On surjective ring homomorphisms between semi-simple commutative Banach algebras

By TAKEshi MIURA (Yonezawa), SIN-EI TAKAHASI (Yonezawa), NORIO NIWA (Neyagawa) and HIROKAZU OKA (Hitachi)

Abstract. Let A and B be semi-simple commutative Banach algebras. We give a representation of surjective ring homomorphisms from A onto B in terms of complex ring homomorphisms and injective, continuous and closed mapping between the maximal ideal spaces. As a corollary, we prove that neither the disc algebra $A(\bar{D})$ nor the commutative Banach algebra of all bounded holomorphic functions $H^\infty(D)$ are ring homomorphic image of any semi-simple commutative regular Banach algebras. Under additional assumptions on the maximal ideal spaces, we also prove automatic linearity of ring homomorphisms.

1. Introduction and results

Let A and B be algebras over the complex number field \mathbb{C}. We say that a mapping $\rho : A \rightarrow B$ is a ring homomorphism provided that

$$\rho(f + g) = \rho(f) + \rho(g)$$
$$\rho(fg) = \rho(f)\rho(g)$$

for every $f, g \in A$. By definition, ring homomorphisms need not be linear nor continuous. If, in addition, ρ is homogeneous, that is, $\rho(\lambda f) = \lambda \rho(f)$ for every $\lambda \in \mathbb{C}$ and $f \in A$, then ρ is a usual homomorphism.

One might expect that ring homomorphisms are quite similar to homomorphisms. In fact, under some additional assumptions, it is known to be true. For

Mathematics Subject Classification: 46J10.
Key words and phrases: automatic linearity, commutative Banach algebras, maximal ideal spaces, ring homomorphisms.
example, Arnold [1] proved that a ring isomorphism between the Banach algebras of all bounded operators from an infinite dimensional Banach space to another is automatically linear, or conjugate-linear. Unfortunately, ring homomorphisms need not be linear nor conjugate-linear in general. For example, let us consider a ring homomorphism τ from \mathbb{C} to \mathbb{C}. For simplicity, we shall call τ a ring homomorphism on \mathbb{C}. It is obvious that the zero mapping $\tau(z) = 0$ ($z \in \mathbb{C}$), the identity $\tau(z) = z$ ($z \in \mathbb{C}$) and the complex conjugate $\tau(z) = \overline{z}$ ($z \in \mathbb{C}$) are ring homomorphisms on \mathbb{C}. We call them trivial ring homomorphisms on \mathbb{C}. In fact, Kestelman [5] proved that there exists a non-trivial ring homomorphism on \mathbb{C}. It follows from a result of Charnow [2] that the cardinal number of the set of all non-trivial ring automorphisms on \mathbb{C} is 2^c, where c denotes the cardinality of continuum. Ring homomorphisms have more surprising feature. Let $\Omega \subset \mathbb{C}$ be a region and let $H(\Omega)$ be the algebra of all holomorphic functions on Ω. In [8] it is proven that there exists an injective ring homomorphism from $H(\Omega)$ to \mathbb{C}. Thus we may regard $H(\Omega)$ as a subring of \mathbb{C}. Thus the study of ring homomorphic image is complicated and interesting.

Let \overline{D} be the closure of the open unit disc D, and let $T = \overline{D} \setminus D$. Molnár [9] considered ring homomorphic image of commutative C^*-algebras. More explicitly, he proved that the group algebras $L^1(\mathbb{R})$, $L^1(\mathbb{T})$ and the disc algebra $A(\overline{D})$ are not ring homomorphic images of any commutative C^*-algebras. Let $1 \leq p < \infty$, n a positive integer and let G be a compact abelian group. Takahasi and Hatori [10] proved that $L^1(\mathbb{R}^n)$, $A(\overline{D})$ and $C^n([a, b])$, the commutative Banach algebra of all n-times continuously differentiable functions on $[a, b]$, are not ring homomorphic image of the L^p-space $L^p(G)$.

The purpose of this paper is to generalize and unify the above results concerning ring homomorphic images. To do this, we will study surjective ring homomorphisms between semi-simple commutative Banach algebras. Kaplansky [4] studied ring isomorphisms between semi-simple Banach algebras. Although a part of Theorem 1.1 below can be deduced from [6, Corollary 2.8], just for the sake of completeness we give a direct proof. In fact, we shall prove that surjective ring homomorphisms are represented by continuous, injective and closed mapping between the maximal ideal spaces.

Theorem 1.1. Let A and B be semi-simple commutative Banach algebras with maximal ideal spaces M_A and M_B, respectively. If $\rho : A \to B$ is a surjective ring homomorphism, then there exist a mapping $\Phi : M_B \to M_A$ and a partitioning $\{M_{-1}, M_1, M_d\}$ of M_B satisfying the following conditions:

(a) Φ is an injective, continuous and closed mapping,
(b) both M_{-1} and M_1 are clopen, and M_d is at most finite, and
(c) for each $\varphi \in M_d$, there exists a non-trivial ring automorphism τ_{φ} on \mathbb{C} such that
\[
\hat{\rho}(\hat{f})(\varphi) = \begin{cases}
\hat{f}(\Phi(\varphi)) & \varphi \in M_{-1} \\
\hat{f}(\Phi(\varphi)) & \varphi \in M_1 \\
\tau_{\varphi}(\hat{f}(\Phi(\varphi))) & \varphi \in M_d
\end{cases}
\] (1.1)
for every $f \in A$, where $\hat{\cdot}$ denotes the Gelfand transform.

As a corollary from Theorem 1.1, we can prove the following two results, which generalize some results in [9, Corollary] and [10, Corollary 4]. Corollary 1.3 (b) is also a generalization of [3, Corollary 3.1]. In fact, HATORI, ISHI, the first and second authors of this paper considered the case where A and B have units.

Corollary 1.2. Let A be a semi-simple regular commutative Banach algebra and let B be a semi-simple commutative Banach algebra. If there exists a surjective ring homomorphism $\rho : A \to B$, then B is regular.

Corollary 1.3. Let A and B be semi-simple commutative Banach algebras. Suppose that the maximal ideal space M_B of B is infinite and connected.
(a) If the maximal ideal space M_A of A is discrete, then there is no surjective ring homomorphism from A onto B.
(b) If there exists a surjective ring homomorphism $\rho : A \to B$, then ρ is linear or conjugate-linear.

2. Construction of the mapping Φ

Before proving lemmas, we need a characterization of trivial ring homomorphisms on \mathbb{C}. The following result is well-known, so we omit a proof (For a proof, see, for example, [7, Proposition 2.1]).

Proposition 2.1. Let τ be a ring homomorphism on \mathbb{C}. Then each of the following three conditions implies the other two.
(a) τ is trivial.
(b) There exist $\alpha_0, \beta_0 > 0$ such that $|z| < \alpha_0$ implies $|\tau(z)| \leq \beta_0$.
(c) τ is continuous at 0.

Remark 2.1. By Proposition 2.1, we see that a ring homomorphism τ on \mathbb{C} is non-trivial if and only if the following conditions are satisfied:
for each $\alpha, \beta > 0$, there exists $z \in \mathbb{C}$ with $|z| < \alpha$ but $|\tau(z)| > \beta$.

We shall use this fact several times.

Until the end of this section, A and B denote semi-simple commutative Banach algebras with maximal ideal spaces M_A and M_B, respectively. We also denote by ρ a surjective ring homomorphism from A onto B.

Definition 1. For each φ of M_B, we define the induced mapping ρ_φ from A into \mathbb{C} by

$$\rho_\varphi(f) = \hat{\rho(\varphi)} (f \in A),$$

where $\hat{\cdot}$ is the Gelfand transform. Since ρ is surjective, ρ_φ is a surjective ring homomorphism for every $\varphi \in M_B$.

Notation. Let A_e be the commutative Banach algebra obtained by adjunction of a unit element e to A. Here we notice that A_e is well-defined even for unital A.

The maximal ideal space M_{A_e} of A_e is the one-point compactification $M_A \cup \{x_\infty\}$ of M_A.

Lemma 2.2. For each $\varphi \in M_B$, there exists a unique ring homomorphism $\tilde{\rho}_\varphi$ from A_e onto \mathbb{C} with $\tilde{\rho}_\varphi|_A = \rho_\varphi$.

Proof. Take $\varphi \in M_B$. Since ρ_φ is surjective, there exists $a \in A$ with $\rho_\varphi(a) = 1$. Define the mapping $\tilde{\rho}_\varphi$ from A_e to \mathbb{C} by

$$\tilde{\rho}_\varphi(f + \lambda e) = \rho_\varphi(f) + \rho_\varphi(\lambda a) \quad (f + \lambda e \in A_e).$$

By definition, $\tilde{\rho}_\varphi|_A = \rho_\varphi$, and so $\tilde{\rho}_\varphi$ is surjective since so is ρ_φ. By the definition of $\tilde{\rho}_\varphi$, it is obvious that $\tilde{\rho}_\varphi$ is additive. We shall prove that $\tilde{\rho}_\varphi$ is multiplicative. Take $f + \lambda e, g + \mu e \in A_e$. Since $\rho_\varphi(a) = 1$, we have

$$\rho_\varphi(\lambda ma) = \rho_\varphi(\lambda ma)\rho_\varphi(a) = \rho_\varphi(\lambda a)\rho_\varphi(\mu a). \quad (2.1)$$

Note also that

$$\rho_\varphi(\mu f) = \rho_\varphi(\mu f)\rho_\varphi(a) = \rho_\varphi(f)\rho_\varphi(\mu a) \quad (2.2)$$

since ρ_φ is multiplicative. By the same reasoning, we have $\rho_\varphi(\lambda g) = \rho_\varphi(g)\rho_\varphi(\lambda a)$.

It follows that

$$\tilde{\rho}_\varphi((f + \lambda e)(g + \mu e)) = \tilde{\rho}_\varphi(fg + \mu f + \lambda g + \lambda \mu e)$$

$$= \rho_\varphi(fg + \mu f + \lambda g) + \rho_\varphi(\lambda ma)$$

$$= \rho_\varphi(f)\rho_\varphi(g) + \rho_\varphi(f)\rho_\varphi(\mu a) + \rho_\varphi(g)\rho_\varphi(\lambda a)$$

$$+ \rho_\varphi(\lambda a)\rho_\varphi(\mu a) \quad \text{(by (2.1) and (2.2))}$$

$$= \{\rho_\varphi(f) + \rho_\varphi(\lambda a)\} \{\rho_\varphi(g) + \rho_\varphi(\mu a)\}$$

$$= \tilde{\rho}_\varphi(f + \lambda e) \tilde{\rho}_\varphi(g + \mu e).$$
This proves that \(\rho_\varphi \) is multiplicative. We thus conclude that \(\tilde{\rho}_\varphi \) is a surjective ring homomorphism from \(A_e \) onto \(C \) with \(\tilde{\rho}_\varphi|_A = \rho_\varphi \).

Finally, we prove the uniqueness of \(\tilde{\rho}_\varphi \). Let \(\rho_\varphi^* : A_e \to C \) be another ring homomorphism with \(\rho_\varphi^*|_A = \rho_\varphi \). Note, for each \(\lambda \in C \), that

\[
\rho_\varphi^*(\lambda e) = \rho_\varphi^*(\lambda e) \rho_\varphi(a) = \rho_\varphi^*(\lambda a) = \rho_\varphi(\lambda a)
\]

since \(\rho_\varphi(a) = 1 \). For each \(f + \lambda e \in A_e \), we have

\[
\rho_\varphi^*(f + \lambda e) = \rho_\varphi^*(f) + \rho_\varphi^*(\lambda e) = \rho_\varphi(f) + \rho_\varphi(\lambda a) = \tilde{\rho}_\varphi(f + \lambda e),
\]

which proves the uniqueness. This completes the proof. \(\square \)

Lemma 2.3. Let \(\tilde{\rho}_\varphi \) be from Lemma 2.2 for each \(\varphi \in M_B \). There exists unique \(\psi \in M_{A_e} \setminus \{x_{\infty}\} \) with \(\ker \tilde{\rho}_\varphi = \ker \psi \). For such \(\psi \), we have \(\ker \rho_\varphi = \ker(\psi|_A) \).

Proof. Take \(\varphi \in M_B \). By Lemma 2.2, there is a unique ring homomorphism \(\tilde{\rho}_\varphi \) from \(A_e \) onto \(C \) with \(\tilde{\rho}_\varphi|_A = \rho_\varphi \). We show that the kernel \(\ker \tilde{\rho}_\varphi \) is an algebra ideal. Since \(\rho_\varphi \) preserve both additions and multiplications, it is enough to show that \(\lambda f \in \ker \tilde{\rho}_\varphi \) whenever \(\lambda \in C \) and \(f \in \ker \tilde{\rho}_\varphi \). Take \(\lambda \in C \) and \(f \in \ker \tilde{\rho}_\varphi \). Since \(\tilde{\rho}_\varphi(f) = 0 \), for \(a \in A \) with \(\tilde{\rho}_\varphi(a) \neq 0 \), we have

\[
\tilde{\rho}_\varphi(\lambda f)\tilde{\rho}_\varphi(a) = \tilde{\rho}_\varphi(f)\tilde{\rho}_\varphi(\lambda a) = 0.
\]

It follows that \(\tilde{\rho}_\varphi(\lambda f) = 0 \) since \(\tilde{\rho}_\varphi(a) \neq 0 \). Thus \(\lambda f \in \ker \tilde{\rho}_\varphi \), and so ker \(\tilde{\rho}_\varphi \) is an algebra ideal of \(A \).

Note that ker \(\tilde{\rho}_\varphi \) is a proper algebra ideal since \(\tilde{\rho}_\varphi|_A = \rho_\varphi \) is non-zero. There exists \(\psi \in M_{A_e} \setminus \{x_{\infty}\} \) with ker \(\tilde{\rho}_\varphi \subset \ker \psi \). We shall prove that ker \(\tilde{\rho}_\varphi = \ker \psi \). Take \(u_0 \in A_e \) with \(u_0 \notin \ker \tilde{\rho}_\varphi \). Since \(\tilde{\rho}_\varphi \) is surjective, there is \(v_0 \in A_e \) such that \(\tilde{\rho}_\varphi(v_0) = 1/\tilde{\rho}_\varphi(u_0) \). Then

\[
\tilde{\rho}_\varphi(u_0v_0 - e) = \tilde{\rho}_\varphi(u_0)\tilde{\rho}_\varphi(v_0) - \tilde{\rho}_\varphi(e) = 0,
\]

and so \(u_0v_0 - e \in \ker \tilde{\rho}_\varphi \subset \ker \psi \). Thus we have \(\psi(u_0)\psi(v_0) = 1 \), which implies \(u_0 \notin \ker \psi \). This proves ker \(\psi \subset \ker \tilde{\rho}_\varphi \), and so ker \(\tilde{\rho}_\varphi = \ker \psi \).

Since \(\tilde{\rho}_\varphi|_A = \rho_\varphi \), we have

\[
\ker \rho_\varphi = \ker(\tilde{\rho}_\varphi|_A) = (\ker \tilde{\rho}_\varphi) \cap A = (\ker \psi) \cap A = \ker(\psi|_A).
\]

In particular, \(\psi|_A \) is non-zero. Thus \(\psi \in M_{A_e} \setminus \{x_{\infty}\} \). \(\square \)
Definition 2. By Lemma 2.3, for each $\varphi \in M_B$, there exists a unique element $\Phi(\varphi) \in M_A \setminus \{x_\infty\}$ with $\ker \tilde{\rho}_\varphi = \ker \Phi(\varphi)$. We may regard Φ as a mapping from M_B to $M_A \setminus \{x_\infty\}$.

Definition 3. For each $\varphi \in M_B$, we consider the mapping $\tau_\varphi : C \to C$ defined by

$$\tau_\varphi(\lambda) = \tilde{\rho}_\varphi(\lambda e) \quad (\lambda \in C),$$

where $\tilde{\rho}_\varphi$ is from Lemma 2.2.

Lemma 2.4. For each $\varphi \in M_B$, let τ_φ be from Definition 3. Then τ_φ is a ring automorphism on C with

$$\rho_\varphi(f) = \tau_\varphi(\hat{f}(\Phi(\varphi)))$$ \hfill (2.3)

for every $f \in A$. If, in addition, $\rho_\varphi(f) \neq 0$, then

$$\tau_\varphi(\lambda) = \frac{\rho_\varphi(\lambda f)}{\rho_\varphi(f)}$$ \hfill (2.4)

for every $\lambda \in C$.

Proof. Take $\varphi \in M_B$. By the definition of Φ, we have, for each $f \in A$,

$$f - \hat{f}(\Phi(\varphi))e \in \ker \Phi(\varphi) = \ker \tilde{\rho}_\varphi,$$

and so

$$0 = \tilde{\rho}_\varphi(f) - \tilde{\rho}_\varphi(\hat{f}(\Phi(\varphi)))e = \rho_\varphi(f) - \tau_\varphi(\hat{f}(\Phi(\varphi))).$$

This proves $\rho_\varphi(f) = \tau_\varphi(\hat{f}(\Phi(\varphi)))$ for every $f \in A$.

Next, we show that τ_φ is a ring automorphism. By the definition of τ_φ, it is obvious that τ_φ is a non-zero ring homomorphism. We see that τ_φ is injective: for if there were $\lambda_1, \lambda_2 \in C$ with $\lambda_1 \neq \lambda_2$ and $\tau_\varphi(\lambda_1) = \tau_\varphi(\lambda_2)$, then we would have

$$\tau_\varphi(\lambda) = \tau_\varphi(\lambda_1 - \lambda_2) = \frac{\lambda}{\lambda_1 - \lambda_2} = 0$$

for all $\lambda \in C$, since $\tau_\varphi(\lambda_1 - \lambda_2) = \tau_\varphi(\lambda_1) - \tau_\varphi(\lambda_2) = 0$. This is a contradiction since τ_φ is non-zero. We need to prove the surjectivity of τ_φ. Since ρ_φ is surjective, for each $\lambda \in C$, there is $a \in A$ with $\rho_\varphi(a) = \lambda$. By (2.3), we have $\tau_\varphi(\hat{a}(\Phi(\varphi))) = \lambda$, and so τ_φ is surjective. Thus τ_φ is a ring automorphism.

Finally, for each $\lambda \in C$ and $f \in A$ with $\rho_\varphi(f) \neq 0$, we have

$$\rho_\varphi(\lambda f) = \tilde{\rho}_\varphi(\lambda f) = \tilde{\rho}_\varphi(\lambda e) \tilde{\rho}_\varphi(f) = \tau_\varphi(\lambda) \rho_\varphi(f).$$

This proves (2.4), and so the proof is complete. \qed
Lemma 2.5. Let \(\Phi \) be the mapping from Definition 2. Then \(\Phi \) is injective.

Proof. Take \(\varphi_0, \varphi_1 \in M_B \) with \(\varphi_0 \neq \varphi_1 \). There is \(b \in B \) with \(\hat{b}(\varphi_0) = 0 \) and \(\hat{b}(\varphi_1) = 1 \) since \(B \) is semi-simple. Choose \(a \in A \) so that \(\rho(a) = b \); this is possible since \(\rho \) is surjective. Then \(\rho_{\varphi_0}(a) = \hat{b}(\varphi_0) = 0 \) and \(\rho_{\varphi_1}(a) = \hat{b}(\varphi_1) = 1 \). By Lemma 2.4, we have

\[
\tau_{\varphi_0}(\hat{a}(\Phi(\varphi_0))) = 0 \quad \text{and} \quad \tau_{\varphi_1}(\hat{a}(\Phi(\varphi_1))) = 1,
\]

where \(\tau_{\varphi} (\varphi \in M_B) \) is the mapping from Definition 3. Note that \(\tau_{\varphi}(0) = 0 \) and \(\tau_{\varphi}(1) = 1 \) for every non-trivial ring homomorphism. Since \(\tau_{\varphi} \) is injective by Lemma 2.4, we have \(\hat{a}_0(\Phi(\varphi_0)) = 0 \) and \(\hat{a}_0(\Phi(\varphi_1)) = 1 \). We thus conclude \(\Phi(\varphi_0) \neq \Phi(\varphi_1) \), and so \(\Phi \) is injective. \(\square \)

Definition 4. We define the subsets \(M_{-1}, M_1 \) and \(M_d \) of \(M_B \) by

\[
M_{-1} = \{ \varphi \in M_B : \tau_{\varphi}(\lambda) = \bar{\lambda} (\lambda \in \mathbb{C}) \},
\]
\[
M_1 = \{ \varphi \in M_B : \tau_{\varphi}(\lambda) = \lambda (\lambda \in \mathbb{C}) \} \quad \text{and}
\]
\[
M_d = \{ \varphi \in M_B : \tau_{\varphi} \text{ is non-trivial} \}.
\]

By definition, \(\{M_{-1}, M_1, M_d\} \) is a partitioning of \(M_B \), that is, \(M_{-1}, M_1 \) and \(M_d \) are mutually disjoint subsets of \(M_B \) with \(M_{-1} \cup M_1 \cup M_d = M_B \).

From Lemma 2.6 to 2.8, \(\{M_{-1}, M_1, M_d\} \) will denote the partitioning of \(M_B \) from Definition 4.

Lemma 2.6. Both \(M_{-1} \) and \(M_1 \) are closed subsets of \(M_B \).

Proof. We show that \(\text{cl}(M_k) \subset M_k \) for \(k = \pm 1 \), where \(\text{cl}(M_k) \) denotes the closure of \(M_k \) in \(M_B \). Take \(\varphi \in \text{cl}(M_k) \) and let \(\{\varphi_\alpha\} \) be a net in \(M_k \) converging to \(\varphi \). Choose \(\alpha \in A \) so that \(\rho(\alpha)(\varphi) = \rho_{\varphi}(\alpha) \neq 0 \). Since \(\rho(\alpha) \) is continuous on \(M_B \), \(\rho_{\varphi}(a) = \rho(\alpha)(\varphi_\alpha) \) converges to \(\rho_{\varphi}(a) \neq 0 \). So, without loss of generality we may assume \(\rho_{\varphi}(a) \neq 0 \) for every \(\alpha \). It follows from (2.4) that

\[
\tau_{\varphi}(\lambda) = \frac{\rho_{\varphi}(\lambda a)}{\rho_{\varphi}(a)} \to \frac{\rho_{\varphi}(\lambda a)}{\rho_{\varphi}(a)} = \tau_{\varphi}(\lambda).
\]

Since \(\varphi_\alpha \in M_k \), (2.5) implies that \(\tau_{\varphi}(\lambda) = \bar{\lambda} \) if \(k = -1 \), and \(\tau_{\varphi}(\lambda) = \lambda \) if \(k = 1 \). Thus \(\varphi \in M_k \) for \(k = \pm 1 \), and the proof is complete. \(\square \)

Lemma 2.7. \(M_d \) is an open and at most finite subset of \(M_B \).
By Lemma 2.6, $M_d = M_B \setminus (M_{-1} \cup M_1)$ is open. Assume to the contrary that M_d contains a countable subset $\{\varphi_n\}_{n=1}^\infty$ with $\varphi_i \neq \varphi_j$ ($i \neq j$). Set, for each $n \in \mathbb{N}$, the set of all natural numbers, $\psi_n = \Phi(\varphi_n)$. By Lemma 2.5, Φ is injective, and so $\psi_i \neq \psi_j$ ($i \neq j$). Since $\varphi_n \in M_d$, the ring homomorphism τ_{φ_n} from Definition 3 is non-trivial. For simplicity, we will write τ_n instead of τ_{φ_n}.

By (2.3), we have

$$\rho_{\varphi_n}(f) = \tau_n(\hat{f}(\varphi_n)) = \tau_n(\hat{f}(\psi_n))$$

(2.6)

for each $f \in A$.

Take $a_1 \in A$ with $\hat{a}_1(\psi_1) = 1$. Since τ_1 is non-trivial, there exists $\lambda_1 \in \mathbb{C}$ with $|\lambda_1| < (2 \|a_1\|)^{-1}$ and $|\tau_1(\lambda_1)| > 2$ (cf. Remark 2.1). Set $f_1 = \lambda_1 a_1 \in A$. Then

$$\|f_1\| < 2^{-1} \quad \text{and} \quad |\tau_1(\hat{f}_1(\psi_1))| > 2.$$

By induction, we shall prove that, for each $n \in \mathbb{N}$ with $n \geq 2$, there exists $f_n \in A$ such that

$$\|f_n\| < 2^{-n}, \quad |\tau_n(\hat{f}_n(\psi_n))| > 2^n + \left| \tau_n \left(\sum_{k=1}^{n-1} \hat{f}_k(\psi_n) \right) \right|$$

and that

$$\hat{f}_n(\psi_1) = \hat{f}_n(\psi_2) = \cdots = \hat{f}_n(\psi_{n-1}) = 0.$$

Take $a_2 \in A$ with $\hat{a}_2(\psi_1) = 0$ and $\hat{a}_2(\psi_2) = 1$. Since τ_2 is non-trivial, there exists $\lambda_2 \in \mathbb{C}$ such that

$$|\lambda_2| < \frac{1}{2^2 \|a_2\|} \quad \text{and} \quad |\tau_2(\lambda_2)| > 2^2 + |\tau_1(\hat{f}_1(\psi_1))|.$$

Set $f_2 = \lambda_2 a_2 \in A$. Then $\hat{f}_2(\psi_1) = 0$ and $\hat{f}_2(\psi_2) = \lambda_2$. It follows that

$$\|f_2\| < 2^{-2}, \quad \hat{f}_2(\psi_1) = 0 \quad \text{and} \quad |\tau_2(\hat{f}_2(\psi_2))| > 2^2 + |\tau_1(\hat{f}_1(\psi_1))|.$$

Suppose that there are $f_k \in A$ ($k = 2, \cdots, n-1$) with

$$\|f_k\| < 2^{-k}, \quad \hat{f}_k(\psi_1) = \cdots = \hat{f}_k(\psi_{k-1}) = 0 \quad \text{and} \quad |\tau_k(\hat{f}_k(\psi_k))| > 2^k + \left| \tau_k \left(\sum_{j=1}^{k-1} \hat{f}_j(\psi_k) \right) \right|.$$

Choose $a_n \in A$ so that $\hat{a}_n(\psi_n) = 1$ and

$$\hat{a}_n(\psi_1) = \cdots = \hat{a}_n(\psi_{n-1}) = 0.$$
In fact, take \(b_i \in A \), for each \(i \) (\(1 \leq i \leq n - 1 \)), with \(\hat{b}_i(\psi_i) = 0 \) and \(\hat{b}_i(\psi_n) = 1 \). Then \(\Pi_{i=1}^{n-1} b_i \in A \) is the desired element. Since \(\tau_n \) is non-trivial, there is \(\lambda_n \in \mathbb{C} \) with
\[
|\lambda_n| < \frac{1}{2^n \|a_n\|} \quad \text{and} \quad |\tau_n(\lambda_n)| > 2^n + \left| \tau_n \left(\sum_{j=1}^{n-1} \hat{f}_j(\psi_n) \right) \right|.
\]
Set \(f_n = \lambda_n a_n \in A \). Then
\[
\|f_n\| < 2^{-n}, \quad \hat{f}_n(\psi_1) = \cdots = \hat{f}_n(\psi_{n-1}) = 0.
\]
Since \(a_n(\psi_n) = 1 \), we have \(\hat{f}_n(\psi_n) = \lambda_n \), and so
\[
|\tau_n(\hat{f}_n(\psi_n))| > 2^n + \left| \tau_n \left(\sum_{j=1}^{n-1} \hat{f}_j(\psi_n) \right) \right|
\]
as desired.

Since \(\|f_n\| < 2^{-n} \), the series \(\sum_{n=1}^{\infty} f_n \) converges to an element, say \(f_0 \in A \). We have, for each \(n \in \mathbb{N} \), \(\hat{f}_0(\psi_n) = \sum_{k=1}^{n} \hat{f}_k(\psi_n) \) since \(\hat{f}_k(\psi_n) = 0 \) for each \(k = n + 1, n + 2, \cdots \). By (2.6), we have, for each \(n \in \mathbb{N} \),
\[
|\rho_{\varphi_n}(f_0)| = |\tau_n(\hat{f}_0(\psi_n))| = \left| \tau_n \left(\sum_{k=1}^{n} \hat{f}_k(\psi_n) \right) \right|
\]
\[
= \left| \sum_{k=1}^{n} \tau_n \left(\hat{f}_k(\psi_n) \right) \right| \geq |\tau_n(\hat{f}_n(\psi_n))| - \left| \tau_n \left(\sum_{k=1}^{n-1} \hat{f}_k(\psi_n) \right) \right|,
\]
and so, by (2.7),
\[
|\rho(f_0)(\varphi_n)| = |\rho_{\varphi_n}(f_0)| > 2^n.
\]
Since \(\rho(f_0) \) is bounded on \(M_B \), we now reach a contradiction. We thus proved that \(M_d \) is at most finite subset of \(M_B \). \(\square \)

Lemma 2.8. The mapping \(\Phi : M_B \to M_{A_c} \setminus \{x_\infty\} \) is continuous.

Proof. Let \(\varphi_0 \in M_B \) and let \(\{\varphi_\alpha\} \subset M_B \) be a net converging to \(\varphi_0 \). We prove that \(\Phi(\varphi_\alpha) \) converges to \(\Phi(\varphi_0) \). If \(\varphi_0 \in M_d \), then \(\{\varphi_0\} \) is open by Lemma 2.6 and 2.7. So, we may assume that \(\varphi_\alpha = \varphi_0 \) for each \(\alpha \). Thus \(\Phi(\varphi_\alpha) = \Phi(\varphi_0) \), and so \(\Phi(\varphi_\alpha) \) converges to \(\Phi(\varphi_0) \).

Next, we consider the case where \(\varphi_0 \in M_k \) for \(k = \pm 1 \). By Lemma 2.6 and 2.7, \(M_k \) is clopen of \(M_B \). Thus we may assume \(\{\varphi_\alpha\} \subset M_k \) for each \(\alpha \).
By the definition of \(M_k \) for \(k = \pm 1 \), \(\tau_{\varphi_\alpha} \) is the complex conjugate for each \(\alpha \) when \(k = -1 \), and \(\tau_{\varphi_\alpha} \) is the identity for each \(\alpha \) when \(k = 1 \). Note that \(\rho_{\varphi_\alpha}(f) \) converges to \(\rho_{\varphi_\alpha}(f) \) for each \(f \in A \) since \(\hat{\rho}(f) \) is continuous on \(M_B \). It follows from (2.3) that \(\hat{f}(\Phi(\varphi_\alpha)) \) converges to \(\hat{f}(\Phi(\varphi_0)) \) for every \(f \in A \). Thus \(\hat{u}(\varphi_\alpha) \to \hat{u}(\varphi_0) \) for each \(u \in A_e \). By the definition of the Gelfand topology, we conclude that \(\Phi(\varphi_\alpha) \) converges to \(\Phi(\varphi_0) \). □

3. Proofs and application

Proof of Theorem 1.1. Let \(\Phi \) and \(\{M_{-1}, M_1, M_d\} \) be from Definitions 2 and 4, respectively. Then \(\Phi \) is an injective and continuous mapping by Lemmas 2.5 and 2.8. It follows from Lemmas 2.6 and 2.7 that \(M_{-1} \) and \(M_1 \) are clopen, and \(M_d \) is at most finite. Let \(\tau_{\varphi} \) be from Definition 3 for each \(\varphi \in M_d \). By (2.3) and Definition 4, \(\rho \) is of the form (1.1).

It remains to be proved that \(\Phi \) is a closed mapping. We define a mapping \(\tilde{\Phi} : M_{B_e} \to M_{A_e} \) by

\[
\tilde{\Phi}(\varphi) = \begin{cases}
\Phi(\varphi) & \varphi \in M_B \\
x_\infty & \varphi = y_\infty
\end{cases}
\]

where \(\{x_\infty\} = M_{A_e} \setminus M_A \) and \(\{y_\infty\} = M_{B_e} \setminus M_B \). Here we notice that for each \(f \in A \subset A_e \), \(\hat{f} \), as a function on \(M_{A_e} \), is 0 at \(x_\infty \). The same remark holds for \(b \in B \subset B_e \) and \(y_\infty \). We observe that \(\tilde{\Phi} \) is continuous: by definition, it is enough to prove the continuity of \(\tilde{\Phi} \) at \(y_\infty \). Let \(\{\varphi_\alpha\} \subset M_{B_e} \) be a net converging to \(y_\infty \). By Lemma 2.7, \(M_{B_e} \setminus M_d \) is an open neighborhood of \(y_\infty \), and so we may assume \(\{\varphi_\alpha\} \subset M_{B_e} \setminus M_d \). Take \(f \in A \). By the definition of \(\tilde{\Phi} \), we have

\[
\hat{f}(\tilde{\Phi}(\varphi_\alpha)) = \begin{cases}
\hat{f}(\Phi(\varphi_\alpha)) & \varphi_\alpha \in M_B \setminus M_d \\
0 & \varphi_\alpha = y_\infty
\end{cases}
\]

(3.1)

On the other hand, since \(\varphi_\alpha \notin M_d \), it follows from (2.3) that

\[
|\hat{\rho}(f)(\varphi_\alpha)| = |\rho_{\varphi_\alpha}(f)| = \begin{cases}
|\hat{\rho}(\Phi(\varphi_\alpha))| & \varphi_\alpha \in M_B \setminus M_d \\
0 & \varphi_\alpha = y_\infty
\end{cases}
\]

By (3.1), we have, for each \(\alpha \),

\[
|\hat{f}(\tilde{\Phi}(\varphi_\alpha))| = |\hat{\rho}(\Phi(\varphi_\alpha))|.
\]

(3.2)
Let pair F of algebra A, a commutative Banach algebra of all bounded holomorphic functions on valued continuous functions on \bar{D}. Let $\Phi(\varphi_0)$ be continuous on $\Phi(\varphi_0)$ of the Gelfand topology, $\tilde{\Phi}(\varphi_0)$ converges to $\tilde{\Phi}(y_\infty)$. We thus conclude that $\tilde{\Phi} : M_{B_n} \to M_A$ is continuous.

Take a closed subset F of M_B. Then $F \cup \{y_\infty\} \subset M_{B_n}$ is compact. Since $\tilde{\Phi}$ is continuous on M_{B_n}, $\tilde{\Phi}(F \cup \{y_\infty\}) = \Phi(F) \cup \{x_\infty\}$ is compact in M_A, and so $\Phi(F) \subset M_A \setminus \{x_\infty\}$ is closed in M_A. This proves that Φ is a closed mapping. □

Recall that a commutative Banach algebra A is regular if and only if for each pair F, ψ_0 of closed subset $F \subset M_A$ and $\psi_0 \in M_A \setminus F$, there exists $f \in A$ with $\tilde{f}(\psi_0) = 1$ and $\tilde{f}(\psi) = 0$ for every $\psi \in F$.

Proof of Corollary 1.2. Take $\varphi_0 \in M_B$ and closed $F \subset M_B$ with $\varphi_0 \notin F$. Let Φ be an injective and closed mapping from Theorem 1.1. Then $\Phi(F) \subset M_A \setminus \{x_\infty\}$ is closed with $\Phi(\varphi_0) \notin \Phi(F)$. Since A is regular, there exists $f_0 \in A$ with $\tilde{f}_0(\Phi(\varphi_0)) = 1$ and $\tilde{f}_0(\Phi(\varphi)) = 0$ for every $\varphi \in F$. Recall that if τ_φ is a non-trivial ring homomorphism, then $\tau_\varphi(r) = r$ for every $r \in \mathbb{Q}$ and $\varphi \in M_B$. By (2.3), we have $\rho(\tilde{f}_0)(\varphi_0) = \rho_{\varphi_0}(f_0) = 1$ and $\rho(\tilde{f}_0)(\varphi) = \rho_{\varphi}(f_0) = 0$ for every $\varphi \in F$, and so B is regular. □

Proof of Corollary 1.3. (a) Assume to the contrary that there is a surjective ring homomorphism $\rho : A \to B$. Let Φ be from Theorem 1.1. Then M_B is homeomorphic to $\Phi(M_B) \subset M_A$. By hypothesis, M_A is discrete, and so is M_B. Now we reach a contradiction since M_B is infinite and connected.

(b) Let $\{M_{-1}, M_1, M_2\}$ be from Theorem 1.1. Then M_{-1}, M_1, M_2 are clopen, and M_2 is at most finite. Since M_2 is assumed to be infinite and connected, it follows that $M_B = M_{-1}$, or $M_B = M_1$. So, by Theorem 1.1, there exists an injective, continuous and closed mapping $\Phi : M_B \to M_A$ with $\rho(\tilde{f}(\varphi)) = \tilde{f}(\Phi(\varphi))$ for every $f \in A$ and $\varphi \in M_B$, or $\rho(\tilde{f}(\varphi)) = \tilde{f}(\Phi(\varphi))$ for every $f \in A$ and $\varphi \in M_B$. Since B is semi-simple, we have that ρ is conjugate-linear, or linear, respectively. □

Example 1. Let \mathbb{D} and $\bar{\mathbb{D}}$ be the open unit disc and the closure of \mathbb{D}, respectively. Let $A(\mathbb{D})$ be the disc algebra, that is, the uniform algebra of all complex-valued continuous functions on \mathbb{D}, which are holomorphic in \mathbb{D}. Let $H^\infty(\mathbb{D})$ be the commutative Banach algebra of all bounded holomorphic functions on \mathbb{D}. Neither $A(\bar{\mathbb{D}})$ nor $H^\infty(\mathbb{D})$ are regular. By Corollary 1.2, both $A(\mathbb{D})$ and $H^\infty(\mathbb{D})$ can not be the ring homomorphic images of any semi-simple regular commutative Banach algebra A. The case where $A = C_0(X)$ was proved by MOLNÁR [9, Corollary].
Example 2. Let $n \in \mathbb{N}$ and let $C^n([a, b])$ be the set of all n-times continuously differentiable complex-valued functions on a closed interval $[a, b]$. Then $C^n([a, b])$ is a semi-simple commutative Banach algebra with respect to the pointwise operations and the norm $\|f\|_n = \sum_{k=0}^{n} \|f^{(k)}\|_{\infty} / k!$ for $f \in C^n([a, b])$.

If ρ is a surjective ring homomorphism from $C^n([a, b])$ onto itself, then ρ is of the form
\[
\rho(f)(x) = \overline{f(\Phi(x))} \quad (f \in C^n([a, b]), \ x \in [a, b]),
\]
(3.3)
or
\[
\rho(f)(x) = f(\Phi(x)) \quad (f \in C^n([a, b]), \ x \in [a, b]).
\]
(3.4)
Here, $\Phi \in C^n([a, b])$ is injective and closed. For if ρ is a surjective ring homomorphism from $C^n([a, b])$ onto itself, then by the Proof of Corollary 1.3 (b), there exists an injective, continuous and closed mapping Φ from $[a, b]$ into itself such that ρ is of the form (3.3), or (3.4). If we take $f = \text{Id}$, the identity function, then we have $\Phi \in C^n([a, b])$.

Example 3. Let $1 \leq p \leq \infty$ and let G be a compact abelian group. Then the L^p-space $L^p(G)$ is a commutative Banach algebra with respect to convolution as a multiplication. The maximal ideal space of $L^p(G)$ is the dual group \hat{G} of G for each $1 \leq p \leq \infty$. Let B be a semi-simple commutative Banach algebra with infinite and connected maximal ideal space. By Corollary 1.3 (a), B can not be the ring homomorphic image of $L^p(G)$ since \hat{G} is discrete. The case where $B = L^1(\mathbb{R}^n), A(\mathbb{D}), C^n([a, b])$ was obtained by [10, Corollary 4].

References

On surjective ring homomorphisms.

TAKESHI MIURA
DEPARTMENT OF APPLIED MATHEMATICS AND PHYSICS
GRADUATE SCHOOL OF SCIENCE AND ENGINEERING
YAMAGATA UNIVERSITY
YONEZAWA 992-8510
JAPAN

E-mail: miura@yz.yamagata-u.ac.jp

SIN-EI TAKAHASI
DEPARTMENT OF APPLIED MATHEMATICS AND PHYSICS
GRADUATE SCHOOL OF SCIENCE AND ENGINEERING
YAMAGATA UNIVERSITY
YONEZAWA 992-8510
JAPAN

E-mail: sin-ei@emperor.yz.yamagata-u.ac.jp

NORIO NIWA
FACULTY OF ENGINEERING
OSAKA ELECTRO-COMMUNICATION UNIVERSITY
NEYAGAWA 572-8530
JAPAN

HIROKAZU OKA
FACULTY OF ENGINEERING
IBARAKI UNIVERSITY
HITACHI 316-8511
JAPAN

E-mail: oka@mx.ibaraki.ac.jp

(Received July 1, 2007; revised October 10, 2007;)