Regularity theorem for a functional equation involving means

By JUSTYNA JARCZYK (Zielona Góra)

Dedicated to Professor Zoltán Daróczy on the occasion of his 70th birthday

Abstract. We prove a result improving regularity of solutions of equation

$$\kappa x + (1 - \kappa)y = \lambda \varphi^{-1}(\mu \varphi(x) + (1 - \mu)\varphi(y)) + (1 - \lambda)\psi^{-1}(\nu \psi(x) + (1 - \nu)\psi(y)),$$

and leading to generalizations of some theorems established by D. Głazowska, W. Jarczyk, and J. Matkowski and by Z. Daróczy and Zs. Páles.

Given an interval $I \subset \mathbb{R}$, a continuous strictly monotonic function $\varphi : I \rightarrow \mathbb{R}$ and a real $\mu \in (0, 1)$ we denote by $A^\varphi_\mu(x, y)$ the quasi-arithmetic mean generated by φ and weighted by μ:

$$A^\varphi_\mu(x, y) = \varphi^{-1}(\mu \varphi(x) + (1 - \mu)\varphi(y)).$$

In paper [5] D. Głazowska, W. Jarczyk, and J. Matkowski found all the quasi-arithmetic means $A^\varphi_{1/2}$ and $A^\psi_{1/2}$ such that the classical arithmetic mean A is an affine combination of them:

$$A = \lambda A^\varphi_{1/2} + (1 - \lambda)A^\psi_{1/2},$$

assuming that the generators φ, ψ are twice continuously differentiable. In other words, they determined all functions $\varphi, \psi : I \rightarrow \mathbb{R}$ of class C^2 satisfying the

Mathematics Subject Classification: Primary: 26E60; Secondary: 39B22.

Key words and phrases: mean, functional equation, quasi-arithmetic mean, improvement of regularity.
The functional equation

\[
\frac{x + y}{2} = \lambda \varphi^{-1} \left(\frac{\varphi(x) + \varphi(y)}{2} \right) + (1 - \lambda) \psi^{-1} \left(\frac{\psi(x) + \psi(y)}{2} \right). \tag{1}
\]

The result of [5] was generalized by Z. Daróczy and Zs. Páles [3, Theorem 6], where the equation

\[
\mu x + (1 - \mu) y = \lambda \varphi^{-1} (\mu \varphi(x) + (1 - \mu) \varphi(y)) + (1 - \lambda) \psi^{-1} (\mu \psi(x) + (1 - \mu) \psi(y)) \tag{2}
\]

with given \(\lambda \in \mathbb{R} \setminus \{0, 1\} \) and \(\mu \in (0, 1) \) was solved in the class \(\mathcal{C}^1 \).

In the present paper we prove the theorem below which allows to generalize the results of both papers [5] and [3]. It shows that continuous functions satisfying the equation

\[
\kappa x + (1 - \kappa) y = \lambda \varphi^{-1} (\mu \varphi(x) + (1 - \mu) \varphi(y)) + (1 - \lambda) \psi^{-1} (\nu \psi(x) + (1 - \nu) \psi(y)), \tag{3}
\]

extending both of (1) and (2), are locally of much higher regularity. The Theorem provides a positive answer to a question posed recently by Z. Daróczy [1].

Results improving regularity of solutions of functional equations have a vast literature (cf. book [6] by A. Járai and the bibliography therein). Some of them will be used below.

The main result of this paper is the following regularity theorem concerning functional equation (3).

Theorem. Let \(I \subset \mathbb{R} \) be a non-trivial interval, \(\kappa, \lambda \in \mathbb{R} \setminus \{0, 1\} \) and let \(\mu, \nu \in (0, 1) \). If \(\varphi, \psi : I \to \mathbb{R} \) are continuous strictly monotonic functions and the pair \((\varphi, \psi) \) satisfies equation (3), then there exists a non-trivial interval \(I_0 \subset I \) such that \(\varphi|_{I_0}, \psi|_{I_0} \) are infinitely many times differentiable and \(\varphi'(x) \neq 0, \psi'(x) \neq 0 \) for every \(x \in I_0 \).

In the proof we shall apply a modification of the method presented in [7]. In particular, we need the following result obtained by Zs. Páles (see [9, Corollary 6 and Example 2]), as well as Lemma 2 which was proved in [7]. The latter is also a consequence of L. Székelyhidi’s results [10] (see also [2], [8]).

Lemma 1. Let \(J \subset \mathbb{R} \) be an open interval, \(c \in (0, \infty) \), \(\mu \in (0, 1) \), and let \(f : J \to \mathbb{R} \) be a strictly increasing function such that

\[
J \ni s \mapsto f(s) - cf (\mu s + (1 - \mu) t)
\]
Regularity theorem for a functional equation involving means

is strictly monotonic for every \(t \in J \). Then for every \(s_0 \in J \) there exist numbers \(\delta \in (0, \infty) \) and \(K, L \in (0, \infty) \) such that \((s_0 - \delta, s_0 + \delta) \subset J \) and

\[
K \leq \frac{f(s) - f(t)}{s - t} \leq L
\]

for every \(s, t \in (s_0 - \delta, s_0 + \delta) \), \(s \neq t \).

Lemma 2. Let \(J \subset \mathbb{R} \) be an interval and let \(\mu \in (0,1), \vartheta \in \mathbb{R} \). If \(f : J \rightarrow \mathbb{R} \) satisfies

\[
f(\mu s + (1 - \mu)t) = \vartheta f(s) + (1 - \vartheta)f(t)
\]

for all \(s, t \in J \), then there exist an additive function \(a : \mathbb{R} \rightarrow \mathbb{R} \) and a real \(b \) such that

\[
f(s) = a(s) + b, \quad s \in J.
\]

At first we prove the following fact.

Lemma 3. Let \(J \subset \mathbb{R} \) be an open interval, \(\kappa, \lambda \in \mathbb{R} \setminus \{0,1\}, \mu, \nu \in (0,1) \), and let \(f, g : J \rightarrow (0, \infty) \) satisfy the equation

\[
f(\mu s + (1 - \mu)t)[\kappa(1 - \nu)g(t) - (1 - \kappa)\nu g(s)] = \lambda(1 - \nu)f(s)g(t) - \lambda(1 - \mu)\nu f(t)g(s).
\]

(5)

If \(f \) is Lebesgue measurable and \(g \) is of the first Baire class, then \(f \) and \(g \) are infinitely many times differentiable on a non-trivial subinterval of \(J \).

Proof. Putting \(s = t \) in (5) it is easy to observe that

\[
\kappa = \lambda \mu + (1 - \lambda)\nu.
\]

(6)

At first assume that \(f \) is constant on a non-trivial subinterval of \(J \). Then, by equation (5), we have

\[
[(1 - \kappa) - \lambda(1 - \mu)]\nu g(s) = [\kappa - \lambda \mu](1 - \nu)g(t)
\]

for \(s, t \) from the same subinterval. Hence, by (6), also \(g \) is constant there.

Now assume that \(g \) is constant on a non-trivial interval \(J_0 \subset J \). Then, by (5), we have

\[
\lambda \mu(1 - \nu)f(s) - \lambda(1 - \mu)\nu f(t) = [\kappa(1 - \nu) - (1 - \kappa)\nu]f(\mu s + (1 - \mu)t)
\]

for all \(s, t \in J_0 \). Using (6) we can rewrite the above condition as

\[
\mu(1 - \nu)f(s) - (1 - \mu)\nu f(t) = (\mu - \nu)f(\mu s + (1 - \mu)t), \quad s, t \in J_0.
\]

(7)
If \(\mu = \nu \) then, by (7), \(f \) is constant on \(J_0 \). Now we assume that \(\mu \neq \nu \). Then (7) is equivalent to the condition

\[
f(\mu s + (1 - \mu)t) = \frac{\mu(1 - \nu)}{\mu - \nu} f(s) - \frac{(1 - \mu)\nu}{\mu - \nu} f(t), \quad s, t \in J_0.
\]

Let \(\vartheta := \frac{\mu(1 - \nu)}{\mu - \nu} \). Then

\[
f(\mu s + (1 - \mu)t) = \vartheta f(s) + (1 - \vartheta) f(t), \quad s, t \in J_0.
\]

Applying Lemma 2 we obtain that there exist additive function \(a : \mathbb{R} \to \mathbb{R} \) and number \(b \in \mathbb{R} \) such that

\[
f(s) = a(s) + b, \quad s \in J_0.
\]

Thus, as \(f \) is Lebesgue measurable, it is continuous.

From that place we assume that neither \(f \), nor \(g \) is constant on a non-trivial subinterval of \(J \). Let

\[
C(g) := \{ v \in J : g \text{ is continuous at } v \}.
\]

As \(g \) is of the first Baire class, \(C(g) \) is a dense \(G_\delta \) subset of \(J \). We show that there exist \(s_0, t_0 \in C(g) \), \(s_0 \neq t_0 \), such that

\[
(1 - \kappa)\nu g(s_0) \neq \kappa(1 - \nu)g(t_0). \quad (8)
\]

Suppose on the contrary that

\[
(1 - \kappa)\nu g(s) = \kappa(1 - \nu)g(t)
\]

for all different \(s, t \in C(g) \). Then \(g \) is constant on \(C(g) \), i.e. there exists a positive \(k \) such that

\[
g(t) = k, \quad t \in C(g). \quad (9)
\]

Therefore \((1 - \kappa)\nu = \kappa(1 - \nu) \), whence \(\kappa = \nu \) and, by (6), \(\mu = \nu \). Now equation (5) can be rewritten in the form

\[
f(\mu s + (1 - \mu)t)[g(t) - g(s)] = \lambda[f(s)g(t) - f(t)g(s)]. \quad (10)
\]

Thus, by (9),

\[
\lambda k (f(s) - f(t)) = 0, \quad s, t \in C(g),
\]
whence \(f \) is constant on \(C(g) \), i.e. there exists a positive \(l \) such that \(f(t) = l \) for every \(t \in C(g) \).

If there existed an \(s_0 \in J \) such that \(\mu s_0 + (1 - \mu)t \in J \setminus C(g) \) for every \(t \in C(g) \), then \(C(g) \) would be homeomorphic with a subset of \(J \setminus C(g) \). This, however, is impossible, as \(C(g) \) is a dense \(G_\delta \) subset of \(J \) and, consequently, \(J \setminus C(g) \) is of the first Baire category. Therefore, for every \(s \in J \) there exists a \(t \in C(g) \) such that \(\mu s + (1 - \mu)t \in C(g) \). Now, if \(s \in J \) and \(t \in C(g) \) are such that \(\mu s + (1 - \mu)t \in C(g) \), then, by (10), we have

\[
l[k - g(s)] = \lambda[kf(s) - lg(s)].
\]

Hence

\[
f(s) = \frac{kl - l(1 - \lambda)g(s)}{k\lambda}, \quad s \in J.
\]

Using again (10) we obtain

\[
\frac{kl - l(1 - \lambda)g[\mu s + (1 - \mu)t]}{k\lambda}[g(t) - g(s)] = \lambda \left(\frac{kl - l(1 - \lambda)g(s)}{k\lambda}g(t) - \frac{kl - l(1 - \lambda)g(t)}{k\lambda}g(s) \right), \quad s, t \in J,
\]

which, after some calculations, yields

\[
[g(t) - g(s)][k - g[\mu s + (1 - \mu)t]] = 0, \quad s, t \in J. \tag{11}
\]

Since \(g \) is not constant on \(J \), there exists a \(v_0 \in J \) such that \(m := g(v_0) \neq k \).

Take arbitrary \(v \in J \) and \(\varepsilon > 0 \) with \((v - \varepsilon, v + \varepsilon) \subset J \). As \(g \) is not constant on intervals, there exists an \(s \in (v - \varepsilon, v + \varepsilon) \) such that

\[
g[\mu s + (1 - \mu)v_0] \neq k.
\]

By (11) we have \(g(s) = g(v_0) = m \). Therefore, in every neighbourhood of \(v \) there exists an \(s \) with \(g(s) = m \) and, since \(C(g) \) is dense in \(J \), a point \(u \) such that \(g(u) = k \neq m \). Thus \(g \) is not continuous at \(v \) and, consequently, \(C(g) = \emptyset \), which is impossible. This proves the existence of different \(s_0, t_0 \in C(g) \) satisfying (8).

According to (8) there exist open intervals \(U, V \) containing \(s_0, t_0 \), respectively, and such that for every \(s \in U \) and \(t \in V \) we have \((1 - \kappa)\nu g(s) \neq \kappa(1 - \nu)g(t) \).

Making use of (5) we obtain

\[
f[\mu s + (1 - \mu)t] = \frac{\lambda \mu(1 - \nu)f(s)g(t) - \lambda(1 - \mu)\nu f(t)g(s)}{\kappa(1 - \nu)g(t) - (1 - \kappa)\nu g(s)}, \quad s \in U, \quad t \in V.
\]
Now we are going to apply [6, Th. 8.6] by A. Járai. To this aim put $n = 4,$ $T := J,$ $Z = Z_1 = \cdots = Z_4 = Y := \mathbb{R},$ $X_1 = X_3 = A_1 = A_3 := U$ and $X_2 = X_4 = A_2 = A_4 := V.$ Fix an $\eta > 0$ with $(t_0 - \eta, t_0 + \eta) \subset V$ and define

$$D := \left\{(v, y) \in J \times U : |v - (\mu s_0 + (1 - \mu)t_0)| < \frac{\eta}{2}(1 - \mu)\right\}$$

and $|y - s_0| < \frac{\eta}{2}\left(\frac{1}{\mu} - 1\right).$

Put also $W := \{(v, y, z_1, z_2, z_3, z_4) \in D \times \mathbb{R}^4 : \kappa(1 - \nu)z_4 \neq (1 - \kappa)\nu z_3\}.$

Put also $f := f, f_1 := f|U, f_2 := f|V, f_3 := g|U, f_4 := g|V$ and define $g_1, g_3 : D \to U, g_2, g_4 : D \to V$ by

$$g_1(v, y) = g_3(v, y) = y, \quad g_2(v, y) = g_4(v, y) = \frac{v - \mu y}{1 - \mu},$$

and $h : W \to \mathbb{R}$ by

$$h(v, y, z_1, z_2, z_3, z_4) = \frac{\lambda \mu(1 - \nu)z_1 z_4 - \lambda \nu(1 - \mu)z_2 z_3}{\kappa(1 - \nu)z_4 - \nu(1 - \kappa)z_3}.$$

Put $K := [s_0 - \delta, s_0 + \delta],$ where $0 < \delta < \eta\left(\frac{1}{\mu} - 1\right)$ and $[s_0 - \delta, s_0 + \delta] \subset U.$

Making use of [6, Theorem 8.6], applied to the Lebesgue measure, we infer that f is continuous on the interval $J_f := \left\{v \in J : |v - (\mu s_0 + (1 - \mu)t_0)| < \frac{\eta}{2}(1 - \mu)\right\}.$

Fix an $s^* \in J_f.$ Since f is not constant on intervals, there is a $t^* \in J_f$ such that $f(\mu s^* + (1 - \mu)t^*) \neq \frac{\lambda \mu}{\kappa} f(s^*).$ By the continuity of f at t^* we have $f(\mu s^* + (1 - \mu)t) \neq \frac{\lambda \mu}{\kappa} f(s^*)$ for t's from a non-trivial interval $J_g \subset J_f.$ Then, by (5),

$$g(t) = \frac{\nu}{1 - \nu} \frac{(1 - \kappa)f(\mu s^* + (1 - \mu)t) - \lambda(1 - \mu)f(t)}{\kappa f(\mu s^* + (1 - \mu)t) - \lambda \mu f(s^*)} g(s^*), \quad t \in J_g,$$

and, consequently, g is continuous on $J_g.$

Now we show that f is almost everywhere (with respect to the Lebesgue measure) differentiable on some non-trivial subinterval of J_g provided $\mu \neq \nu.$ In that case equation (5) can be rewritten in the form

$$\nu g(s)[(1 - \kappa)f(\mu s + (1 - \mu)t) - \lambda(1 - \mu)f(t)]$$

$$= (1 - \nu)g(t)[\kappa f(\mu s + (1 - \mu)t) - \lambda \mu f(s)].$$
Interchanging s by t here we obtain

$$
\nu g(t)[(1 - \kappa)f(\mu t + (1 - \mu)s) - \lambda(1 - \mu)f(s)]
= (1 - \nu)g(s)[\kappa f(\mu t + (1 - \mu)s) - \lambda \mu f(t)]
$$

for every $s, t \in J$. Multiplying these equalities by sides we have

$$(1 - \nu)^2 g(s)g(t)[\kappa f(\mu s + (1 - \mu)t) - \lambda \mu f(s)]\cdot [(1 - \kappa)f(\mu t + (1 - \mu)s) - \lambda(1 - \mu)f(s)]$$

whence, dividing it by positive $g(s)g(t)$, we get

$$(1 - \nu)^2 [\kappa f(\mu s + (1 - \mu)t) - \lambda \mu f(s)]\cdot [(1 - \kappa)f(\mu t + (1 - \mu)s) - \lambda(1 - \mu)f(s)]$$

for every $s, t \in J$. Put

$$k(s, t) := \lambda(1 - \mu)\nu^2[(1 - \kappa)f(\mu s + (1 - \mu)t) - \lambda(1 - \mu)f(t)]$$

$$- \lambda \mu(1 - \nu)^2[\kappa f(\mu t + (1 - \mu)s) - \lambda \mu f(t)]$$

for every $s, t \in J$. Fix an $s_0 \in J_0$. Then

$$k(s_0, s_0) = \lambda(1 - \mu)\nu^2[(1 - \kappa)f(s_0) - \lambda(1 - \mu)f(s_0)]$$

$$- \lambda \mu(1 - \nu)^2[\kappa f(s_0) - \lambda \mu f(s_0)],$$

which, after using (6) and making some calculations, gives

$$k(s_0, s_0) = \lambda(1 - \lambda)\nu(1 - \nu)(\nu - \mu)f(s_0).$$

Since $f(s_0) > 0$, $\mu \neq 1$, $\nu \neq 1$, and $\mu \neq \nu$, we have $k(s_0, s_0) \neq 0$. Thus there exists an $\varepsilon > 0$ such that $(s_0 - \varepsilon, s_0 + \varepsilon) \subset J_0$ and $k(s, t) \neq 0$ for all $s, t \in (s_0 - \varepsilon, s_0 + \varepsilon)$. Let $J_0 := (s_0 - \varepsilon, s_0 + \varepsilon)$. By (12) we get

$$f(s) = \frac{(1 - \kappa)\nu^2 f(\mu t + (1 - \mu)s)[(1 - \kappa)f(\mu s + (1 - \mu)t) - \lambda(1 - \mu)f(t)]}{k(s, t)}$$

$$- \frac{\kappa(1 - \nu)^2 f(\mu s + (1 - \mu)t)[\kappa f(\mu t + (1 - \mu)s) - \lambda \mu f(t)]}{k(s, t)}.$$
for every $s, t \in J_0$.

Put $s = k = 1, n = 3, Z := \mathbb{R}, T := J_0, Y := \mathbb{R}, D := J_0^2, C := [s_0 - \delta \varepsilon, s_0 + \delta \varepsilon]$ with $\delta := \max \{\mu, 1 - \mu\}, W := D \times G$, where

$$G := \{(w_1, w_2, w_3) \in \mathbb{R}^3 : (1 - \mu)\nu^2[(1 - \kappa)w_2 - \lambda(1 - \mu)w_1]$$

$$\neq \mu(1 - \nu)^2[\kappa w_3 - \lambda \mu w_1]\}.$$

Define $f := f|_{J_0}, g_1, g_2, g_3 : D \to \mathbb{R}$, by

$$g_1(s, t) = t, \quad g_2(s, t) = \mu s + (1 - \mu)t, \quad g_3(s, t) = \mu t + (1 - \mu)s,$$

and $h : W \to \mathbb{R}$ by

$$h(s, t, w_1, w_2, w_3) := \frac{(1 - \kappa)\nu^2 w_3[(1 - \kappa)w_2 - \lambda(1 - \mu)w_1] - \kappa(1 - \nu)^2 w_2 [\kappa w_3 - \lambda \mu w_1]}{\lambda(1 - \mu)\nu^2[(1 - \kappa)w_2 - \lambda(1 - \mu)w_1] - \lambda \mu(1 - \nu)^2[\kappa w_3 - \lambda \mu w_1]}.$$

(14)

Then, according to [6, Th. 11.6] by A. Járai, f is locally Lipschitzian on J_0, and thus, on account of [4, Th. 3.1.9] it is almost everywhere differentiable on J_0.

Now take any positive integer p. We prove that f and g are p times continuously differentiable on a non-trivial subinterval of J_0. At first assume that $\mu \neq \nu$.

Then, as $k(s_0, s_0) \neq 0$, we have $(f(s_0), f(s_0), f(s_0)) \in G$. Since G is open, there is an open interval P such that $f(s_0) \in P$ and $P^3 \subset G$. Using the continuity of f we find such an open interval J_1 that $s_0 \in J_1 \subset J_0$ and $f(J_1) \subset P$. Now let $s = k = 1, n = 3, Z := \mathbb{R}, Z_1 = Z_2 = Z_3 := P, T = T = X_1 = X_2 = X_3 := J_1$, $D := J_1^2$, and take $r_1 = r_2 = r_3 = 1$. Define $f = f_1 = f_2 = f_3 := f|_{J_1}, g_1, g_2, g_3 : D \to \mathbb{R}$ by (12) and $h : D \times Z_1 \times Z_2 \times Z_3 \to \mathbb{R}$ by (14). According to [6, Th. 14.2] f is continuously differentiable on J_1. Now, using [6, Th. 15.2] p-1 times, we get by induction that f is p times continuously differentiable on J_1. As J_1 does not depend on p, this means that f is infinitely many times differentiable on J_1. It follows from (5) that

$$[\kappa(1 - \nu)f(\mu s_0 + (1 - \mu)t) - \lambda \mu(1 - \nu)f(s_0)]g(t)$$

$$= [(1 - \kappa)\nu f(\mu s_0 + (1 - \mu)t) - \lambda(1 - \mu)\nu f(t)]g(s_0), \quad t \in J_1.$$

(15)

As f is not constant on non-trivial intervals we can find a $t \in J_1$ such that

$$\kappa(1 - \nu)f(\mu s_0 + (1 - \mu)t) - \lambda \mu(1 - \nu)f(s_0) \neq 0.$$
By the continuity of f this is true for t’s running through a subinterval of J_1. Consequently, we can calculate $g(t)$ by (15) on that subinterval. Clearly, g is infinitely many times differentiable there.

If $\mu = v$ then, by (6), we have $\kappa = \mu$, and thus equation (5) takes the form

$$f(\mu s + (1 - \mu)t)[g(t) - g(s)] = \lambda[f(s)g(t) - f(t)g(s)].$$

Now it is enough to use [3, Th. 5 and 2]. □

The following fact seems to be of interest on its own.

Lemma 4. Let $I \subset \mathbb{R}$ be an open interval, $\mu \in (0, 1)$, and let $\varphi : I \to \mathbb{R}$ be a continuous strictly monotonic function. Assume that the mean A_μ^φ is differentiable with respect to one of the variables. Then φ is differentiable on a non-trivial interval and φ' does not vanish wherever it exists. If, in addition, the partial derivative of A_μ^φ is continuous in the other variable on a non-trivial interval, then φ is continuously differentiable on a non-trivial interval.

Proof. Assume, for instance, that A_μ^φ is differentiable with respect to the first variable.

Since φ^{-1} is strictly monotonic, it is differentiable almost everywhere with respect to the Lebesgue measure. Fix any point $u_0 \in \varphi(I)$ of the differentiability of φ^{-1}. We prove that φ^{-1} is differentiable in the open interval $\mu u_0 + (1 - \mu)\varphi(I)$ and the derivative of φ^{-1} does not vanish wherever it exists.

Take any point $v \in \varphi(I)$ and then any $u \in \varphi(I) \setminus \{u_0\}$ such that $\mu u + (1 - \mu)v \in \mu u_0 + (1 - \mu)\varphi(I)$. Then we have

$$\varphi^{-1}(\mu u + (1 - \mu)v) - \varphi^{-1}(\mu u_0 + (1 - \mu)v)$$

$$= \frac{A_\mu^\varphi(\varphi^{-1}(u), \varphi^{-1}(v)) - A_\mu^\varphi(\varphi^{-1}(u_0), \varphi^{-1}(v))}{\mu(u - u_0) \cdot \frac{\varphi^{-1}(u) - \varphi^{-1}(u_0)}{u - u_0}}.$$

Now letting u tend to u_0 we see that φ^{-1} is differentiable at $\mu u_0 + (1 - \mu)v$ and

$$(\varphi^{-1})'((\mu u_0 + (1 - \mu)v) = \frac{1}{\mu} \partial_1 A_\mu^\varphi(\varphi^{-1}(u_0), \varphi^{-1}(v)) \cdot (\varphi^{-1})'(u_0)$$

(16)

for all $v \in \varphi(I)$. If $(\varphi^{-1})'$ vanished anywhere, then, by (16), it would be zero on a non-trivial interval, which is impossible as φ^{-1} is one-to-one. The desired properties of the function φ follows directly from what we have just proved about φ^{-1}.

The additional assertion is a direct consequence of formula (16). □
Proof of the Theorem. Replacing I with its interior we may assume that I is open. Without loss of generality we may also confine ourselves to the case of strictly increasing φ and ψ. Moreover, replacing, if necessary, κ with $1 - \kappa$ (consequently, μ with $1 - \mu$ and ν with $1 - \nu$) and by interchanging x and y, we may assume that κ is positive. Of course, at least one of the numbers λ and $1 - \lambda$ is positive. Assume, for instance, the first case. Let $J := \varphi(I)$. Clearly, J is an open interval.

At first we show that φ and φ^{-1} are locally Lipschitzian and their derivatives do not vanish wherever they exist. Putting $s = \varphi(x)$ and $t = \varphi(y)$ in (3) we get

$$(1 - \lambda)\psi^{-1}(\mu \psi(\varphi^{-1}(s)) + (1 - \nu)\psi(\varphi^{-1}(t))) = \kappa \varphi^{-1}(s) + (1 - \kappa)\varphi^{-1}(t) - \lambda \varphi^{-1}(\mu s + (1 - \mu)t)$$

for every $s, t \in J$. Since the left-hand side is strictly monotonic as a function of s, so does the right-hand side. Hence

$$J \ni s \mapsto \varphi^{-1}(s) - \frac{\lambda}{\kappa} \varphi^{-1}(\mu s + (1 - \mu)t)$$

is strictly monotonic for every $t \in J$. For every $v_0 \in J$, by Lemma 1, we can find $\delta \in (0, \infty)$ and $K, L \in (0, \infty)$ such that $(v_0 - \delta, v_0 + \delta) \subset J$ and

$$K \leq \frac{\varphi^{-1}(u) - \varphi^{-1}(v)}{u - v} \leq L, \quad u, v \in (v_0 - \delta, v_0 + \delta), \; u \neq v.$$

Then also for every $x_0 \in I$ there exist $\delta > 0$ and $K, L > 0$ such that

$$\frac{1}{L} \leq \frac{\varphi(x) - \varphi(y)}{x - y} \leq \frac{1}{K}, \quad x, y \in (x_0 - \delta, x_0 + \delta), \; x \neq y.$$

In particular, it follows that if the function φ is differentiable at a point $x_0 \in I$, then $\varphi'(x_0) \neq 0$ and if the function φ^{-1} is differentiable at $v_0 \in \varphi(I)$, then $(\varphi^{-1})'(v_0) \neq 0$.

Now we show that φ is differentiable on I. For every $v \in J$ put

$$U(v) = \frac{1}{1 - \mu}(J - v) \cap \frac{1}{\mu}(v - J);$$

observe that $U(v)$ is an open interval containing 0. Given any $v \in J$ and $u \in U(v)$ define also

$$V(u) = (J - (1 - \mu)u) \cap (J + \mu u);$$
Observe that \(\varphi^{-1} \) is of full Lebesgue measure in \(A \); consequently, so is their union \(\bigcup_{i=0}^{N} I_{i} \). By the monotonicity of \(\varphi \), for \(v \in J \) and \(u \in U(v) \), we get
\[
\lambda \varphi^{-1}(v) = \kappa \varphi^{-1}(v + (1 - \mu)u) + (1 - \kappa) \varphi^{-1}(v - \mu u) \\
- (1 - \lambda) \psi^{-1}(v) + (1 - \nu) \psi(\varphi^{-1}(v - \mu u))
\]
for every \(v \in J \) and \(u \in U(v) \).

Take any \(v_{0} \in J \) and define functions \(f_{1}, f_{2} : U(v_{0}) \to I \) by
\[
f_{1}(u) = \varphi^{-1}(v_{0} + (1 - \mu)u), \quad f_{2}(u) = \varphi^{-1}(v_{0} - \mu u).
\]
For \(i = 1, 2 \) put
\[
N_{i} = \{ u \in U(v_{0}) : f_{i} \text{ is not differentiable at } u \}.
\]
By the monotonicity of \(f_{1}, f_{2} \), the sets \(N_{1}, N_{2} \) are of Lebesgue measure 0 and, consequently, so is their union \(N \). Since \(\varphi \) and \(\varphi^{-1} \) are locally Lipschitzian, also the function \(A_{x}^{\varphi} \) has that property, and thus, by Rademacher’s theorem [4, Theorem 3.1.9], \(A_{x}^{\varphi} \) is almost everywhere differentiable on \(I^{2} \). In particular, the set
\[
C = \{(x, y) \in I^{2} : A_{x}^{\varphi}(\cdot, y) \text{ is differentiable at } x \text{ and } A_{x}^{\varphi}(x, \cdot) \text{ is differentiable at } y \}
\]
is of full Lebesgue measure in \(I^{2} \). As \((f_{1}, f_{2})(U(v_{0})) \) is the product of two open intervals and the functions \(f_{1}, f_{2} \) are locally Lipschitzian, the set \((f_{1}, f_{2})^{-1}(C) \) has a positive measure; otherwise \(C \cap (f_{1}, f_{2})(U(v_{0})) = (f_{1}, f_{2})[(f_{1}, f_{2})^{-1}(C)] \) would be of measure zero. Hence it follows that the set \((f_{1}, f_{2})^{-1}(C) \setminus N \) is non-empty. Take any \(u_{0} \in (f_{1}, f_{2})^{-1}(C) \setminus N \). Then \(f_{1}, f_{2} \) are differentiable at \(u_{0} \) and the functions \(A_{x}^{\varphi}(\cdot, f_{2}(u_{0})) \) and \(A_{x}^{\varphi}(f_{1}(u_{0}), \cdot) \) are differentiable at \(f_{1}(u_{0}) \) and \(f_{2}(u_{0}) \), respectively.

Now define functions \(g_{1}, g_{2} : V(u_{0}) \to I \) by
\[
g_{1}(v) = \varphi^{-1}(v + (1 - \mu)u_{0}), \quad g_{2}(v) = \varphi^{-1}(v - \mu u_{0}).
\]
Observe that \(g_{1}(v_{0}) = f_{1}(u_{0}) \) and \(g_{2}(v_{0}) = f_{2}(u_{0}) \). Therefore the functions \(A_{x}^{\varphi}(\cdot, g_{2}(v_{0})) \) and \(A_{x}^{\varphi}(g_{1}(v_{0}), \cdot) \) are differentiable at the points \(g_{1}(v_{0}) \) and \(g_{2}(v_{0}) \), respectively, whence, according to (3), \(A_{x}^{\varphi}(\cdot, g_{2}(v_{0})) \) and \(A_{x}^{\varphi}(g_{1}(v_{0}), \cdot) \) are differentiable at \(g_{1}(v_{0}) \) and \(g_{2}(v_{0}) \), respectively. Moreover, as \(f_{1} \) is differentiable at \(u_{0} \), the function \(\varphi^{-1} \) is differentiable at \(v_{0} + (1 - \mu)u_{0} \), and thus \(g_{1} \) is differentiable at \(v_{0} \). Similarly, we infer that the function \(g_{2} \) has the same property. Consequently, the function \(V(u_{0}) \ni v \mapsto A_{x}^{\varphi}(g_{1}(v), g_{2}(v)) \) is differentiable at \(v_{0} \). Now (17) gives
\[
\lambda \varphi^{-1}(v) = \kappa g_{1}(v) + (1 - \kappa) g_{2}(v) - (1 - \lambda) A_{x}^{\varphi}(g_{1}(v), g_{2}(v)), \quad v \in V(u_{0}),
\]
and we get the differentiability of \(\varphi^{-1} \) at \(v_0 \). As \(v_0 \) is an arbitrary point of \(J \) and the derivative of \(\varphi^{-1} \) does not vanish, \(\varphi \) is differentiable on \(I \).

According to (3) and applying Lemma 4 to \(\psi \) and \(\nu \) instead of \(\varphi \) and \(\mu \), respectively, we find a non-empty open interval \(I_0 \subset I \) such that \(\psi \) is differentiable in \(I_0 \); clearly also \(\varphi \) is differentiable in \(I_0 \).

Define functions \(f, g : I_0 \to (0, \infty) \) by
\[
f(s) = \varphi'(\varphi^{-1}(s)), \quad g(s) = \psi'(\varphi^{-1}(s)).
\]
We show that the pair \((f, g) \) satisfies equation (5). Indeed, differentiating both sides of equality (3) with respect to \(x \) we get
\[
\frac{\lambda \mu \varphi'(x)}{\varphi'(\varphi^{-1}(\mu \varphi(x) + (1-\mu)\varphi(y)))} + \frac{(1-\lambda)\nu \psi'(x)}{\psi'(\psi^{-1}(\nu \psi(x) + (1-\nu)\psi(y)))} = \kappa
\]
for all \(x, y \in I_0 \). On the other hand, differentiating equality (3) with respect to \(y \) we have
\[
\frac{\lambda(1-\mu)\varphi'(y)}{\varphi'(\varphi^{-1}(\mu \varphi(x) + (1-\mu)\varphi(y)))} + \frac{(1-\lambda)(1-\nu)\psi'(y)}{\psi'(\psi^{-1}(\nu \psi(x) + (1-\nu)\psi(y)))} = 1 - \kappa
\]
for all \(x, y \in I_0 \). Multiplying equality (18) by \((1-\nu)\psi'(y)\) and (19) by \(-\nu \psi'(x)\) and adding the obtained equalities by sides we have
\[
\frac{\lambda \mu (1-\nu) \varphi'(x) \psi'(y) - \lambda(1-\mu)\nu \varphi'(y) \psi'(x)}{\varphi'(\varphi^{-1}(\mu \varphi(x) + (1-\mu)\varphi(y)))} = \kappa(1-\nu)\psi'(y) - (1-\kappa)\nu \psi'(x)
\]
for all \(x, y \in I_0 \), whence, setting here \(x = \varphi^{-1}(s) \) and \(y = \varphi^{-1}(t) \), we see that equality (5) holds for every \(s, t \in \varphi(I_0) \). Since \(\varphi^{-1} \) is locally Lipschitzian and \(\varphi' \) is measurable \(\varphi' \circ \varphi^{-1} \) is Lebesgue measurable. Moreover, \(\psi' \) is of the first Baire class and \(\varphi^{-1} \) is continuous whence \(\psi' \circ \varphi^{-1} \) is of the first Baire class. Therefore, due to Lemma 3, we infer that \(f, g \) are infinitely many times differentiable on a non-empty subinterval of \(\varphi(I_0) \). This competes the proof. \(\Box \)

References

Regularity theorem for a functional equation involving means

JUSTYNA JARCZYK
FACULTY OF MATHEMATICS
COMPUTER SCIENCE AND ECONOMETRICS
UNIVERSITY OF ZIELONA GÓRA
SZAFRANA 4A
PL-65-516 ZIELONA GÓRA
POLAND

E-mail: j.jarczyk@wmie.uz.zgora.pl

(Received September 16, 2008; revised June 8, 2009)