Annihilators on co-commutator with generalized derivations on Lie ideals

By LUISA CARINI (Messina), VINCENZO DE FILIPPIS (Messina) and BASUDEB DHARA (Paschim Medinipur)

Abstract. Let R be a prime ring of characteristic different from 2, U the Utumi quotient ring of R, $C = Z(U)$ the extended centroid of R, L a non-central Lie ideal of R, H and G non-zero generalized derivations of R. Suppose that there exists $0 \neq a \in R$ such that $a(H(u)u - uG(u)) = 0$, for all $u \in L$, then one of the following holds:

1. There exist $b', c' \in U$ such that $H(x) = b'x + xc'$, $G(x) = c'x$ with $ab' = 0$;
2. R satisfies s_4 and there exist $b', c', q' \in U$ such that $H(x) = b'x + xc'$, $G(x) = c'x + xq'$, with $a(b' - q') = 0$.

1. Introduction

Let R be a prime ring of characteristic different from 2 with center $Z(R)$ and extended centroid C. The standard polynomial of degree 4 is defined as $s_4(x_1, \ldots, x_4) = \sum_{\sigma \in S_4}(-1)^{\sigma}x_{\sigma(1)} \cdots x_{\sigma(4)}$, where σ runs over S_4 the symmetric group of degree 4 and where $(-1)^{\sigma}$ is 1 or -1 according as σ is an even or odd permutation.

A well known result of Posner [18] states that if d is a derivation of R such that $[d(x), x] \in Z(R)$, for any $x \in R$, then either $d = 0$ or R is commutative. This theorem indicates that the global structure of a ring R is often tightly connected to the behaviour of additive mappings defined on R. Following this line of investigation, several authors generalized the Posner’s Theorem. For instance in [2] Bresar proves that if d and δ are derivations of R such that

Mathematics Subject Classification: 16N60, 16W25.
Key words and phrases: prime rings, derivations, generalized derivations, Utumi quotient rings, differential identities.
Let there exist R if

We denote by $\text{Der}(\cdot)$ every derivation following theorem: view might be interesting (see for example [13]). Here our purpose is to prove the on operator algebras. Therefore any investigation from the algebraic point of derivations are called inner. Generalized derivations have been primarily studied example is a map of the form d derivation an additive map δ of the form $\delta = \frac{\partial}{\partial x}$ such that, for all $x, y \in R, G(xy) = G(x)y + xd(y)$. A significative example is a map of the form $G(x) = ax + xb$, for some $a, b \in R$; such generalized derivations are called inner. Generalized derivations have been primarily studied on operator algebras. Therefore any investigation from the algebraic point of view might be interesting (see for example [13]). Here our purpose is to prove the following theorem:

Theorem 1. Let R be a prime ring of characteristic different from 2, U the Utumi quotient ring of R, $C = Z(U)$ the extended centroid of R, L a non-central Lie ideal of R, H and G non-zero generalized derivations of R. Suppose that there exists $0 \neq a \in R$ such that $a(\text{H}(u)u - u\text{G}(u)) = 0$, for all $u \in L$, then one of the following holds:

1. there exist $b', c' \in U$ such that $H(x) = b'x + xc', G(x) = c'x$ with $ab' = 0$;
2. R satisfies s_4 and there exist $b', c', q' \in U$ such that $H(x) = b'x + xc'$, $G(x) = c'x + xq'$, with $a(b' - q') = 0$.

In all that follows let R be a non-commutative prime ring of characteristic different from 2, U its Utumi quotient ring and $C = Z(U)$ the center of U. We refer the reader to [1] for the definitions and the related properties of these objects. In particular we make use of the following well known facts:

Fact 1. If I is a two-sided ideal of R, then R, I and U satisfies the same generalized polynomial identities with coefficients in U ([4]).

Fact 2. Every derivation d of R can be uniquely extended to a derivation of U (see Proposition 2.5.1 in [1]).

Fact 3. We denote by $\text{Der}(U)$ the set of all derivations on U. By a derivation word we mean an additive map Δ of the form $\Delta = d_1d_2\ldots d_m$, with each

$d(x)x - x\delta(x) \in Z(R)$, for all $x \in R$, then either $d = \delta = 0$ or R is commutative. Later in [12] Lee and Wong consider the case when $d(x)x - x\delta(x) \in Z(R)$, for all x in some non-central Lie ideal L of R. They prove that either $d = \delta = 0$ or R satisfies s_4, the standard identity of degree 4. Recently in [17] Niu and Wu study the left annihilator of the set $\{d(u)u - u\delta(u), u \in L\}$, where d and δ are derivations of R and L is a non-central Lie ideal of R. In case the annihilator is not zero, the conclusion is that R satisfies the standard identity s_4 and $d = -\delta$ are inner derivations. These facts in a prime ring are natural tests which evidence that the set $\{d(u)u - u\delta(u), u \in L\}$ is rather large in R.

Here we will consider the same situation in the case the derivations d and δ are replaced respectively by the generalized derivations H and G. More specifically an additive map $G : R \rightarrow R$ is said to be a generalized derivation if there is a derivation d of R such that, for all $x, y \in R, G(xy) = G(x)y + xd(y)$. A significative example is a map of the form $G(x) = ax + xb$, for some $a, b \in R$; such generalized derivations are called inner. Generalized derivations have been primarily studied on operator algebras. Therefore any investigation from the algebraic point of view might be interesting (see for example [13]). Here our purpose is to prove the following theorem:
Annihilators on co-commutators with generalized derivations on Lie ideals

$d_i \in \text{Der}(U)$. Then a differential polynomial is a generalized polynomial, with coefficients in U, of the form $\Phi(\Delta_j x_i)$ involving non-commutative indeterminates x_i on which the derivations words Δ_j act as unary operations. The differential polynomial $\Phi(\Delta_j x_i)$ is said to be a differential identity on a subset T of U if it vanishes for any assignment of values from T to its indeterminates x_i.

Let D_{int} be the C-subspace of $\text{Der}(U)$ consisting of all inner derivations on U and let d be a non-zero derivation on R. By Theorem 2 in [10] we have the following result (see also Theorem 1 in [14]): If $\Phi(x_1, \ldots, x_n, d x_1, \ldots, d x_n)$ is a differential identity on R, then one of the following holds:

1. either $d \in D_{\text{int}}$;
2. or R satisfies the generalized polynomial identity $\Phi(x_1, \ldots, x_n, y_1, \ldots, y_n)$.

Fact 4. If I is a two-sided ideal of R, then R, I and U satisfies the same differential identities ([14]).

We refer the reader to Chapter 7 in [1] for a complete and detailed description of the theory of generalized polynomial identities involving derivations.

Fact 5. Since we assume that $\text{char}(R) \neq 2$, then there exists a non-zero two-sided ideal I of R such that $0 \neq [I, R] \subseteq L$. In particular, if R is a simple ring it follows that $[R, R] \subseteq L$.

This follows from pp. 4–5 in [9], Lemma 2 and Proposition 1 in [6], Theorem 4 in [11].

2. The case of inner generalized derivations

We dedicate this section to prove the theorem in case both the generalized derivations H and G are inner, that is there exist $b, c, p, q \in U$ such that $H(x) = bx + xc$ and $G(x) = px + xq$, for all $x \in R$.

In light of Fact 5, since we suppose $\text{char}(R) \neq 2$, there exists a non-central ideal I of R such that $[I, I] \subseteq L$. This implies that $a(b[r_1, r_2]^2 + [r_1, r_2]([c-p][r_1, r_2] - [r_1, r_2]^2 q) = 0$ for all $r_1, r_2 \in I$. Moreover by Fact 1, I and R satisfy the same generalized polynomial identities, thus $a(b[r_1, r_2]^2 + [r_1, r_2]([c-p][r_1, r_2] - [r_1, r_2]^2 q) = 0$ for all $r_1, r_2 \in R$. Hence in all that follows we assume that R satisfies the following generalized polynomial identity

$$P(x_1, x_2) = a(b[x_1, x_2]^2 + [x_1, x_2]([c-p][x_1, x_2] - [x_1, x_2]^2 q).$$

$P(x_1, x_2)$ is a generalized polynomial in the free product $U * C C\{x_1, x_2\}$ of the C-algebra U and the free C-algebra $C\{x_1, x_2\}$.

We first prove the following:

Proposition 1. If \(a \in Z(R) \), then one of the following holds:
1. either there exists \(b' \in U \) such that \(H(x) = xb' \) and \(G(x) = b'x \), for all \(x \in R \);
2. or \(R \) satisfies \(s_4 \) and there exists \(\alpha \in C \) such that \(p = c - \alpha \) and \(q = b + \alpha \), that is \(H(x) = bx + xc \) and \(G(x) = cx + xb \).

Proof. Since \(a \in Z(R) \), then \(a \) is not a zero-divisor, then by main assumption it follows that \((H(u)v - uG(v)) = 0 \), for all \(u \in [R, R] \). In this case, it is proved in [15] that either there exists \(b' \in U \) such that \(H(x) = xb' \) and \(G(x) = b'x \), for all \(x \in R \), or \(R \) satisfies \(s_4 \). In this last case \(R \) is PI-ring, moreover \(U \) satisfies the same generalized polynomial identities of \(R \). Therefore \(U \) is a central simple algebra of dimension at most 4 over its center, and it is known that in this case \([r, s]^2 \in Z(U) = C\) for all \(r, s \in U \). Moreover \(U \) satisfies

\[
b[x_1, x_2]^2 + [x_1, x_2]([c - p][x_1, x_2] - [x_1, x_2]^2)q.
\]

Since the polynomial \([x_1, x_2]^2\) is central valued in \(U \), then \(U \) satisfies

\[
(b - q)[x_1, x_2]^2 + [x_1, x_2][c - p][x_1, x_2]. \tag{1}
\]

Denote \(e_{ij} \) the usual matrix unit, with 1 in the \((i, j)\)-entry and zero elsewhere, and write \(w = (c - p) = \sum_r w_{rs} e_{rs} \), for suitable \(w_{rs} \in C \). Therefore for any \(i \neq j \), let \(r_1 = e_{ii}, r_2 = e_{ij} \) and \([r_1, r_2] = e_{ij} \). It follows by (1) that \(e_{ij}we_{ij} = 0 \) for all \(i \neq j \), that is \(w_{ij} = 0 \) and \(w \) is a diagonal matrix in \(M_2(C) \). Moreover, for all \(\varphi \in Aut_F(M_2(C)) \), \(U \) satisfies

\[
\varphi((b - q)[x_1, x_2]^2 + [x_1, x_2][c - p][x_1, x_2])
\]

which is

\[
(b - q)[x_1, x_2]^2 + [x_1, x_2]((c - p)[x_1, x_2])
\]

since the set of all the evaluation of \([x_1, x_2] \) is invariant under the action of any element of \(Aut_F(M_2(C)) \). By the above argument, \(\varphi(c - p) \) must be diagonal. In particular, let \(r \neq s \) and \(\varphi(x) = (1 + e_{rs})x(1 - e_{rs}) \), hence

\[
\varphi(c - p) = \sum_i w_{ii} e_{ii} + w_{ss} e_{rs} - w_{rr} e_{rs}
\]

which implies \(w_{rr} = w_{ss} \), for all \(r \neq s \). Thus \(c - p \) is a central matrix, namely \(c - p = \alpha \). By (1) we get that \(U \) satisfies \((b - q + \alpha)[x_1, x_2]^2\), and since \(0 \neq [U, U]^2 \subseteq C \), we also have \(q - b = \alpha = c - p \). Thus we conclude that, in case \(R \) satisfies \(s_4 \), \(p = c - \alpha \) and \(q = b + \alpha \). \(\square \)
Proposition 2. If \(a \notin Z(R) \) then either \(P(x_1, x_2) \) is a non-trivial generalized polynomial identity for \(R \) or \(H(x) = b'x + xc', \ G(x) = c'x \) for some \(b', c' \in U \) satisfying \(ab' = 0 \).

PROOF. Suppose now that \(R \) does not satisfy any non-trivial generalized polynomial identity. Let \(T = U \ast_C C\{X\} \) be the free product over \(C \) of the \(C \)-algebra \(U \) and the free \(C \)-algebra \(C\{X\} \), with \(X \) the countable set consisting of non-commuting indeterminates \(x_1, x_2, \ldots, x_n, \ldots \).

For brevity we write \(P(X) \) instead of \(P(x_1, x_2) \) and \(f(X) \) instead of \([x_1, x_2] \).

Now consider the generalized polynomial \(P(X) \in U \ast_C C\{X\} \). By our hypothesis, \(R \) satisfies the following generalized polynomial identity:

\[
P(X) = abf(X)^2 + a(f(X)) \cdot (c - p)f(X) - af(X)^2q = 0 \in T.
\]

Since \(R \) does not satisfy non-trivial GPIs, by [4], the coefficients \(\{ab, a\} \) must be linearly \(C \)-dependent. Therefore there exist \(\beta_1, \beta_2 \in C \) such that \(\beta_1(ab) + \beta_2a = 0 \), with \(\beta_1 \neq 0 \) since \(a \notin C \). Hence we may write \(ab = \lambda a \), for a suitable \(\lambda \in C \). In this situation \(R \) satisfies

\[
a(\lambda f(X)^2 + f(X)(c - p)f(X) - f(X)^2q)
\]

that is

\[
\lambda f(X)^2 + f(X)(c - p)f(X) - f(X)^2q = 0 \in T.
\]

Again since \(R \) does not satisfy any non-trivial generalized polynomial identity, \(\{1, q\} \) must be linearly \(C \)-dependent, that is \(q \in C \). This implies that \(G(x) = (p + q)x \) and also that \(R \) satisfies

\[
f(X)(\lambda + (c - p) - q)f(X)
\]

which implies \(\lambda + (c - p) - q = 0 \), that is \(H(x) = bx + x(p + q - \lambda) = (b - \lambda)x + x(p + q) \), and we obtain the required conclusion, for \(b' = b - \lambda \) and \(c' = p + q \). \(\square \)

Lemma 1. Let \(R = M_m(F) \) be the ring of all \(m \times m \) matrices over a field \(F \) of characteristic different from 2. If \(a \) is not central in \(R \) then there exists \(\alpha \in F \) such that \(p = c - \alpha \cdot I_m \), where \(I_m \) is the identity matrix of order \(m \), and one of the following holds:

1. \(q \in Z(R) \) and there exists \(\gamma \in F \) such that \(p + q = c + \gamma \cdot I_m \), that is \(H(x) = bx + xc, \ G(x) = (c + \gamma \cdot I_m)x; \) moreover \(a(b - \gamma \cdot I_m) = 0 \);

2. \(R \) satisfies \(s_4 \) and there exists \(q' \in R \) such that \(G(x) = cx + xq' \), with \(a(b - q') = 0 \).
Proof. Denote $a = \sum_{rs} e_{rs} a_{rs}$, $q = \sum_{rs} e_{rs} q_{rs}$, $c - p = w = \sum_{rs} e_{rs} w_{rs}$, for suitable $a_{rs}, q_{rs}, w_{rs} \in F$. By the main assumption, R satisfies

$$a(b[x_1, x_2]^2 + [x_1, x_2](c - p)[x_1, x_2] - [x_1, x_2]^2 q).$$

(2)

Fix $[x_1, x_2] = e_{ij}$, for any $i \neq j$. In this case from (2) we have

$$ae_{ij}(c - p)e_{ij} = 0$$

(3)

that is

either $a_{ki} = 0 \ \forall k$ or $w_{ji} = 0$. (3’).

Here we first prove that w is a diagonal matrix. In order to do this, we suppose that there exists some non-zero off-diagonal entry of w and divide the proof into two cases:

Case 1: $m = 2$.

Suppose $w_{21} \neq 0$, then by (3) it follows $a_{11} = a_{21} = 0$. Of course, since we suppose $a \neq 0$, we must assume now $w_{12} = 0$.

Choose $[x_1, x_2] = [e_{12}, e_{21}] = e_{11} - e_{22}$ and by (2) we have

$$0 = Y = a(b(e_{11} - e_{22})^2 + (e_{11} - e_{22})(c - p)(e_{11} - e_{22}) - (e_{11} - e_{22})^2 q)$$

in particular the (1,1)-entry of the matrix Y is $a_{12}(b_{21} - w_{21} - q_{21}) = 0$ and the (2,1)-one is $a_{22}(b_{21} - w_{21} - q_{21}) = 0$. Therefore, from $a \neq 0$ follows

$$b_{21} - w_{21} - q_{21} = 0.$$

(4)

In the same way, for $[x_1, x_2] = [e_{12} - e_{21}, e_{22}] = e_{12} + e_{21}$ in (2) we have

$$0 = T = a(b(e_{12} + e_{21})^2 + (e_{12} + e_{21})(c - p)(e_{12} + e_{21}) - (e_{12} + e_{21})^2 q).$$

The (1,1)-entry of the matrix T is $a_{12}(b_{21} - q_{21}) = 0$ and the (2,1)-one is $a_{22}(b_{21} - q_{21}) = 0$. Since $a \neq 0$ we get

$$b_{21} - q_{21} = 0.$$

(5)

Thus by (5) and (4) we obtain the contradiction $w_{21} = 0$.

Case 2: $m \geq 3$.

Also in this case we suppose that there exists $w_{ji} \neq 0$ for some $i \neq j$, so that $a_{ki} = 0$ for all k, that is the i-th column of a is zero.
Let now $q \neq i, j$ and fix $[x_1, x_2] = [e_{ij} + e_{qj}, e_{jj}] = e_{ij} + e_{qj}$. Then (2) implies $ae_{ij}w(e_{ij} + e_{qj}) = 0$ and since $a_{ki} = 0$ for all k, it follows that $ae_{qj}w(e_{ij} + e_{qj}) = 0$. Moreover, by (3), we get $ae_{qj}we_{ij} = 0$, which implies that $ae_{qj}we_{ij} = 0$. The assumption $w_{tj} \neq 0$ implies that $a_{kj} = 0$ for all k, that is a has just one non-zero column, the j-th one: $a = \sum_r a_{rj}e_{rj}$.

Notice that if $w_{tj} \neq 0$ for some $t \neq j$, by the same argument we get that a has just the t-th column non-zero, that is $a = 0$. Thus we may assume that $w_{tj} = 0$ for all $t \neq j$.

Let $t \neq i, j$ and denote by σ_t and τ_t the following automorphisms of R:

$$\sigma_t(x) = (1 + e_{jt})x(1 - e_{jt}) = x + e_{jt}x - xe_{jt} - e_{jt}xe_{jt},$$

$$\tau_t(x) = (1 - e_{jt})x(1 + e_{jt}) = x - e_{jt}x + xe_{jt} - e_{jt}xe_{jt},$$

and say $\sigma_t(w) = \sum_{rs} \sigma_{rs}e_{rs}, \tau_t(w) = \sum_{rs} \tau_{rs}e_{rs}$ where $\sigma_{rs}, \tau_{rs} \in F$. We have

$$\sigma_{ji} = w_{ji} + w_{tj} \quad \text{and} \quad \tau_{ji} = w_{ji} - w_{tj}.$$

If there exists t such that $\sigma_{ji} = w_{ji} + w_{tj} = 0$ or $\tau_{ji} = w_{ji} - w_{tj} = 0$ then $w_{tj} = -w_{ji} \neq 0$ or $w_{tj} = w_{ji} \neq 0$. Therefore $w_{tj} \neq 0$ and $w_{tj} \neq 0$, and so, by using (3), $a = 0$.

Hence assume that $\sigma_{ji} \neq 0$ and $\tau_{ji} \neq 0$, for all $t \neq i, j$, and recall that, for any F-automorphism φ of R, the following holds

$$\varphi(a)(\varphi(b)[x_1, x_2]^2 + [x_1, x_2] \varphi(c - p)[x_1, x_2] - [x_1, x_2]^2 \varphi(q)).$$

Thus in this case by (3), for any $t \neq i, j$, the non-zero entries of the matrices $\sigma_t(a)$ and $\tau_t(a)$ are just in the j-th column. In particular, since

$$\sigma_t(a) = a + e_{jt}a - ae_{jt} - e_{jt}ae_{jt} = \sum_r a_{rj}e_{rj} - \sum_r a_{rj}e_{rt} + a_{tj}e_{jj} - a_{tj}e_{jt},$$

$$\tau_t(a) = a - e_{jt}a + ae_{jt} - e_{jt}ae_{jt} = \sum_r a_{rj}e_{rj} + \sum_r a_{rj}e_{rt} - a_{tj}e_{jj} - a_{tj}e_{jt},$$

then both the above matrices have zero in the (j, t) entry that is

$$-a_{jj} - a_{tj} = 0 \quad \text{for} \quad \sigma_t(a)$$

$$a_{jj} - a_{tj} = 0 \quad \text{for} \quad \tau_t(a).$$

By char(R) $\neq 2$ we obtain $a_{jj} = a_{tj} = 0$ for all $t \neq i$, that is $a = a_{ij}e_{ij}$.
Denote now by φ and χ the following automorphisms of R:

$$
\varphi(x) = (1 + e_{ji})x(1 - e_{ji}) = x + e_{ji}x - xe_{ji} - e_{ji}xe_{ji},
$$
$$
\chi(x) = (1 - e_{ji})x(1 + e_{ji}) = x - e_{ji}x + xe_{ji} - e_{ji}xe_{ji},
$$
and say $\varphi(w) = \sum \varphi_{rs}e_{rs}$, $\chi(w) = \sum \chi_{rs}e_{rs}$ where $\varphi_{rs}, \chi_{rs} \in F$. Since, by (3'), $w_{ij} \neq 0$ implies $a = 0$, we assume that $w_{ij} = 0$. Then we have

$$
\varphi_{ji} = w_{ji} - w_{jj} + w_{ii} \quad \text{and} \quad \chi_{ji} = w_{ji} + w_{jj} - w_{ii}
$$

If $\varphi_{ji} = \chi_{ji} = 0$, then we get the contradiction $w_{ji} = 0$.

If at least one of φ_{ji} and χ_{ji} is not zero, then, by (3), one of $\varphi(a)$ and $\chi(a)$ has zero in all the entries of the i-th column. In particular notice that

$$
\varphi(a) = a_{ij}e_{ij} - a_{ij}e_{ii} + a_{ij}e_{jj} - a_{ij}e_{ji},
$$
$$
\chi(a) = a_{ij}e_{ij} + a_{ij}e_{ii} - a_{ij}e_{jj} - a_{ij}e_{ji}
$$

which means that in any case the (j, i)-entry is $a_{ij} = 0$, a contradiction again.

All the previous arguments say that if a is not zero, then w must be a diagonal matrix, $w = \sum_i w_i e_{ii}$.

Moreover, for all $\lambda \in \text{Aut}_F(M_m(F))$, since $\lambda(a) \neq 0$ and R satisfies

$$
\lambda(a)(\lambda(b)[x_1, x_2]^2 + [x_1, x_2]\lambda(c - p)[x_1, x_2] - [x_1, x_2]^2\lambda(q)),
$$

we also have that $\lambda(c - p)$ is diagonal. In particular, let $r \neq s$ and $\lambda(x) = (1 + e_{rs})x(1 - e_{rs})$, hence

$$
\lambda(c - p) = \sum_i w_i e_{ii} + w_s e_{rs} - w_r e_{rs}
$$

is diagonal implying $w_r = w_s = \alpha$, for all $r \neq s$. Thus $c - p$ is a central matrix, namely $c - p = \alpha \cdot I_m$. Therefore R satisfies

$$
ab[x_1, x_2]^2 + a[x_1, x_2]^2(\alpha - q).
$$

Denote by G the additive subgroup of R generated by all the evaluations of the polynomial $[x_1, x_2]^2$. By [3], since $\text{char}(R) \neq 2$, either $[R, R] \subseteq G$ or $[x_1, x_2]^2$ is central valued on R that is R satisfies s_4.

In the first case R satisfies

$$
ab[x_1, x_2] + a[x_1, x_2](\alpha - q).
$$
Let \(\alpha - q = u = \sum_{r,s} u_{rs} e_{rs} \), with \(u_{rs} \in F \). For \([x_1, x_2] = e_{ij} \), with any \(i \neq j \), it follows \(ab e_{ij} + ae_{ij}(\alpha - q) = 0 \). By right multiplying for any \(e_{qq} \), with \(q \neq j \), we have \(ae_{ij}(\alpha - q)e_{qq} = 0 \) that is

either \(a_{ki} = 0 \quad \forall k \) or \(u_{jq} = 0 \quad \forall q \neq j \).

In particular

either \(a_{ki} = 0 \quad \forall k \) or \(u_{ji} = 0 \quad (3'''). \)

Notice that \((3''')\) has the same flavour of \((3')\). By the same argument as above, in case \(a \neq 0 \) we have that \(u = \alpha - q \) is a central matrix, and so \(a(b + u)[r_1, r_2] = 0 \), for all \(r_1, r_2 \in R \). This implies \(a(b + u) = 0 \), which is the conclusion 1 of Lemma 1, for \(\gamma = -u \).

Consider finally the case when \([x_1, x_2]^2\) is central valued on \(R \). Here \(R \) satisfies \(a(b + \alpha - q)[x_1, x_2]^2 \), moreover there exists \(0 \neq [r_1, r_2]^2 \in F \cdot I_m \), which implies \(a(b + \alpha - q) = 0 \), the conclusion 2 of Lemma 1, for \(q' = q - \alpha \). \(\square \)

Lemma 2. Let \(R \) be a prime ring of characteristic different from 2. If \(a \) is not central in \(R \) then \(c - p = \alpha \in C \) and one of the following holds:

1. \(q \in C \) and there exist \(\lambda \in C \), \(b' = b - \lambda \), \(c' = p + q \) such that \(H(x) = b'x + x c' \), \(G(x) = c'x \), with \(ab' = 0 \);
2. \(q \in C \) and there exists \(\gamma = q - \alpha \in C \) such that \(p + q = c + \gamma \), that is \(H(x) = bx + xc \), \(G(x) = (c + \gamma)x \), with \(a(b - \gamma) = 0 \);
3. \(R \) satisfies \(s_4 \) and there exists \(q' = q - \alpha \) such that \(G(x) = cx + x q' \), with \(a(b - q') = 0 \).

Proof. As above we denote for brevity \(P(x_1, x_2) \) by \(P(X) \) and \([x_1, x_2] \) by \(f(X) \) and consider the generalized polynomial

\[P(X) = af(X)^2 + af(X)(c - p)f(X) - af(X)^2q. \]

Since \(U \) and \(R \) satisfy the same generalized polynomial identities with coefficients in \(U \) (see Fact 1), then \(P(X) \) is also a generalized identity for \(U \).

Suppose first that \(U \) does not satisfy any non-trivial generalized polynomial identity. Therefore by Proposition 2 we get conclusion 1.

Hence we may suppose now that \(U \) satisfies some non-trivial generalized polynomial identity. By [16] \(U \) is primitive having a non-zero socle \(\text{Soc}(U) \) with \(C \) as the associated division ring and by Jacobson’s Theorem (p. 75 in [8]) \(U \) is isomorphic to a dense ring of linear transformations of some vector space \(V \) over \(C \).
If V is finite-dimensional over C, it follows that $R \subseteq U = M_k(C)$, for $k = \dim_C V$. In this case we get the required conclusions by Lemma 1.

Let $\dim_C V = \infty$. Denote $\text{End}_C V$ the ring of endomorphisms of $C V$ and recall that the range of a polynomial $f(X) \in C\{x_1, x_2\}$ is defined as follows

$$r(f; U) = \{f(x_1, x_2) \in \text{End}_C V : x_1, x_2 \in U\}.$$

In [19] (Lemma) it is proved that, if U is a dense subring of $\text{End}_C V$ and $\dim_C V = \infty$, then $r(f; U)$ is a dense subset of $\text{End}_C V$ and this implies that U satisfies the generalized polynomial identity

$$abx^2 + ax(c - p)x - ax^2q. \quad (6)$$

Suppose that there exists a minimal idempotent element e of $\text{Soc}(U)$ such that $e(c - p)(1 - e) \neq 0$. Replace in (6) x by $(1 - e)re$ for any $r \in U$, then it follows that $a(1 - e)re(c - p)(1 - e)re = 0$, which implies $a(1 - e) = 0$, since $e(c - p)(1 - e) \neq 0$. This means that $a = ae$.

On the other hand, if in (6) we replace x by ere for any $r \in U$, we get

$$ab(ere)^2 + aer(e - p)ere - a(ere)^2q = 0,$$

and by right multiplying by $(1 - e)$ one has $-ae(ere)^2q(1 - e) = 0$. Since $0 \neq a = ae$, we have $eq(1 - e) = 0$, that is $eq = eae$.

Finally replace in (6) x by $x + y$. It follows that U satisfies:

$$ab(xy) + ab(yx) + ax(c - p)y + ay(c - p)x - a(xy)q - a(yx)q$$

and for any $x = re$ and $y = (1 - e)s$, with $r, s \in U$, we get

$$ab(1 - e)sr + are(c - p)(1 - e)s + (1 - e)s(c - p)re - a(1 - e)sreq = 0.$$

By right multiplying by $(1 - e)$ and since $eq(1 - e) = 0$, we have $are(c - p)(1 - e)s(1 - e) = 0$, for all $r, s \in U$. By the primeness of U and by the assumption that $e(c - p)(1 - e) \neq 0$, the contradiction $a = 0$ follows.

Therefore $e(c - p)(1 - e) = 0$, for any idempotent element $e \in \text{Soc}(U)$ of rank 1. Hence $[c - p, e] = 0$, for any idempotent of rank 1, and $[c - p, \text{Soc}(U)] = 0$, since $\text{Soc}(U)$ is generated by these idempotent elements. This argument gives $c - p \in C$, and as a consequence of (6), U satisfies the generalized polynomial identity

$$abx^2 + ax^2(c - p - q). \quad (7)$$

As above, suppose that there exists a minimal idempotent element e of $\text{Soc}(U)$ such that $(1 - e)(c - p - q)e \neq 0$. If we replace in (7) x by $(1 - e)r(1 - e)$
Annihilators on co-commutators with generalized derivations on Lie ideals

for any \(r \in U \) and multiply by \(e \) on the right, then we get

\[a((1 - e)r(1 - e))^2(c - p - q)e = 0, \]

that is \(a(1 - e) = 0 \), since \((1 - e)(c - p - q)e \neq 0\).

Now by (7), for \(x = t + y \), it follows that \(U \) satisfies

\[abty + abyt + aty(c - p - q) + ay(c - p - q) = 0, \]

for all \(r_1, r_2 \in I \). Under these assumptions we have that:

Theorem 2. If \(R \) is a prime ring of characteristic different from \(2 \), then one of the following holds:

1. There exist \(b', c' \in U \) such that \(H(x) = b'x + xc', G(x) = c'x \) with \(ab' = 0 \);
2. \(R \) satisfies \(s_4 \) and there exist \(b', c', q' \in U \) such that \(H(x) = b'x + xc', G(x) = c'x + xq' \), with \(a(b' - q') = 0 \).

Proof. By Theorem 3 in [13] every generalized derivation \(g \) on a dense right ideal of \(R \) can be uniquely extended to the Utumi quotient ring \(U \) of \(R \), and thus we can think of any generalized derivation of \(R \) to be defined on the whole \(U \) and to be of the form \(g(x) = bx + d(x) \) for some \(b \in U \) and \(d \) a derivation on \(U \). Thus we may assume that there exist \(b, p \in U \) and \(d, \delta \) derivations on \(U \) such that

\[H(x) = bx + d(x) \quad \text{and} \quad G(x) = px + \delta(x). \]

Since \(I, R \) and \(U \) satisfy the same differential identities [14], then without loss of generality, in order to prove our results we may assume that

\[a(H([r_1, r_2])[r_1, r_2] - [r_1, r_2]G([r_1, r_2])) = 0 \]

3. The general case

We consider now the more general situation and prove the main Theorem of the paper. As in Section 1, since we suppose char(\(R \)) \(\neq 2 \), by Fact 5 we may assume that there exists a non-zero ideal \(I \) of \(R \) such that

\[a(H([r_1, r_2])[r_1, r_2] - [r_1, r_2]G([r_1, r_2])) = 0 \]

for all \(r_1, r_2 \in I \). Under these assumptions we have that:

Theorem 2. If \(R \) is a prime ring of characteristic different from 2, then one of the following holds:

1. There exist \(b', c' \in U \) such that \(H(x) = b'x + xc', G(x) = c'x \) with \(ab' = 0 \);
2. \(R \) satisfies \(s_4 \) and there exist \(b', c', q' \in U \) such that \(H(x) = b'x + xc', G(x) = c'x + xq' \), with \(a(b' - q') = 0 \).

Proof. By Theorem 3 in [13] every generalized derivation \(g \) on a dense right ideal of \(R \) can be uniquely extended to the Utumi quotient ring \(U \) of \(R \), and thus we can think of any generalized derivation of \(R \) to be defined on the whole \(U \) and to be of the form \(g(x) = bx + d(x) \) for some \(b \in U \) and \(d \) a derivation on \(U \). Thus we may assume that there exist \(b, p \in U \) and \(d, \delta \) derivations on \(U \) such that

\[H(x) = bx + d(x) \quad \text{and} \quad G(x) = px + \delta(x). \]

Since \(I, R \) and \(U \) satisfy the same differential identities [14], then without loss of generality, in order to prove our results we may assume that

\[a(H([r_1, r_2])[r_1, r_2] - [r_1, r_2]G([r_1, r_2])) = 0 \]
for all \(r_1, r_2 \in U \). Hence \(U \) satisfies
\[
a((b[x_1, x_2] + d([x_1, x_2]))[x_1, x_2] - [x_1, x_2](p[x_1, x_2] + \delta([x_1, x_2])))
\]
that is
\[
a((b[x_1, x_2] + [d(x_1), x_2] + [x_1, d(x_2)]))[x_1, x_2]
- [x_1, x_2](p[x_1, x_2] + [\delta(x_1), x_2] + [x_1, \delta(x_2)])) \quad (8)
\]
where \(d, \delta \) are derivations on \(U \). We divide the proof into 3 cases:

Case 1: Let \(d(x) = [c, x] \) and \(\delta(x) = [q, x] \) be both inner derivations in \(U \), so that \(H(x) = bx + [c, x] = (b + c)x + x(-c) \) and \(G(x) = px + [q, x] = (p + q)x + x(-q) \), for suitable elements \(c, q \in U \). In this case \(H \) and \(G \) are both inner generalized derivations in \(U \). We notice that, if \(a \in C \), then by Proposition 1 we have that either there exists \(b' \in U \) such that \(H(x) = xb' \) and \(G(x) = b'x \) for all \(x \in R \) (conclusion 1); or \(R \) satisfies \(s_4 \) and there exist \(b', c' \in U \) such that \(H(x) = b'x + xc', G(x) = c'x + xb' \) (which is a particular case of conclusion 2). In what follows we assume that \(a \notin C \).

Thus by Lemma 2 one of the following holds:

1. By conclusion 1 of Lemma 2 we get: \(-c - p - q = \alpha \in C \) and \(q \in C \),
 \[a(b + c - \lambda) = 0, \quad c' = p\] such that \(H(x) = (b + c - \lambda)x + xc' \) and \(G(x) = c'x \), which is the conclusion 1 of the Theorem.

2. By conclusion 2 of Lemma 2 it follows: \(-c - p - q = \alpha \in C \) and \(q \in C \),
 \[\gamma = -q - \alpha \in C, \quad p = -c + \gamma \] such that \(H(x) = (b + c)x + x(-c) \) and \(G(x) = (-c + \gamma)x \) with \(a(b + c - \gamma) = 0 \). By rewriting \(H(x) = (b + c - \gamma)x + x(\gamma - c) \), we obtain conclusion 1 of the Theorem.

3. By conclusion 3 of Lemma 2 it follows: \(-c - p - q = \alpha \in C, R \) satisfies \(s_4 \) and \(q' = -q - \alpha \) such that \(H(x) = (b + c)x + x(-c) \) and \(G(x) = -cx + xq' \) with \(a(b + c - q') = 0 \), which is the conclusion 2 of the Theorem.

Case 2: Assume now that both \(d \) and \(\delta \) are not inner derivations. Suppose first that \(d \) and \(\delta \) are linearly \(C \)-independent modulo \(X \)-inner derivations. In this case, by Kharchenko’s Theorem in [10] (see Fact 3), by (8) we have that \(U \) satisfies
\[
a((b[x_1, x_2] + [t_1, x_2] + [z_1, x_2])[x_1, x_2] - [x_1, x_2](b[x_1, x_2] + [z_1, x_2] + [x_1, z_2]))
\]
and in particular \(U \) satisfies the blended component
\[
a([[t_2], [x_1, z_2]]).
\]
Annihilators on co-commutators with generalized derivations on Lie ideals 407

By Lemma 3 in [5], since we suppose \(a \neq 0 \), \(U \) must satisfy \([x_1, t_2], [x_1, z_2]\). In this case it is well known by Posner’s Theorem that there exists a suitable field \(F \) such that \(U \) and \(M_m(F) \), the ring of \(m \times m \) matrices over \(F \), satisfy the same polynomial identities. In particular, for \(m \geq 2 \), we get the contradiction that

\[
0 = [[e_{12}, e_{22}], [e_{12}, e_{21}]] = -2e_{12} \neq 0.
\]

Consider now the case when there exist \(\alpha, \beta \in C \) such that \(\alpha d + \beta \delta = ad(q) \), the inner derivation induced by some \(q \in U \). Of course both \(\alpha \) and \(\beta \) are not zero, since \(d \) and \(\delta \) are not inner derivations. So, if denote \(\lambda = -\alpha \beta^{-1} \) and \(\mu = \beta^{-1} \), it follows that \(\delta = \lambda d + \mu ad(q) \). Thus by (8) we have

\[
a(b[x_1, x_2] + [d(x_1), x_2] + [x_1, d(x_2)]|x_1, x_2]
- [x_1, x_2](p[x_1, x_2] + \lambda d(x_1), x_2) + \lambda[x_1, d(x_2)] + \mu[[q, x_1], x_2] + \mu[x_1, [q, x_2]] (9)
\]

From (9) and applying Kharchenko’s result, it follows that \(R \) satisfies

\[
a(b[x_1, x_2] + [t_1, x_2] + [x_1, t_2]|x_1, x_2]
- [x_1, x_2](p[x_1, x_2] + \lambda t_1, x_2) + \lambda[x_1, t_2] + \mu[[q, x_1], x_2] + \mu[x_1, [q, x_2]]
\]

and in particular \(R \) satisfies the blended component

\[
a(b[x_1, x_2] - \lambda[x_1, x_2][x_1, t_2]).
\]

As above by Lemma 3 in [5], since \(a \neq 0 \), \(R \) satisfies the polynomial identity \([x_1, t_2]|x_1, x_2] - \lambda x_1, x_2][x_1, t_2] \). Since \(R \) is a PI-ring, then there exists a field \(F \) such that \(R, U \) and \(M_m(F) \) satisfy the same polynomial identities. In particular \(M_m(F) \) satisfies

\[
[x_1, t_2]|x_1, x_2] - \lambda[x_1, x_2][x_1, t_2] (10)
\]

Consider \(m \geq 2 \). In (10) choose \(x_1 = e_{12}, x_2 = e_{21} \) and \(t_2 = e_{22} \). By calculations it follows \(- (1 + \lambda)e_{12} = 0 \), which means \(\lambda = -1 \).

On the other hand, for \(x_1 = e_{12} \) and \(x_2 = t_2 = e_{21} \), by (10) we have

\[
(1 - \lambda)(e_{11} + e_{22}) = 0,
\]

which implies \(\lambda = 1 \), that is a contradiction, since \(\text{char}(R) \neq 2 \).

Case 3: Finally assume that either \(d \) or \(\delta \) is an inner derivation on \(U \). Without loss of generality we may assume that \(d(x) = [c, x] \), for a suitable \(c \in U \) and let \(\delta \) be an outer derivation of \(U \). By (8) and Kharchenko’s result, we get that \(U \) satisfies

\[
a(b[x_1, x_2] + c[x_1, x_2] - [x_1, x_2]c[x_1, x_2] - [x_1, x_2]([p[x_1, x_2] + [z_1, x_2] + [x_1, z_2]])
\]
and in particular U satisfies the component

$$a(-[x_1, x_2][x_1, z_2]).$$

As above, by Lemma 3 in [5] and since $a \neq 0$, it follows that U satisfies the polynomial identity $[x_1, x_2][x_1, z_2]$. Let $M_m(F)$ be the ring of $m \times m$ matrices over a field F, which satisfies the same identities of U. This implies the following contradiction:

$$0 = [e_{12}, e_{22}][e_{12}, e_{21}] = -e_{12} \neq 0.$$

Notice that in the case δ is inner and d is outer, we may obtain the same contradiction by using the same argument as above. \hfill \Box

References

Annihilators on co-commutators with generalized derivations on Lie ideals

LUISA CARINI
DIPARTIMENTO DI MATEMATICA
UNIVERSITÀ DI MESSINA
MESSINA
ITALIA
E-mail: lcarini@unime.it

VINCENZO DE FILIPPIS
DIPARTIMENTO DI SCIENZE PER L’INGEGNERIA E PER L’ARCHITETTURA
SEZIONE DI MATEMATICA E EIDOMATICA
UNIVERSITÀ DI MESSINA
MESSINA
ITALIA
E-mail: defilippis@unime.it

BASUDEB DHARA
DEPARTMENT OF MATHEMATICS
BELDA COLLEGE, BELDA
FASCHIM MEDINIPUR, 721424 (W.B.)
INDIA
E-mail: basu.dhara@yahoo.com

(Received April 29, 2008; revised July 7, 2009)