Stability of a quadratic functional equation on semigroups

By ZYGFRYD KOMINEK (Katowice)

Dedicated to Professor Zoltán Daróczy on his seventieth birthday

Abstract. The stability problem of the functional equation of the form

\[f(x + 2y) + f(x) = 2f(x + y) + 2f(y), \]

is investigated. We prove that if the norm of the difference between left-hand side and right-hand side of the equation is majorized by a function \(\omega \) of two variables having some standard properties then there exists a unique solution \(F \) of our equation and the norm of differences between \(F \) and the given function \(f \) is controlled by a function depending on \(\omega \).

1. Introduction

In the last years the stability of quadratic functional equations are widely investigated. The most important quadratic functional equation has the following form

\[f(x + y) + f(x - y) = 2f(x) + 2f(y). \]

First stability result concerning this equation was obtained by P. W. Cholewa [2]. The theorem states that if \(g \) is a function transforming an abelian group \(G \) into a Banach space \(X \) and satisfying the inequality

\[\|g(x + y) + g(x - y) - 2g(x) - 2g(y)\| \leq \delta, \quad x, y \in G, \]

\(\delta \)
where δ is a given nonnegative constant, then there exists a unique quadratic function $f : G \to X$ such that
\[
\|f(x) - g(x)\| \leq \frac{\delta}{2}, \quad x \in G.
\] (3)

In 2006 W. Fechner [3] considered a modified inequality (2) where on the right-hand-side of (2) $\delta = \delta(x, y)$ was a function satisfying some additionally conditions and he obtained estimation like (3) depending on this function δ.

Some authors investigated the stability of functional equations which are equivalent to equation (1) ([1], [7]). It make a sense because there are known examples of some equivalent functional equations: one of them stable in the sense of Hyers and Ulam and another one not stable in this sense. A nontrivial pair of functional equations of this type is Jensen functional equation (which is stable on the interval $(0, 1)$ [4]) and Hosszú functional equation (which is nonstable on the interval $(0, 1)$ [8]). The case of Hosszú functional equation is interesting also therefore, that it is stable on the space of all real numbers [6].

The natural domains to the considerations of quadratic functional equation are groups. But if we put $x + y$ instead of x in (1) we obtain
\[
f(x + 2y) + f(x) = 2f(x + y) + 2f(y),
\] (4)
and this equation can be investigated for functions defining on semigroups. Moreover, it is easily seen that equations (1) and (4) are equivalent in the class of functions acting from a group to an another one. The equation (4) may be treated as a quadratic functional equation on a semigroup. In this paper we will prove the stability of functional equation (4).

2. Results

In our two theorems on the stability of functional equation (4) we will assume that $(S, +)$ is an abelian semigroup, X is a Banach space and g is a function acting from S into X. Let us put $S^* = S \setminus \{0\}$ and let $\omega : S^* \times S^* \to \mathbb{R}$ be a function satisfying the following assumptions
\[
\lim_{k \to \infty} \rho^{-2k}\omega(\rho^kx, \rho^ky) = 0, \quad x, y \in S^*;
\]
\[
\sum_{k=0}^{\infty} \rho^{-2k}\omega(\rho^ku, \rho^kv) \text{ is convergent for all}
\]
\[
(u, v) \in \{(x, x), (x, 2x), (2x, x), (3x, x)\}, \quad x \in S^*,
\] (5)
where $\rho \in \{2, \frac{1}{2}\}$. For the simplicity we define a function φ by the following way

$$\varphi(x, y) = \frac{1}{2}[\omega(x, y) + \omega(x, 2y) + \omega(3x, y) + 2\omega(2x, y)], \quad x, y \in S^*$$

and we observe that

$$\lim_{k \to \infty} \rho^{-2k}\varphi(\rho^k x, \rho^k y) = 0, \quad x, y \in S^*;$$

$$\sum_{k=0}^{\infty} \rho^{-2k}\varphi(\rho^k x, \rho^k x) \text{ is convergent for all } x \in S^*. \quad (5')$$

From a lemma which was originally proved in [5] for functions defined on a group, but its proof is literally the same in our case, follows the following lemma.

Lemma. Let $g : S \to X$ be a function satisfying the inequality

$$\left\| \sum_{i=1}^{r} \alpha_i g(\gamma_i x + \delta_i y) \right\| \leq \varphi(x, y), \quad x, y \in S^*, \quad (6)$$

where $r, \gamma_i, \delta_i, i \in \{1, \ldots, r\}$ are given positive integers $\alpha_i, i \in \{1, \ldots, r\}$ are given real constants. If there exist constants $K > 0$ and $\rho > 0$ such that

$$\left\| \rho^{-2(n+1)}g(\rho^{n+1} x) - \rho^{-2n}g(\rho^n x) \right\| \leq K \rho^{-2n}\varphi(\rho^n x, \rho^n x), \quad x \in S^*, \quad n \in \mathbb{N} \cup \{0\}. \quad (7)$$

and φ satisfies conditions $(5')$ then for every $x \in S^*$ the sequence $(\rho^{-2n}g(\rho^n x))_{n \in \mathbb{N}}$ is convergent to a function $f : S^* \to X$ fulfilling the equation

$$\sum_{i=1}^{r} \alpha_if(\gamma_i x + \delta_i y) = 0, \quad x, y \in S^* \quad (8)$$

and the estimation

$$\left\| g(x) - f(x) \right\| \leq K \sum_{n=0}^{\infty} \rho^{-2n}\varphi(\rho^n x, \rho^n x), \quad x \in S^*. \quad (9)$$

Theorem 1. Let S be an abelian semigroup, X be a Banach space, and let $g : S \to X$ be a function satisfying the following inequality

$$\|g(x + 2y) + g(x) - 2g(x + y) - 2g(y)\| \leq \omega(x, y), \quad x, y \in S^*, \quad (10)$$

where $\omega : S^* \times S^* \to [0, \infty)$ fulfilled conditions (5) with $\rho = 2$. Then there exists a unique function $f : S \to X$ satisfying equation (4) and the estimation

$$\|f(x) - g(x)\| \leq \sum_{k=0}^{\infty} \frac{1}{4^{k+1}}\varphi(2^k x, 2^k x), \quad x \in S^*. \quad (11)$$
Proof. According to (10) we obtain
\[\|g(3x) - 2g(2x) - g(x)\| \leq \omega(x, x), \quad x \in S^*; \]
\[\|g(5x) + g(3x) - 2g(4x) - 2g(x)\| \leq \omega(3x, x), \quad x \in S^*; \]
\[\| - g(5x) - g(x) + 2g(3x) + 2g(2x)\| \leq \omega(x, 2x), \quad x \in S^*, \]
whence
\[\| - 2g(4x) - 4g(3x)\| \leq \omega(x, x) + \omega(x, 2x) + \omega(3x, x), \quad x \in S^*. \quad (12) \]
Moreover, putting 2x instead of x, and x instead of y in (10) we get
\[\|2g(4x) + 2g(2x) - 4g(3x) - 4g(x)\| \leq 2\omega(2x, x), \quad x \in S^*. \quad (13) \]
It follows from (12) and (13) that
\[\|g(2x) - 4g(x)\| \leq \varphi(x, x), \quad x \in S^*, \quad (14) \]
and, consequently,
\[\left\| \frac{1}{4^{n+1}}g(2^{n+1}x) - \frac{1}{4^n}g(2^n x) \right\| \leq \frac{1}{4^{n+1}} \varphi(2^n x, 2^n x), \quad x \in S^*. \]
On account of Lemma there exists a function \(f : S \to X \) satisfying equation (4) and estimation (11).
Let \(f_1 : S \to X \) be a function satisfying equation (4) and the estimation
\[\|g(x) - f_1(x)\| \leq \sum_{k=0}^{\infty} \frac{1}{4^k} \varphi(2^k x, 2^k x), \quad x \in S^*. \quad (15) \]
Quite similar as in the proof of (14), using (4) instead of (10), one can prove that
\[f(2x) = 4f(x) \] as well as \(f_1(2x) = 4f_1(x), \quad x \in S^*. \]
Now for arbitrary positive integer \(m \) we have
\[
\|f(x) - f_1(x)\| = \frac{1}{4^m} \|f(2^m x) - f_1(2^m x)\|
\leq \frac{1}{4^m} \left[\|f(2^m x) - g(2^m x)\| + \|g(2^m x) - f_1(2^m x)\| \right]
\leq \frac{2}{4^m} \sum_{k=0}^{\infty} \frac{1}{4^k} \varphi(2^{m+k} x, 2^{m+k} x) = 2 \sum_{k=m}^{\infty} \frac{1}{4^k} \varphi(2^k x, 2^k x)
\]
and hence \(f(x) = f_1(x), \quad x \in S^*. \) \(\square \)
In a similar way one can prove the following theorem.

Theorem 2. Let S be an abelian semigroup uniquely divisible by two and let X be a Banach space. If $g : S \to X$ is a function satisfying the following inequality

$$
\|g(x + 2y) + g(x) - 2g(x + y) - 2g(y)\| \leq \omega(x, y), \quad x, y \in S^*,
$$

where $\omega : S^* \times S^* \to [0, \infty)$ fulfilled conditions (5) with $\rho = \frac{1}{2}$ then there exists a unique function $g : S \to X$ satisfying equation (4) and the estimation

$$
\|f(x) - g(x)\| \leq \sum_{k=0}^{\infty} 4^k \varphi(2^{-k-1}x, 2^{-k-1}x), \quad x \in S^*.
$$

Proof. Similarly as in the proof of Theorem 1 we obtain

$$
\|g(2x) - 4g(x)\| \leq \varphi(x, x), \quad x \in S^*.
$$

Putting $\frac{x}{4}$ instead of x we get

$$
\|g(x) - 4g\left(\frac{x}{2}\right)\| \leq \varphi\left(\frac{x}{2}, \frac{x}{2}\right), \quad x \in S^*,
$$

whence

$$
\left\|4^{k+1}g\left(\frac{x}{2^{k+1}}\right) - 4^k g\left(\frac{x}{2^k}\right)\right\| \leq 4^k \varphi\left(\frac{x}{2^{k+1}}, \frac{x}{2^{k+1}}\right), \quad x \in S^*.
$$

The rest of the proof runs “mutatis mutandis” as in the proof of Theorem 1. □

Remark. Let $\theta \geq 0$ and let $\omega(x, y) = \theta(\|x\|^\alpha + \|y\|^\alpha)$ or $\omega(x, y) = \theta\|x\|^\beta\|y\|^\beta$, Theorems 1 and 2 can be applied particularly for these functions with $\alpha \neq 2$ and $\beta \neq 1$.

References

Z. Kominek: Stability of a quadratic functional equation on semigroups

ZYGFRYD KOMINEK
INSTITUTE OF MATHEMATICS
SILESIAN UNIVERSITY
BANKOWA 14
PL-40-007 KATOWICE
POLAND

E-mail: zkominek@ux2.math.us.edu.pl

(Received September 16, 2008; revised March 4, 2009)