > n \), or \(\deg(R) > n \). Then every additive \(n \)-commuting map of \(R \) into \(U \) is commuting. The goal of this paper is to prove a theorem related to the result above and then apply it to some applications on \(n \)-commuting linear differential polynomials. We now state the main result:

Theorem 1.1. Let \(R \) be a prime ring with center \(Z \), its maximal ring of right quotients \(U \) and \(n \) a fixed positive integer. Suppose that \(f : R \to U \) is an additive \(n \)-commuting map such that \(f \) is \(Z \)-linear if \(Z \neq 0 \). Then there exist \(\lambda \in C \) and a map \(\mu : R \to C \) such that \(f(x) = \lambda x + \mu(x) \) for all \(x \in R \), unless \(R \cong M_2(\text{GF}(2)) \).

Here, \(\text{GF}(2) \) denotes the Galois field of two elements. The following gives a counterexample for the case \(R = M_2(\text{GF}(2)) \).

Example 1.2. Let \(R = M_2(\text{GF}(2)) \) and let \(f : R \to R \) be defined by

\[
f \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} = \begin{pmatrix} \alpha + \gamma & 0 \\ 0 & \beta + \delta \end{pmatrix} \quad \text{for} \quad \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \in R.
\]

Then \(f \) is a \(\text{GF}(2) \)-linear map. A direct computation proves that \([f(x), x^6] = 0 \) for all \(x \in R \). However, \(\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \).

Hence, \(f \) is a 6-commuting linear map but it is not commuting.

We now apply Theorem 1.1 to \(n \)-commuting linear generalized differential polynomials. To state these results precisely, let us recall some notation. We denote by \(\text{Der}(U) \) the set of all derivations of \(U \). For \(d \in \text{Der}(U) \) and \(x \in U \), one usually writes \(x^d \) for \(d(x) \). Also, if \(\beta \in C \), define \(x^{d\beta} = x^d \beta \). It follows that \(\text{Der}(U) \) forms a right \(C \)-module. Let \(D \) be the \(C \)-submodule of \(\text{Der}(U) \) defined by

\[
D = \{ \delta \in \text{Der}(U) \mid I^\delta \subseteq R \text{ for some nonzero ideal } I, \text{ depending on } \delta, \text{ of } R \}.
\]

By a derivation word we mean an additive map \(\Delta \) from \(U \) into itself assuming the form \(\Delta = \delta_1 \delta_2 \ldots \delta_t \), where \(\delta_i \in D \). If \(\Delta \) is empty, we define \(x^\Delta = x \) for \(x \in U \). A linear generalized differential polynomial means a linear generalized polynomial with coefficients in \(U \) and with an indeterminate \(X \).
which are acted on by derivation words. Thus every linear generalized differential polynomial can be written in the form \(\sum_i \sum_j a_{ij}X^{\Delta_i}b_{ij} \), where \(a_{ij}, b_{ij} \in U \) and the \(\Delta_i \)'s are derivation words.

Theorem 1.3. Let \(R \) be a noncommutative prime ring, \(R \not\cong M_2(\mathbb{GF}(2)) \), and \(n \) a fixed positive integer. Suppose that

\[
[\psi(x), x^n] = 0
\]

for all \(x \in R \), where \(\psi(x) \) is a linear generalized differential polynomial. Then \(\psi(x) = \lambda x + \mu(x) \) for all \(x \in R \), where \(\lambda \in C \) and \(\mu : R \rightarrow C \).

Proof. Applying the identities (1)–(5) given in [8, p. 155], we can find finitely many distinct regular words \(\Delta_0, \Delta_1, \ldots, \Delta_t \) with \(\Delta_0 = \emptyset \) such that

\[
\psi(x) = \sum_{i=0}^t \sum_j a_{ij}x^{\Delta_i}b_{ij} \quad (1.1)
\]

for all \(x \in R \), where \(a_{ij}, b_{ij} \in U \). By assumption,

\[
\left[\sum_{i=0}^t \sum_j a_{ij}x^{\Delta_i}b_{ij}, x^n \right] = 0 \quad (1.2)
\]

for all \(x \in R \). Applying Kharchenko’s Theorem [9, Theorem 2] to (1.2) yields

\[
\left[\sum_{i=1}^t \sum_j a_{ij}y_ib_{ij} + \sum_j a_{0j}xb_{0j}, x^n \right] = 0 \quad (1.3)
\]

for all \(y_i, x \in R \). For \(i > 0 \) we see that \(\sum_j a_{ij}y_ib_{ij}, x^n = 0 \) for all \(x, y \in R \) and so for all \(x, y \in U \) (see [3, Theorem 6.4.1] or [7, Theorem 2]). In view of [12, Theorem], we have \(\sum_j a_{ij}y_ib_{ij}, x = 0 \) for all \(x, y \in R \). Thus \(\sum_j a_{ij}y_ib_{ij} \in C \) for all \(y \in U \). In particular, \(\sum_{i=1}^t \sum_j a_{ij}x^{\Delta_i}b_{ij} \in C \) for all \(x \in U \). Thus (1.3) is reduced to \(\sum_j a_{0j}xb_{0j}, x^n = 0 \) for all \(x \in U \). By Theorem 1.1, there exist \(\lambda \in C \) and \(\eta : R \rightarrow C \) such that \(\sum_j a_{0j}xb_{0j} = \lambda x + \eta(x) \) for all \(x \in U \). We are now done by setting \(\mu(x) = \eta(x) + \sum_{i=1}^t \sum_j a_{ij}x^{\Delta_i}b_{ij} \in C \) for all \(x \in R \). This proves the theorem. \(\square \)
A special case of Theorem 1.3 is the following

Theorem 1.4. Let \(R \) be a noncommutative prime ring, \(R \not\cong M_2(\text{GF}(2)) \), with a derivation \(\delta \), \(n \geq 1 \). Suppose that \([\psi(x), x^n] = 0 \) for all \(x \in R \), where \(\psi(x) = \sum_{i=0}^{t} a_i x^{d_i} \) with \(a_i \in R \). Then \(a_0 \in \mathcal{Z} \) and \(\psi(x) = a_0 x \) for all \(x \in R \).

We remark that Park and Jung studied the case: a derivation \(d \) on an \(n! \)-torsion-free semiprime ring \(R \) such that \(d^2 \) is \(n \)-commuting on \(R \), where \(n \geq 2 \) [20, Theorem 3.1]. Applying the theory of orthogonal completion for semiprime rings (see [3]), [20, Theorem 3.1] can be reduced to the prime case and so can be solved as a special case of Theorem 1.4. To prove it we first quote Chang’s Theorem [6, Theorem 3.2]:

Theorem 1.5 *(Chang [6]).* Let \(R \) be a noncommutative prime ring with a derivation \(d \). Suppose that \(\sum_{i=1}^{n} a_i x^{d_i} \in \mathcal{Z} \), where \(a_i \in R \). Then \(a_0 = 0 \) and \(\sum_{i=0}^{n} a_i x^{d_i} = 0 \) for all \(x \in U \).

Before giving the proof of Theorem 1.4 we need the following generalization of Theorem 1.5

Theorem 1.6. Let \(R \) be a noncommutative prime ring with a derivation \(d \). Suppose that \(\sum_{i=0}^{n} a_i x^{d_i} \in \mathcal{Z} \), where \(a_i \in R \). Then \(a_0 = 0 \) and \(\sum_{i=0}^{n} a_i x^{d_i} = 0 \) for all \(x \in R \).

Proof. In view of Theorem 1.5, it is enough to show that \(a_0 = 0 \). Obviously we can assume that \(d \neq 0 \). We set \(\phi(x) = \sum_{i=0}^{n} a_i x^{d_i} \) for \(x \in U \), and note that \([\phi(x), y] = 0 \) for all \(x, y \in R \). According to [10, Theorem 2], \([\phi(x), y] = 0 \) for all \(x, y \in U \) and so \(\phi(x) \in C \) for all \(x \in U \). In particular, \(a_0 = \phi(1) \in C \). Suppose that \(a_0 \neq 0 \). Replacing \(\phi(x) \) with \(a_0^{-1} \phi(x) \) we reduce the proof to the case when \(a_0 = 1 \). The aim is to derive a contradiction.

Given \(x, y \in U \), it follows directly from Leibniz’s rule that \(\phi(yx) = \sum_{i=1}^{n} b_i x^{d_i} + \phi(y)x \) for some \(b_i \in U \), depending on \(y \). Therefore

\[
\sum_{i=1}^{n} (b_i - \phi(y)a_i) x^{d_i} = \phi(yx) - \phi(y)\phi(x) \in C
\]

for all \(x, y \in U \). Theorem 1.5 now yields that \(\phi(yx) = \phi(y)\phi(x) \) for all \(x, y \in U \). Therefore \(\phi : U \to C \) is a ring homomorphism. Next,
\[\sum_{i=0}^{n} a_i x^{d^{i+1}} = \phi(x^d) \in C \] and so Theorem 1.5 yields that \(x^d \in \ker(\phi) \).

Since \(d \neq 0 \), \(\ker(\phi) \neq 0 \) as well. We see that \(\ker(\phi) \) is a nonzero ideal of \(U \) and \(\phi \) is a generalized differential polynomial identity on \(\ker(\phi) \). Therefore [10, Theorem 2] implies that \(\phi(x) = 0 \) for all \(x \in U \). In particular, \(1 = \phi(1) = 0 \), a contradiction. The proof is now complete. \(\square \)

Proof of Theorem 1.4. In view of Theorem 1.3, \(\psi(x) = \lambda x + \mu(x) \) for all \(x \in R \), where \(\lambda \in C \) and \(\mu : R \to C \). That is, \(\sum_{i=0}^{t} a_i x^{\delta_i} - \lambda x \in C \) for all \(x \in R \) and so for all \(x \in U \) [10, Theorem 2]. In view of Theorem 1.6, \(\sum_{i=0}^{t} a_i x^{\delta_i} - \lambda x = 0 \) for all \(x \in U \). In particular, we set \(x = 1 \) to get \(a_0 = \lambda \in Z \), and hence \(\sum_{i=1}^{t} a_i x^{\delta_i} = 0 \) for all \(x \in U \). Thus \(\psi(x) = a_0 x \) for all \(x \in R \). This proves the theorem. \(\square \)

2. Proof of Theorem 1.1

We begin with the following special case.

Lemma 2.1. Theorem 1.1 holds if \(R = M_m(C) \), the \(m \times m \) matrix ring over a field \(C \), unless \(m = 2 \) and \(C = GF(2) \).

Proof. For \(n = 1 \) we are done by Brešar’s Theorem [4, Theorem A]. Therefore, we always assume \(n > 1 \). Let \(\{e_{ij} \mid 1 \leq i \leq j \leq m\} \) be the set of usual matrix units of \(R \). The aim is to prove that there exists \(\lambda \in C \) such that \(f(e_{ij}) - \lambda e_{ij} \in C \) for all \(1 \leq i, j \leq m \). Indeed, we then have \(f(x) - \lambda x \in C \) for all \(x \in R \) as \(f \) is \(C \)-linear. Hence, the lemma is proved by setting \(\mu(x) = f(x) - \lambda x \in C \) for \(x \in R \).

For \(m \geq 3 \) we claim that

\[[f(u), e] = 0 \quad \text{if} \quad u^2 = eu = ue = 0 \quad \text{and} \quad e = e^2 \quad \text{for} \quad e, u \in R. \quad (2.1) \]

Indeed, \((e + u)^n = e \) since \(n > 1 \). Thus, by assumption, \(0 = [f(e + u), (e + u)^n] = [f(e) + f(u), e] = [f(u), e] \), as desired. We claim that there exist \(\lambda_{ij} \in C \) such that

\[f(e_{ij}) - \lambda_{ij} e_{ij} \in C \quad \text{and so} \quad [f(e_{ij}), e_{ij}] = 0 \quad (2.2) \]

for \(i \neq j \). Let \(1 \leq p \leq m \) be distinct from \(i, j \). Note that \(e_{pp}^2 = e_{pp} \) and \(e_{ij}^2 = 0 = e_{pp} e_{ij} = e_{ij} e_{pp} \). Thus, by (2.1), \([f(e_{ij}), e_{pp}] = 0 \) follows. Write
Applying (2.3) and we obtain that (2.1) we have

\[e \]

the other hand, the idempotent \(e \) of (2.4), we get

\[\text{diagonal, that is, } e \]

Right-multiplying by \(e \), we have that \(e \) is an idempotent where

Since the idempotent \(e_{ip} + e_{pp} \) satisfies \(e_{ij}(e_{ip} + e_{pp}) = 0 = (e_{ip} + e_{pp})e_{ij} \), by (2.1) we have \([f(e_{ij}), e_{ip} + e_{pp}] = 0 \) and so \([f(e_{ij}), e_{ip}] = 0 \). Applying (2.3) we obtain that \(\alpha_{ii}e_{ip} + \alpha_{ji}e_{jp} = \alpha_{pp}e_{ip} \). Hence, \(\alpha_{ji} = 0 \) and \(\alpha_{ii} = \alpha_{pp} \). On the other hand, the idempotent \(e_{pj} + e_{pp} \) satisfies \(e_{ij}(e_{pj} + e_{pp}) = (e_{pj} + e_{pp})e_{ij} = 0 \). By (2.1) again, \([f(e_{ij}), e_{pj} + e_{pp}] = 0 \) and so \([f(e_{ij}), e_{pj}] = 0 \). Applying (2.3) and \(\alpha_{ji} = 0 \) we obtain that \(\alpha_{pp}e_{pj} = \alpha_{jj}e_{pj} \) and so \(\alpha_{pp} = \alpha_{jj} \). This implies that \(f(e_{ij}) = \alpha_{ij}e_{ij} \in C \). Set \(\lambda_{ij} = \alpha_{ij} \in C \). In particular, \([f(e_{ij}), e_{ij}] = 0 \). This proves (2.2).

Next, we write \(f(e_{ii}) = \sum_{s,t} \alpha_{st}e_{st} \), where \(\beta_{st} \in C \). By assumption, we have \([f(e_{ii}), e_{ii}] = 0 \). This implies \(f(e_{ii})e_{ii} = e_{ii}f(e_{ii}) \) and so \(e_{ii}f(e_{ii})e_{pp} = 0 \) for all \(p \neq i \). Hence \(\beta_{ipp} = 0 \). Using the fact that \(e_{ii} + e_{ij} \) is an idempotent where \(j \neq i \), we have that

\[0 = [f(e_{ii} + e_{ij}), e_{ii} + e_{ij}] = [f(e_{ii}), e_{ij}] + [f(e_{ij}), e_{ii}] \]

Note that \(f(e_{ij}) - \lambda_{ij}e_{ij} \in C \). This implies that

\[[f(e_{ii}), e_{ij}] + [\lambda_{ij}e_{ij}, e_{ii}] = 0. \]

Right-multiplying by \(e_{pp} \) where \(p \neq j \), we see that \(\beta_{ipp} = 0 \) and so \(f(e_{ii}) \) is diagonal, that is, \(\beta_{ist} = 0 \) for \(s \neq t \) and so \(f(e_{ii}) = \sum_{t=1}^{m} \beta_{itt}e_{tt} \). Making use of (2.4), we get \(\sum_{t=1}^{m} \beta_{tt}e_{tt}, e_{ii}] + [\lambda_{ij}e_{ij}, e_{ii}] = 0 \) and so \(\beta_{iii} = \beta_{ijj} + \lambda_{ij} \). Let \(1 \leq k \leq m \) be such that \(k \neq i,j \). By assumption,

\[0 = [f(e_{ii} + e_{kj} + e_{ji}), (e_{ii} + e_{kj} + e_{ji})^{n}] \]

\[= \left[\sum_{t=1}^{n} \beta_{tt}e_{tt} + \lambda_{kk}e_{kk} + \lambda_{jj}e_{jj}, e_{ii} + e_{ki} + e_{ji} \right] \]

\[= (\beta_{ikk} - \beta_{iii} + \lambda_{kk})e_{ki} + (\beta_{ijj} - \beta_{iii} + \lambda_{ij})e_{ji}, \]

since \(n > 1 \). This implies that \((\lambda_{kk} - \lambda_{ik})e_{ki} + (\lambda_{jj} - \lambda_{ij})e_{ji} = 0 \), since \(\beta_{iii} - \beta_{ikk} = \lambda_{ik} \). That is, \(\lambda_{ji} = \lambda_{ij} \) and \(\lambda_{kj} = \lambda_{jk} = \lambda_{ki} \). So \(\beta_{iii} = \)}
Let Posner’s Theorem for prime PI-rings, suppose that

\[0 = \lambda_{ij} + \lambda_{ij} = \beta_{kk} + \lambda_{ik}. \]

But \(\lambda_{ik} = \lambda_{jk} = \lambda_{kj} = \lambda_{ij} \), this implies that

\[\beta_{ij} + \lambda_{ij} = \beta_{kk} \]

and so

\[f(e_{ii}) - \lambda_{ij}e_{ii} = \sum_{s=1}^{m} \beta_{ss}e_{ss} - \lambda_{ij}e_{ii} = \beta_{jj} \sum_{s=1}^{m} e_{ss} \in C. \]

We let \(\lambda = \lambda_{ij} \in C \). Then \(f(e_{st}) - \lambda e_{st} \in C \) for \(1 \leq s, t \leq m \).

We assume next that \(m = 2 \). By assumption, we have \([f(e_{11}), e_{11}] = 0\), implying that \(f(e_{11}) = \alpha e_{11} + \beta e_{22} \) for some \(\alpha, \beta \in C \). Setting \(\lambda_{11} = \alpha - \beta \) we have \(f(e_{11}) - \lambda_{11}e_{11} \in C \). Analogously, \(f(e_{22}) - \lambda_{22}e_{22} = 0 \) for some \(\lambda_{22} \in C \). As \(|C| > 2 \), there exists \(\alpha \in C \) with \(\alpha \neq 0, 1 \). Note that \(e_{11} + e_{12} \) and \(e_{11} + \alpha e_{12} \) are two idempotents. Thus \([f(e_{11} + e_{12}), e_{11} + e_{12}] = 0\) and \([f(e_{11} + \alpha e_{12}), e_{11} + \alpha e_{12}] = 0\). Since \(f \) is \(C \)-linear and \(\alpha \neq 0, 1 \), this implies \([f(e_{12}), e_{12}] = 0\). So \(f(e_{12}) - \lambda_{12}e_{12} = 0 \) for some \(\lambda_{12} \in C \). Analogously, \(f(e_{21}) - \lambda_{21}e_{21} = 0 \) for some \(\lambda_{21} \in C \). On the other hand,

\[0 = [f(e_{11} + e_{12}), e_{11} + e_{12}] = [f(e_{11}), e_{11}] + [f(e_{12}), e_{11}] = [\lambda_{11}e_{11}, e_{11}] + [\lambda_{12}e_{12}, e_{11}] = (\lambda_{11} - \lambda_{12})e_{12}, \]

implying that \(\lambda_{11} = \lambda_{12} \). It follows from an analogous argument that \(\lambda_{12} = \lambda_{22} \) and \(\lambda_{11} = \lambda_{21} \). Set \(\lambda = \lambda_{11} \). We see that \(f(e_{ij}) - \lambda e_{ij} \in C \) for \(i, j = 1, 2 \). This proves the lemma.

\(\square \)

Lemma 2.2. Let \(R \) be a prime PI-ring with center \(Z \). Then every \(Z \)-linear map from \(R \) into \(RC \) is defined by a linear generalized polynomial with coefficients in \(RC \).

Proof. By Posner’s Theorem for prime PI-rings, \(RC \) is a finite-dimensional central simple \(C \)-algebra. Moreover, \(Z \neq 0 \) [22, Theorem 2.10] and \(C \) is the quotient field of \(Z \). Suppose that \(f : R \rightarrow RC \) is a \(Z \)-linear map. Then it is obvious that \(f \) is uniquely extended to a \(C \)-linear map from \(RC \) into \(RC \). Note that \(RC \otimes_C RC^o \cong \text{End}_C(RC) \) via a canonical map \(\phi \), defined by \(\phi(\sum_i a_i \otimes b_i^o)(x) = \sum_i a_i x b_i \) for \(x \in RC \), where \(RC^o \) denotes the ring opposite to \(RC \). Thus there exist \(a_i, b_i \in RC \) such that \(f = \phi(\sum_i a_i \otimes b_i^o) \). That is, \(f(x) = \sum_i a_i x b_i \) for all \(x \in R \), proving the lemma.

\(\square \)

Lemma 2.3. If \(xa - bx \in C \) for all \(x \in R \), where \(a, b \in U \), then either \(R \) is commutative or \(a = b \in C \).

Proof. Suppose that \(R \) is not commutative. Choose a dense right ideal \(\rho \) of \(R \) such that \(bp \subseteq R \). Let \(y \in \rho \). Then \(by \in R \) and so \((by)a -
b(by) ∈ C. That is, b(ya − by) ∈ C. Since ya − by ∈ C, either b ∈ C or ya = by. If b ∈ C, then R(a − b) ⊆ C, implying that a = b since R is not commutative. Suppose next that ya = by for all y ∈ ρ. In view of [7, Theorem 2], ya = by for all y ∈ U. In particular, set y = 1. Then a = b follows. So [a, R] ⊆ C, implying a ∈ C again. This proves the lemma.

We are now ready to the proof of Theorem 1.1.

Proof of Theorem 1.1. Suppose that R ̸∼ M2(GF(2)). By assumption, we have [f(x), x^n] = 0 for all x ∈ R. Suppose first that R is not a PI-ring. Then deg(R) = ∞ in the sense of [1]. In view of [1, Theorem 4.4], there exist a, b ∈ U and maps μ, ν : R → C such that f(x) = xa + μ1(x) = bx + ν2(x) for all x ∈ R. Thus xa − bx ∈ C for all x ∈ R. It follows from Lemma 2.3 that either R is commutative or a = b ∈ C. Since R is not a PI-ring, R is not commutative. So a = b ∈ C. We are done in this case by setting λ = a ∈ C.

Suppose next that R is a PI-ring. Then Z ̸∼ 0 [22, Theorem 2.10]. By assumption, f is a Z-linear map. In view of Lemma 2.2, there exist finitely many a_i, b_i ∈ RC such that f(x) = ∑ a_i x b_i for all x ∈ R. By assumption, we see that

\[
\left[∑ a_i x b_i, x^n \right] = 0 \tag{2.5}
\]

for all x ∈ R and hence for all x ∈ RC ([3, Theorem 6.4.1] or [7, Theorem 2]). Define F to be the algebraic closure of C if C is infinite. Otherwise, let F = C. Then (2.5) holds for all x ∈ RC ⊗ C F. Note that x ∈ RC ⊗ C F ∼= M_m(F) for some m ≥ 1. Define g : RC ⊗ C F → RC ⊗ C F by g(x) = ∑ a_i x b_i for all x ∈ RC ⊗ C F. Then, by Lemma 2.1, there exist c ∈ F and ν : RC ⊗ C F → F such that g(x) = cx + ν(x) for all x ∈ RC ⊗ C F. Choose a basis \{β_1, β_2, \ldots\} of F over C with β_1 = 1. Write c = λ β_1 + ∑_{j=2}^s λ_j β_j for some s ≥ 1 and λ, λ_j ∈ C. Set μ(x) = g(x) − cx for x ∈ RC. Then μ(x) ∈ C for x ∈ RC. Note that f(x) = g(x) for all x ∈ R. Thus we see that f(x) = λ x + μ(x) for all x ∈ R, proving the theorem.

Acknowledgements The authors would like to thank the referee for her/his useful comments. In particular, the neat proof of Theorem 1.6 is
suggested by referee. The first-named author is supported by a grant from NSC of R.O.C. (Taiwan).

References

TSIU-KWEN LEE
DEPARTMENT OF MATHEMATICS
NATIONAL TAIWAN UNIVERSITY TAIPEI 106
TAIWAN

E-mail: tklee@math.ntu.edu.tw

KUN-SHAN LIU
DEPARTMENT OF MATHEMATICS
NATIONAL TAIWAN UNIVERSITY TAIPEI 106
TAIWAN

E-mail: kliu@math.ntu.edu.tw

WEN-KWEI SHIUE
DEPARTMENT OF COMPUTER SCIENCE
DAHAN INSTITUTE OF TECHNOLOGY
HUALIEN 971
TAIWAN

E-mail: wkxue@yahoo.com.tw

(Received March 26, 2003; revised September 5, 2003)