Prime ideals and complex ring homomorphisms
on a commutative algebra

By TAKESHI MIURA (Yonezawa), SIN-EI TAKAHASI (Yonezawa)
and NORIO NIWA (Neyagawa)

Abstract. We give a characterization of prime ideals P of a commutative complex
algebra A in order that P be the kernel of some complex ring homomorphism on A. If, in
addition, A is a uniform algebra on an infinite compact metric space, then we show that
there are exactly 2^c complex ring homomorphisms on A, whose kernels are non-maximal
prime ideals. Moreover, it turns out that ring homomorphisms on a commutative Banach
algebra are deeply connected with the existence of discontinuous homomorphisms.

1. Introduction and the statement of results

Let A and B be algebras over the complex number field \mathbb{C}. We say that a
mapping $\rho : A \to B$ is a ring homomorphism, provided that
\[
\rho(f + g) = \rho(f) + \rho(g)
\]
and
\[
\rho(fg) = \rho(f)\rho(g)
\]
for every $f, g \in A$. Moreover if ρ is homogeneous, that is $\rho(\lambda f) = \lambda \rho(f)$ for every
$f \in A$ and $\lambda \in \mathbb{C}$, then ρ is an ordinary homomorphism. It is obvious that if
$\rho : A \to B$ is a ring homomorphism, then $\rho(rf) = r\rho(f)$ for every rational number r and $f \in A$. If, in addition, ρ is assumed to be continuous, then we see that ρ is real linear, that is, $\rho(tf) = t\rho(f)$ for every real number t and $f \in A$. So, we consider ring homomorphisms which need not be continuous. The study of
ring homomorphisms between two Banach algebras has a long history. In 1944,
Arnold [1] proved that a ring isomorphism between the two Banach algebras of all bounded linear operators on two infinite dimensional Banach spaces is linear or conjugate linear. Kaplansky [6] generalized this result as follows: If ρ is a ring isomorphism from one semisimple Banach algebra A onto another, then A is the direct sum of closed ideals A_1, A_2 and A_3 such that $\rho|_{A_1}$ is linear, $\rho|_{A_2}$ is conjugate linear and that A_3 is finite dimensional. The finite dimensional part is not trivial in general. In fact, Kestelman [7] proved that there exists a ring homomorphism $\rho : C \to C$ such that ρ is neither linear nor conjugate linear. Moreover, Charnow [2, Theorem 3] proved that there exist $2^{|S|}$ ring automorphisms for every algebraically closed field k. Here and after, $|S|$ denotes the cardinal number of a set S. In particular, there are $2^{|C|}$ ring automorphisms on C. Molnár [10, Theorem 1] essentially gave a representation of a ring homomorphism between two commutative C^*-algebras.

Suppose $\rho : A \to B$ is a ring homomorphism between two commutative Banach algebras A and B with the maximal ideal spaces M_A and M_B, respectively. When studying such mappings, a natural approach would be to consider ring homomorphisms $\varphi \circ \rho : A \to C$ for every $\varphi \in M_B$, and patch them by a continuous mapping from a suitable subset of M_B into M_A. Indeed, some representations of ring homomorphisms, with additional conditions, are proved in this way (cf. [5, Theorem 2.3], [9, Theorem 2.6], [11, Theorem 5.1, 5.2]). Unfortunately this approach does not work in general because the kernel $\ker(\varphi \circ \rho)$ need not be a maximal ideal of A. On the other hand, Molnár [10, Theorem 2] essentially gave a representation of ring homomorphisms between two commutative C^*-algebras by another approach. Although we are concerned with ring homomorphism, the term ideal will mean an algebra ideal. Let $C(X)$ denote the commutative Banach algebra of all complex valued continuous functions on a compact Hausdorff space X. Suppose $\tau : C \to C$ is a ring homomorphism, and suppose $x_0 \in X$. Šemrl [11, Example 5.4] considered a complex ring homomorphism $\rho : C(X) \to C$ of the form

$$\rho(f) = \tau(f(x_0)) \quad (f \in C(X))$$

and gave the following example: If \mathbb{N} is the set of all natural numbers and if K is the closure of $\{1/n : n \in \mathbb{N}\}$ with its usual topology, then there is a non-zero ring homomorphism $\phi : C(K) \to C$ such that ϕ is not of the form $(*)$. In particular, $\ker \phi$ is a non-maximal prime ideal of $C(K)$. The first author [9, Lemma 2.1] gave a characterization of a ring homomorphism ρ between two commutative Banach algebras in order that $\ker \rho$ be a maximal ideal (cf. [5, Lemma 2.2]).

In this note, we are concerned with complex ring homomorphisms ρ on a commutative complex algebra A. If ρ is non-zero, then it is easy to see that
ker ρ is a prime ideal of \mathcal{A}. Recall that if \mathcal{A} is a unital commutative Banach algebra, then there is a one-to-one correspondence between non-zero complex homomorphisms on \mathcal{A} and maximal ideals of \mathcal{A}. With this in mind, one might expect that there is also a correspondence between complex ring homomorphisms and prime ideals of a complex commutative algebra \mathcal{A}. In this note, we give a characterization of prime ideals that can be represented as the kernels of some complex ring homomorphisms. Before we state our main result, we need some terminology. If \mathcal{A} is unital, then we define $\mathcal{A}_e \overset{\text{def}}{=} \mathcal{A}$; otherwise, \mathcal{A}_e denotes the commutative complex algebra obtained by adjunction of a unit element e to \mathcal{A}. As usual, we may identify $f \in \mathcal{A}$ with $(f, 0) \in \mathcal{A}_e$.

Let K be the closure of $\{1/n : n \in \mathbb{N}\}$ with its usual topology. As stated above, Šemrl gave a complex ring homomorphism on $C(K)$, whose kernel is a non-maximal prime ideal. In the following corollary we see that there exist $2^\mathfrak{c}$ such mappings. Moreover, the following is true.

Corollary 1.2. If \mathcal{A} is a uniform algebra on an infinite compact metric space, then there are exactly $2^\mathfrak{c}$ complex ring homomorphisms on \mathcal{A}, whose kernels are non-maximal prime ideals.

2. A proof of results

Recall that an ideal \mathcal{P} of a commutative algebra is prime if \mathcal{P} is proper and $fg \notin \mathcal{P}$ whenever $f \notin \mathcal{P}$ and $g \notin \mathcal{P}$.

It is advisable to note that the quotient field of an integral domain R is well defined even if R has no unit: If $a \in R \setminus \{0\}$, then the “fraction” a/a is a unit, and we may identify $b \in R$ with ab/a.

Theorem 1.1. Suppose \mathcal{A} is a commutative complex algebra and \mathcal{P} is a prime ideal of \mathcal{A}. Put $\mathfrak{c} = \sharp \mathbb{C}$. Then each of the following four properties implies the other three:

(a) There exists a non-zero ring homomorphism $\rho : \mathcal{A} \to \mathbb{C}$ such that $\ker \rho = \mathcal{P}$.

(b) The quotient algebra \mathcal{A}/\mathcal{P} has the cardinal number \mathfrak{c}.

(c) There exists a prime ideal $\bar{\mathcal{P}}$ of \mathcal{A}_e such that $\mathcal{P} = \bar{\mathcal{P}} \cap \mathcal{A}$ and that $\mathcal{A}_e/\bar{\mathcal{P}}$ has the cardinal number \mathfrak{c}.

(d) There exists a non-zero ring homomorphism $\bar{\rho} : \mathcal{A}_e \to \mathbb{C}$ such that $\mathcal{A} \cap \ker \bar{\rho} = \mathcal{P}$.

Proof. The proof follows from the fundamental properties of complex ring homomorphisms and the construction of \mathcal{A}_e. The details are left to the reader.
Lemma 2.1. Suppose \mathcal{A} is a commutative complex algebra and $\rho : \mathcal{A} \to \mathbb{C}$ is a non-zero ring homomorphism. Then
(a) the kernel $\ker \rho$ is a prime ideal of \mathcal{A}, and
(b) ρ is of the form $\rho = \tau \circ \pi$, where τ is a non-zero field homomorphism on the quotient field \mathcal{F} of $\mathcal{A}/\ker \rho$ into \mathbb{C}, and $\pi : \mathcal{A} \to \mathcal{A}/\ker \rho$ is the quotient mapping.

Proof. Choose $a \in \mathcal{A}$ such that $\rho(a) \neq 0$: This is possible since ρ is assumed to be non-zero. (a) Pick $f \in \ker \rho$ and $\lambda \in \mathbb{C}$ arbitrarily. It follows that

$$
\rho(\lambda f) \rho(a) = \rho(f) \rho(\lambda a) = 0,
$$

and hence $\lambda f \in \ker \rho$. We thus obtain that $\ker \rho$ is an (algebra) ideal. Now it is obvious that $\ker \rho$ is a prime ideal.

(b) Let \mathcal{F} be the quotient field of $\mathcal{A}/\ker \rho$. \mathcal{F} is well defined since $\mathcal{A}/\ker \rho$ is an integral domain by (a). We define the mapping $\tau : \mathcal{F} \to \mathbb{C}$ by

$$
\tau(\pi(f)/\pi(g)) = \frac{\rho(f)}{\rho(g)} (\pi(f)/\pi(g) \in \mathcal{F}).
$$

A simple calculation shows that τ is a well defined non-zero field homomorphism. As usual we may identify $\pi(f) \in \mathcal{A}/\ker \rho$ with $\pi(fa)/\pi(a) \in \mathcal{F}$. We get

$$
\tau(\pi(f)) = \tau(\pi(fa)/\pi(a)) = \frac{\rho(fa)}{\rho(a)} = \rho(f) \quad (f \in \mathcal{A}),
$$

and hence $\rho = \tau \circ \pi$. \hfill \Box

Lemma 2.2. Suppose \mathcal{A} is a commutative complex algebra and \mathcal{P} is a prime ideal of \mathcal{A}. Then
(a) $\epsilon = \sharp \mathbb{C} \leq \sharp(\mathcal{A}/\mathcal{P})$, and
(b) if $a \in \mathcal{A} \setminus \mathcal{P}$, the set $\mathcal{P}_e \overset{\text{def}}{=} \{(f, \lambda) \in \mathcal{A}_e : fa + \lambda a \in \mathcal{P}\}$ is a prime ideal of \mathcal{A}_e such that $\mathcal{P} = \mathcal{P}_e \cap \mathcal{A}$.

Proof. Pick $a \in \mathcal{A} \setminus \mathcal{P}$ arbitrarily.

(a) Let $\pi : \mathcal{A} \to \mathcal{A}/\mathcal{P}$ be the quotient mapping. Since $a \notin \mathcal{P}$ and since \mathcal{P} is an ideal, $\pi(\lambda a) = \pi(\mu a)$ implies $\lambda = \mu$ for $\lambda, \mu \in \mathbb{C}$. This shows that the mapping $\lambda \mapsto \pi(\lambda a)$ is an injection, so that

$$
\epsilon = \sharp \mathbb{C} = \sharp\{\pi(\lambda a) : \lambda \in \mathbb{C}\} \leq \sharp(\mathcal{A}/\mathcal{P}).
$$
(b) It is easy to see that \(\mathcal{P}_e \) is a proper ideal of \(\mathcal{A}_e \) such that \(\mathcal{P} = \mathcal{P}_e \cap \mathcal{A} \). To show that \(\mathcal{P}_e \) is prime, suppose \((f_1, \lambda_1)(f_2, \lambda_2) \in \mathcal{P}_e \). By definition, this implies that \((f_1 f_2 + \lambda_2 f_1 + \lambda_1 f_2) a + (\lambda_1 \lambda_2) a \in \mathcal{P} \), and so we obtain \((f_1 a + \lambda_1 a)(f_2 a + \lambda_2 a) \in \mathcal{P} \). Since \(\mathcal{P} \) is a prime ideal, \((f_1 a + \lambda_1 a) \) or \((f_2 a + \lambda_2 a) \) belongs to \(\mathcal{P} \). This implies \((f_1, \lambda_1) \in \mathcal{P}_e \) or \((f_2, \lambda_2) \in \mathcal{P}_e \), and hence \(\mathcal{P}_e \) is prime.

Let \(\mathcal{K} \) be a transcendental extension field of a commutative field \(k \), and \(S \) a subset of \(\mathcal{K} \). We recall that \(S \) is said to be algebraically independent over \(k \), if the set of all finite products of elements of \(S \) is linearly independent over \(k \). A subset \(T \) of \(\mathcal{K} \) is called a transcendence base of \(\mathcal{K} \) over \(k \), if \(T \) is algebraically independent over \(k \) which is maximal with respect to the inclusion ordering. The existence of a transcendence base of \(\mathcal{K} \) over \(k \) is well known (cf. [8, Theorem 1.1 of Chapter X]). The maximality of \(T \) shows that \(\mathcal{K} \) is algebraic over \(k(T) \), the field generated by \(T \) over \(k \).

Lemma 2.3. Let \(Q \) be the rational number field and \(k \) a transcendental extension field of \(Q \) such that \(\sharp k = \mathfrak{c} \). If \(T \) is a transcendence base of \(k \) over \(Q \), then \(\sharp T = \mathfrak{c} \).

Proof. Suppose \(T \) is a transcendence base of \(k \) over \(Q \). Let \(Q(T) \) be the field generated by \(T \) over \(Q \). Since \(T \subset Q(T) \subset k \), we obtain \(\sharp T \leq \sharp \{Q(T)\} \leq \mathfrak{c} \).

So, we show that \(\mathfrak{c} \leq \sharp T \). Since \(k \) is algebraic over \(Q(T) \), each element of \(k \) is a zero point of some function in \(\varphi \), the set of all monic polynomials over \(Q(T) \). Note that for each monic polynomial, its zero points in \(k \) is at most finite. Put \(\mathfrak{a} = \sharp Q \), then we have

\[
\mathfrak{c} = \sharp k \leq (\sharp Q) \times \mathfrak{a} \leq (\sharp \{Q(T)\} \times \mathfrak{a}) \times \mathfrak{a} = \sharp \{Q(T)\},
\]

and hence \(\mathfrak{c} \leq \sharp \{Q(T)\} \).

We thus obtain

\[
\mathfrak{c} = \sharp \{Q(T)\} \leq \mathfrak{a} \times \sharp T.
\]

If \(T \) were finite, then we would have \(\sharp \{Q(T)\} = \mathfrak{a} \), in contradiction to \(\sharp \{Q(T)\} = \mathfrak{c} \).

It follows that \(\sharp T \geq \mathfrak{a} \), and so \(\mathfrak{a} \times \sharp T = \sharp T \). By \((**)\) we get \(\mathfrak{c} \leq \sharp T \), proving \(\sharp T = \mathfrak{c} \).

Proof of Theorem 1.1. Let \(\pi : \mathcal{A} \to \mathcal{A}/\mathcal{P} \) be the quotient mapping and fix \(a \in \mathcal{A} \setminus \mathcal{P} \).

(a) \(\Rightarrow \) (b) By (a) of Lemma 2.2, we obtain \(\mathfrak{c} \leq \sharp (\mathcal{A}/\mathcal{P}) \). To prove the opposite inequality, let \(\mathcal{F} \) be the quotient field of \(\mathcal{A}/\mathcal{P} \). By (b) of Lemma 2.1, we can write \(\rho = \tau \circ \pi \), where \(\tau : \mathcal{F} \to \mathbb{C} \) is a field homomorphism, and hence injective. It
follows that $\sharp F \leq \sharp C = \mathfrak{c}$. If we regard A/P as a subset of F, it follows that $\sharp(A/P) \leq \sharp F \leq \mathfrak{c}$, proving $\sharp(A/P) = \mathfrak{c}$.

(b) \Rightarrow (c) Let P_e be the prime ideal of A_e as in (b) of Lemma 2.2. Let $	ilde{\pi} : A_e \to A_e/P_e$ be the quotient mapping. Identification of f and $(f, 0)$ shows that $\pi(f) = \pi(g)$ if and only if $\tilde{\pi}(f, 0) = \tilde{\pi}(g, 0)$ for $f, g \in A$, and so $\mathfrak{c} = \sharp(A/P) \leq \sharp(A_e/P_e)$. To show the opposite inequality, we define the mapping $\psi : A_e/P_e \to A/P$ by

$$\psi(\tilde{\pi}(f, \lambda)) = \pi(f + \lambda e) \quad (\tilde{\pi}(f, \lambda) \in A_e/P_e).$$

A simple calculation shows that ψ is a well defined injection. Hence $\sharp(A_e/P_e) \leq \sharp(A/P) = \mathfrak{c}$, proving $\sharp(A_e/P_e) = \mathfrak{c}$.

(c) \Rightarrow (d) Let \tilde{F} be the quotient field of A_e/\tilde{P}. Then

$$\mathfrak{c} = \sharp(A_e/\tilde{P}) \leq \sharp \tilde{F} \leq \sharp(A_e/\tilde{P}) \times \sharp(A_e/\tilde{P}) = \mathfrak{c},$$

so that \tilde{F} also has the cardinal number \mathfrak{c}. Note that \tilde{F} is a transcendental extension of \mathbb{Q} since \tilde{F} contains a unital algebra $A_e/\tilde{P} \supset \mathbb{C}$.

Let T and \tilde{T} be transcendence bases of \mathbb{C} and \tilde{F} over \mathbb{Q}, respectively. By Lemma 2.3, we see that $\sharp T = \mathfrak{c} = \sharp \tilde{T}$. Thus we can find a bijection $\theta : \tilde{T} \to T$. Since T is algebraically independent over \mathbb{Q}, the mapping θ is naturally extended to a field homomorphism $\hat{\theta} : \mathbb{Q}(\tilde{T}) \to \mathbb{Q}(T)$ so that $\hat{\theta}(r) = r$ for every $r \in \mathbb{Q}$. Since \tilde{F} is an algebraic extension of $\mathbb{Q}(\tilde{T})$ and since \mathbb{C} is algebraically closed, $\hat{\theta}$ can be extended to a field homomorphism on \tilde{F} into \mathbb{C} (cf. [8, Theorem 2.8 of Chapter VIII]), which is also denoted by $\hat{\theta}$. Define $\tilde{\rho} = \hat{\theta} \circ \tilde{\pi}$, where $\tilde{\pi} : A_e \to A_e/\tilde{P}$ is the quotient mapping. Then $\tilde{\rho} : A_e \to \mathbb{C}$ is a ring homomorphism whose kernel is equal to \tilde{P}, proving $A \cap \ker \tilde{\rho} = A \cap \tilde{P} = P$.

(d) \Rightarrow (a) Put $\rho = \tilde{\rho}|_A$. Then $\rho : A \to \mathbb{C}$ is a non-zero ring homomorphism such that $\ker \rho = P$. \square

Proof of Corollary 1.2. Suppose A is a uniform algebra on an infinite compact metric space X. Let Δ be the set of all non-maximal prime ideals of A. It is well known [4, Corollary 1] that there exist exactly 2^2 non-maximal prime ideals of A, and hence $\sharp \Delta = 2^\mathfrak{c}$. Since X is separable, $\sharp A = \mathfrak{c}$. For if X_0 is a countable dense subset of X, then the restriction map $f \mapsto f|_{X_0}$ ($f \in A$) is injective since each element of A is continuous, and hence $\mathfrak{c} \leq \sharp A \leq \mathfrak{a} \times \mathfrak{c} = \mathfrak{c}$. So, there exist exactly $2^\mathfrak{c}$ functions on A into \mathbb{C}, which need not be continuous nor ring homomorphic. This implies that there are at most $2^\mathfrak{c}$ complex ring homomorphisms on A.
Conversely pick $P \in \Delta$ arbitrarily. By (a) of Lemma 2.2, we have
\[c \leq \sharp \{ A/P \} \leq \sharp A = c, \]
and hence $\sharp \{ A/P \} = c$. So, by Theorem 1.1, to each $P \in \Delta$ there corresponds a complex ring homomorphism $\rho_P : A \to \mathbb{C}$ such that $\ker \rho_P = P$. Suppose $\rho_{P_1} = \rho_{P_2}$ for $P_1, P_2 \in \Delta$. It follows from $\ker \rho_{P_j} = P_j$ for $j = 1, 2$ that $P_1 = P_2$, and hence the mapping $P \mapsto \rho_P$ is an injection. We conclude that
\[2^c = \sharp \Delta \leq \sharp \{ \rho_P : P \in \Delta \}, \]
and the proof is complete. \[\square \]

Remark. Let A be a commutative Banach algebra. It is well-known (cf. [3, Theorem 5.7.32]) that under the continuum hypothesis there is a discontinuous homomorphism on A into some Banach algebra whenever there is a non-maximal prime ideal P of A with $\sharp \{ A/P \} = c$. It follows from Theorem 1.1 that under the continuum hypothesis a discontinuous homomorphisms on A exists whenever there is a non-zero ring homomorphism $\rho : A \to \mathbb{C}$ such that $\ker \rho$ is non-maximal.

Example 2.1. Let \overline{D} denote the closure of the open unit disk D in \mathbb{C}. The disk algebra $A(\overline{D})$ is a typical example of uniform algebras. HATORI, ISHI with the first and second author ([5, Corollary 5.3]) proved that if $\rho : A(\overline{D}) \to A(\overline{D})$ is a ring homomorphism whose range contains a non-constant function, then ρ is linear or conjugate linear.

Here, let us consider complex ring homomorphisms on $A(\overline{D})$, that is, the range contains only constant functions. It is well known that the set of all non-zero complex homomorphisms on $A(\overline{D})$ can be identified with \overline{D}. So, there are c complex homomorphisms on $A(\overline{D})$. On the other hand, by Corollary 1.2, we see that there are 2^c ring homomorphisms whose kernels are non-maximal prime ideals.

Finally, we give a pathological feature of complex ring homomorphisms (cf. [5, Corollary 5.2]).

Example 2.2. If $H(\Omega)$ is the algebra of all analytic functions on a region $\Omega \subset \mathbb{C}$, then, as we shall show, $H(\Omega)$ is a subring of \mathbb{C}. In particular, it will follow that every subalgebra A of $H(\Omega)$, which is with or without unit, is a subring of \mathbb{C}. In fact, the ideal (0) containing only zero is a prime ideal of $H(\Omega)$. Moreover $\sharp H(\Omega) = c$ since $c = \sharp \mathbb{C} \leq \sharp H(\Omega) \leq \sharp C(\Omega) = c$, and so by Theorem 1.1 there exists a non-zero complex ring homomorphism ρ on $H(\Omega)$ such that $\ker \rho = (0)$. Therefore, ρ is an injective complex ring homomorphism on $H(\Omega)$.

\[\square \]
References

TAKESHI MIURA
DEPARTMENT OF BASIC TECHNOLOGY
APPLIED MATHEMATICS AND PHYSICS
YAMAGATA UNIVERSITY
YONEZAWA 992-8510
JAPAN
E-mail: miura@yz.yamagata-u.ac.jp

SIN-EI TAKAHASI
DEPARTMENT OF BASIC TECHNOLOGY
APPLIED MATHEMATICS AND PHYSICS
YAMAGATA UNIVERSITY
YONEZAWA 992-8510
JAPAN
E-mail: sin-ei@emperor.yz.yamagata-u.ac.jp

NORIO NIWA
FACULTY OF ENGINEERING
OSAKA ELECTRO-COMMUNICATION UNIVERSITY
NEYAGAWA 572-8530
JAPAN

(Received September 16, 2005; revised January 12, 2006)