Initial value problems of p-Laplacian with a strong singular indefinite weight

By HONG-XU LI (Chengdu)

Abstract. In this paper, we present some existence and uniqueness theorems for initial value problems of p-Laplacian with a strong singular indefinite weight which are related to singular p-Laplace eigenvalue problems. Our results improve and generalize some recent results.

1. Introduction

In this paper, we establish some existence and uniqueness results for the following initial value problem of p-Laplacian with a strong singular indefinite weight:

\[
\begin{aligned}
\varphi_p(u'(t))' + h(t)f(u(t)) &= 0, \quad \text{a.e. } t \in (0, 1), \\
u(t_0) &= 0, \quad u'(t_0) = a, \\
&\quad t_0 \in [0, 1], \quad a \in \mathbb{R},
\end{aligned}
\]

(IVP$_{t_0}$)

where $\varphi_p(s) = |s|^{p-2}s$, $p > 1$, $f \in C([0, 1], \mathbb{R})$, $h \in C((0, 1), [0, \infty))$ may be singular at $t = 0$ and/or $t = 1$. Problems (IVP$_{t_0}$) is related to the singular boundary value problem

\[
\begin{aligned}
\varphi_p(u'(t))' + h(t)f(u(t)) &= 0, \quad \text{a.e. } t \in (0, 1), \\
u(0) = u(1) &= 0.
\end{aligned}
\]

(BVP)

In particular, it is helpful to find sign-changing solutions for problem (BVP) (see e.g. [6], [8]).

Mathematics Subject Classification: 34A12, 34A34, 34B16.
Key words and phrases: singular indefinite weight, p-Laplace equation, initial value problems, existence, uniqueness.
The studies on the singular initial and boundary value problems with sign-changing nonlinearity are much recent. For the studies on the first-order cases, one may refer to Agarwal, O’Regan [1], [2] and Agarwal, O’Regan, Lakshmikantham and Leela [3]. For second-order initial value problems, by using the Gronwall inequality, Yang [9] proved the existence and uniqueness of a solution of the following initial value problem:

\[
\begin{cases}
\varphi_p(u'(t))' + f(t, u(t)) = 0, \\
u(0) = 0, \quad u'(0) = a > 0,
\end{cases}
\]

where \(|f(t, u)| \leq ch(t)|u|^{p-1}\) with \(h \in L^q(0, 1), q > 1\).

For \(h \in L^1(0, 1)\), Zhang [10] showed the existence and uniqueness of a solution for (IVP\(t_0\)) with \(f(u) = \varphi_p(u), t_0 = 0\) and \(a = 1\) by transforming to a system and applying Sturmian comparison. One should also notice that García-Huidobro, Manásevich and Ótani [5] gave an existence and uniqueness result for initial value problem (IVP\(t_0\)) with \(t \in \mathbb{R}, h \in L^1_{loc}([0, \infty)), f(u) = \varphi_p(u)\).

For \(h \in A\) with \(A\) defined by the set

\[
\left\{ h \in C((0, 1), [0, \infty)) : \int_0^1 s^\alpha (1-s)^\beta h(s)ds < \infty \text{ for some } \alpha, \beta \in (0, p-1) \right\},
\]

some existence and uniqueness results were proved by Lee and Sim [7] for three special cases of initial problem (IVP\(t_0\)): \(t_0 = 0, a = 1; t_0 = 1, a = -1\) and \(a = 0\).

Denote

\[
\mathcal{B} = \left\{ h \in C((0, 1), [0, \infty)) : \int_0^1 (s(1-s))^{p-1}h(s)ds < \infty \right\}.
\]

It is clear that \(L^1(0, 1) \subset A \subset \mathcal{B}\). For more properties of the classes of singular indefinite weights \(A\) and \(\mathcal{B}\), one may refer to [4], [6]. For \(h \in \mathcal{B}, Kajikiya, Lee\) and Sim [6] obtained some existence and uniqueness results for (IVP\(t_0\)) under assumption that \(f(t, u(t)) = \lambda \varphi_p(u(t))\) with \(\lambda\) a positive real parameter. Moreover, these results were applied in the study of some eigenvalue problems for \(p\)-Laplacian.

The aim of this paper is to present some existence and uniqueness results for problem (IVP\(t_0\)) with \(h \in \mathcal{B}, t_0 \in [0, 1], a \in \mathbb{R}\) and \(f \in C(\mathbb{R}, \mathbb{R})\) by using Schauder’s fixed point theorem (see Theorem 2.1, 2.2 and Corollary 2.3). Our results improve and generalize some results in [6], [7] (see Remark 2.4).
2. Statements of the main results

Recall that a function u is said to be a solution of (IVP) if $u \in C^1(0,1) \cap C[0,1]$ and $\varphi_p(u')$ is absolutely continuous in any compact subinterval of $(0,1)$ and u satisfies (IVP).

Let us give the following assumptions on f:

(H₁) $\exists C > 0$ such that $|f(u)| \leq C|\varphi_p(u)|$ for $u \in \mathbb{R}$.

(H₂) $\exists C > 0$ such that $|f(u) - f(v)| \leq C|\varphi_p(u) - \varphi_p(v)|$ for $u, v \in \mathbb{R}$.

(H₂⁺) $\forall \varGamma > 0, \exists C > 0$ such that $|f(u) - f(v)| \leq C|\varphi_p(u) - \varphi_p(v)|$ for $u, v \in [0, \varGamma]$.

(H₂⁻) $\forall \varGamma > 0, \exists C > 0$ such that $|f(u) - f(v)| \leq C|\varphi_p(u) - \varphi_p(v)|$ for $u, v \in [-\varGamma, 0]$.

The main results of this paper are as follows.

Theorem 2.1. Assume $h \in B$ and (H₁). Then problem (IVP) has at least one solution. Especially, if $a = 0$, problem (IVP) has only a trivial solution.

Theorem 2.2. Assume $h \in B$. The following statements are true.

(i) Suppose that (H₂⁺) holds. If $a > 0$, $t_0 \in [0,1)$ or $a < 0$, $t_0 \in (0,1]$, then problem (IVP) has at most one solution.

(ii) Suppose that (H₂⁻) holds. If $a < 0$, $t_0 \in [0,1)$ or $a > 0$, $t_0 \in (0,1]$, then problem (IVP) has at most one solution.

It is clear that (H₂) implies (H₁), (H₂⁺) and (H₂⁻). Then by Theorem 2.1 and 2.2, we can get the following result immediately.

Corollary 2.3. Assume $h \in B$ and (H₂). Then problem (IVP) has a unique solution.

Remark 2.4. (a) Theorem 2.1 generalizes Theorem 1.1 and 1.3 in [7] by extending the class of singular indefinite weights from $h \in \mathcal{A}$ to $h \in B$.

(b) Theorem 2.2 (i) improves Theorem 1.2 in [7]. In fact, it is clear that assumption (H₂⁺) is weaker than the assumption

(P) $\exists C > 0$ such that $|f(u) - f(v)| \leq C|\varphi_p(u) - \varphi_p(v)|$ for $u, v \in [0,\infty)$.

For example, $f(u) = (\varphi_p(u))^2$ does not satisfy (P), but satisfies (H₂⁺) and (H₂⁻) with $C = 2\varphi_p(\varGamma)$. Then Theorem 2.2 (i) is the same as Theorem 1.2 in [7] if replace “$h \in B$ and (H₂⁺)” by “$h \in \mathcal{A}$ and (P)” and consider the two special cases $t_0 = 0$, $a = 1$ and $t_0 = 1$, $a = -1$.

(c) Corollary 2.3 generalizes Theorem 2.2 and 2.3 in [6] by considering the general function $f \in C(\mathbb{R}, \mathbb{R})$ instead of $\lambda \varphi_p(u)$ with λ a positive real parameter.
3. Proofs of the main results

In the sequel, we always assume that \(t_0 \in [0,1) \) and \(h \in B \). For the case when \(t_0 \in (0,1] \), we can analyze exactly the same way and we omit the details.

Let us start with some lemmas which will be used in the proofs of our main results.

Lemma 3.1. Assume \(h \in B \) and \((H_1)\). If \(a = 0 \), problem \((IVP_{t_0})\) has only a trivial solution.

Proof. Clearly 0 is a solution of \((IVP_{t_0})\) if \(a = 0 \). Let \(u \) be a solution of \((IVP_{t_0})\). It is enough to prove that \(u = 0 \) for \(t \in [0,1] \). There are two cases to be considered: \(t_0 \in (0,1) \) and \(t_0 = 0 \).

Case 1. \(t_0 \in (0,1) \). For any \(t_1 \in (t_0,1) \), we have \(u \in C^1[t_0,t_1] \) and \(h \in C[t_0,t_1] \). For \(t \in [t_0,t_1] \), it follows from \((IVP_{t_0})\) that

\[
|u(t)| = \int_{t_0}^{t} \varphi_p^{-1} \left(\int_{t_0}^{\tau} h(\tau)f(u(\tau))d\tau \right) d\tau \leq \varphi_p^{-1} \left(\int_{t_0}^{t} h(s)|f(u(s))|ds \right).
\]

Then, by \((H_1)\) we have, for \(t \in [t_0,t_1] \),

\[
\varphi_p(|u(t)|) \leq \int_{t_0}^{t} h(s)|f(u(s))|ds \leq C \int_{t_0}^{t} h(s)\varphi_p(|u(s)|)ds.
\]

By the Gronwall inequality we have \(\varphi_p(|u(t)|) = 0 \) for \(t \in [t_0,t_1] \), that is \(u(t) = 0 \), \(t \in [t_0,t_1] \). This implies that \(u(t) = 0 \) for \(t \in [0,1] \) since \(t_1 \) is arbitrary in \((0,1)\) and \(u \) is continuous in \([0,1]\). Similarly, we can prove that \(u(t) = 0 \) for \(t \in [0,t_0] \) and then \(u(t) = 0 \) for all \(t \in [0,1] \).

Case 2. \(t_0 = 0 \). For \(t_1 \in (0,1) \), we have \(u \in C^1[0,t_1] \). Let \(v(0) = 0 \) and \(v(t) = u(t)/t \) for \(t \in (0,t_1] \). Then \(v \in C[0,t_1] \). For \(t \in (0,t_1] \), from \((IVP_{t_0})\) we have

\[
|v(t)| = \frac{1}{t} \int_{0}^{t} \varphi_p^{-1} \left(\int_{0}^{\tau} h(\tau)f(u(\tau))d\tau \right) d\tau \leq \varphi_p^{-1} \left(\int_{0}^{t} h(s)|f(u(s))|ds \right).
\]

Thus for \(t \in [0,t_1] \), by \((H_1)\) we get

\[
\varphi_p(|v(t)|) \leq \int_{0}^{t} h(s)|f(u(s))|ds \leq \int_{0}^{t} h(s)C|\varphi_p(u(s))|ds
\]

\[
= C \int_{0}^{t} h(s)s^{p-1}\varphi_p(|u(s)/s|)ds = C \int_{0}^{t} h(s)s^{p-1}\varphi_p(|v(s)|)ds.
\]

By the Gronwall inequality we have \(\varphi_p(|v(t)|) = 0 \) for \(t \in [0,t_1] \). That is \(u(t) = 0 \), \(t \in [0,t_1] \). Therefore, it follows from the arbitrariness of \(t_1 \) in \((0,1)\) and the continuity of \(u \) that \(u(t) = 0 \) for \(t \in [0,1] \). This completes the proof. \(\square \)
By the Mean Value Theorem and a fundamental calculation, it is easy to get the following inequality which will be used later:

\[|\varphi_p(x) - \varphi_p(y)| \leq (p - 1)z^{p-2}|x - y|, \quad \forall x, y \in \mathbb{R}, \tag{3.1} \]

where \(z = \max\{|x|, |y|\} \).

Now we assume that \(a \neq 0 \). Let \(K > |a| \) be a constant. Since \(h \in \mathcal{B} \), there exists \(\beta \in (t_0, 1) \) such that

\[
\int_{t_0}^{\beta} h(s)(s - t_0)^{p-1}ds \leq \min \left\{ \frac{1 - \varphi_p(|a|/K)}{C}, \frac{\varphi_p(|a|/K)}{2C} \right\}, \tag{3.2}
\]

where \(C \) is the same constant as in (H1).

Define \(G : C^1_0[t_0, \beta] \to C^1_0[t_0, \beta] \) by

\[
G(u)(t) = \int_{t_0}^{t} \varphi_p^{-1} \left(\varphi_p(a) - \int_{t_0}^{\tau} h(\tau)f(u(\tau))d\tau \right) ds, \quad \text{for } t \in [t_0, \beta].
\]

For any \(u \in C^1_0[t_0, \beta] \), we have \(|u(t)| \leq ||u||_1(t - t_0) \) for \(t \in [t_0, \beta] \). Then by (H1) we have, for \(t \in [t_0, \beta] \),

\[
\left| \int_{t_0}^{t} h(\tau)f(u(\tau))d\tau \right| \leq \int_{t_0}^{t} h(\tau)|C||u(\tau)|^{p-1}d\tau \\
\leq C||u||_1^{p-1} \int_{t_0}^{t} h(\tau)(\tau - t_0)^{p-1}d\tau < \infty. \tag{3.3}
\]

So \(G \) is well defined. In addition, noticing that

\[
(G(u))'(t) = \varphi_p^{-1} \left(\varphi_p(a) - \int_{t_0}^{t} h(\tau)f(u(\tau))d\tau \right),
\]

(3.3) implies that \(G \) is bounded, i.e., send bounded subsets of \(C^1_0[t_0, \beta] \) into bounded subsets of \(C^1_0[t_0, \beta] \). Furthermore, it is easy to see that \(u(t) \) is a local solution of problem (IVP\(_{t_0}\)) for \(t \in [t_0, \beta] \) if and only if \(u \) is a fixed point of \(G \) in \(C^1_0[t_0, \beta] \).
Lemma 3.2. Assume $h \in B$ and (H_1). Then $G(M) \subset M$ and $G : M \to M$ is continuous.

Proof. By (H_1) and (3.2), for $u \in M, t \in [t_0, \beta]$,

$$\| (G(u))' (t) \| = \left| \varphi_p^{-1} \left(\varphi_p (a) - \int_{t_0}^{t} h(\tau) f(u(\tau)) d\tau \right) \right|$$

$$\leq \varphi_p^{-1} \left(\varphi_p (|a|) + \int_{t_0}^{t} h(\tau) C |\varphi_p (u(\tau))| d\tau \right)$$

$$\leq \varphi_p^{-1} \left(\varphi_p (|a|) + C \|u\|_1^{p-1} \int_{t_0}^{t} h(\tau) (\tau - t_0)^{p-1} d\tau \right)$$

$$\leq \varphi_p^{-1} \left(\varphi_p (|a|) + CK^{p-1} \frac{1 - \varphi_p (|a|/K)}{C} \right) = K.$$

That is $\|G(u)\|_1 \leq K$, and then $G(M) \subset M$.

Now we prove the continuity of G. For $u \in M, t \in [t_0, \beta]$, by (H_1) and (3.2) we have

$$\left| \int_{t_0}^{t} h(\tau) f(u(\tau)) d\tau \right| \leq \int_{t_0}^{t} h(\tau) C |\varphi_p (u(\tau))| d\tau \leq C \|u\|_1^{p-1} \int_{t_0}^{t} h(\tau) (\tau - t_0)^{p-1} d\tau$$

$$\leq CK^{p-1} \frac{\varphi_p (|a|/K)}{2C} = \varphi_p (|a|)/2.$$

Then

$$\left| \varphi_p (a) - \int_{t_0}^{t} h(\tau) f(u(\tau)) d\tau \right| \leq 3 \varphi_p (|a|)/2 \quad \text{for } t \in [t_0, \beta].$$

Let $q = p/(p - 1)$, then $\varphi_p^{-1} = \varphi_q$. Denote

$$C_1 = \frac{1}{2(q - 1)(3 \varphi_p (|a|)/2)^{q-2}}.$$

Given $\varepsilon > 0$, there exists $\eta \in (t_0, \beta)$ such that

$$\int_{t_0}^{\eta} h(s) (s - t_0)^{p-1} ds \leq \frac{C_1 \varepsilon}{2CK^{p-1}}$$

since $h \in B$. Then for $u \in M$, by (H_1),

$$\int_{t_0}^{\eta} h(s) |f(u(s))| ds \leq \int_{t_0}^{\eta} h(\tau) C |\varphi_p (u(\tau))| d\tau \leq C \|u\|_1^{p-1} \int_{t_0}^{\eta} h(s) (s - t_0)^{p-1} ds$$

$$\leq CK^{p-1} \frac{C_1 \varepsilon}{2CK^{p-1}} = \frac{C_1 \varepsilon}{2}. \quad (3.6)$$
Let \(\{ u_n \} \subset M \) such that \(u_n \to u_0 \) in \(M \) as \(n \to \infty \). Then for \(t \in [t_0, \beta] \), by (3.1), (3.4) and (3.5) we get

\[
\|(G(u_n))'(t) - (G(u_0))'(t)\| \leq \frac{1}{2C_1} \left(\int_{t_0}^\beta \left(\int_{t_0}^\eta h(\tau) f(u_n(\tau)) d\tau \right) + \int_{t_0}^\beta h(\tau) f(u_0(\tau)) d\tau \right) \leq \frac{1}{2C_1} \left(C_1 \varepsilon + 2C_2 \int_{t_0}^\beta h(\tau) d\tau \right) = \varepsilon/2.
\]

This implies that \(G : M \to M \) is continuous.

Case 2. Suppose \(\int_\eta^\beta h(s) ds \neq 0 \). Since \(f \) is uniformly continuous in \([-K, K]\), there exists \(\rho > 0 \) such that \(u, v \in [K, K], |u - v| < \rho \) implies

\[
|f(u) - f(v)| \leq C_1 \varepsilon \left(\int_\eta^\beta h(s) ds \right)^{-1}.
\]

Meanwhile, there exists \(N > 0 \) such that \(|u_n(t) - u_0(t)| < \rho \) for \(t \in [t_0, \beta], n > N \). Thus

\[
|f(u_n(t)) - f(u_0(t))| \leq C_1 \varepsilon \left(\int_\eta^\beta h(s) ds \right)^{-1} \quad \text{for} \quad n > N, \ t \in [t_0, \beta].
\]

Now, for \(t \in [t_0, \beta] \) and \(n > N \), by (3.6) – (3.8) we have

\[
\|(G(u_n))'(t) - (G(u_0))'(t)\| \leq \frac{1}{2C_1} \left(\int_{t_0}^\eta h(\tau) \left(|f(u_n(\tau))| + |f(u_0(\tau))| \right) d\tau + \int_{t_0}^\beta h(\tau) \left(|f(u_n(\tau))| + |f(u_0(\tau))| \right) d\tau \right) \leq \frac{1}{2C_1} \left(C_1 \varepsilon + \int_\eta^\beta h(\tau) C_1 \varepsilon \left(\int_\eta^\beta h(s) ds \right)^{-1} d\tau \right) = \varepsilon,
\]

which implies that \(G : M \to M \) is continuous. The proof is complete. \(\Box \)
Lemma 3.3. Assume \(h \in B \) and (H\(_1\)). Then \(G : M \to M \) is compact.

Proof. Suppose \(\{u_n\} \subset M \) is bounded, then \(\{u_n\} \) and \(\{G(u_n)\} \) are bounded in \(M \). By the Arzela Ascoli Theorem, \(\{u_n\} \) and \(\{G(u_n)\} \) has a subsequence (denote again by \(\{u_n\} \) and \(\{G(u_n)\} \), respectively) converging to some \(u \) and \(v \) in \(C_0[t_0, \beta] \), respectively. By (H\(_1\)) we have

\[
|h(t)f(u_n(t))| \leq Ch(t)|\varphi_p(u_n(t))| \leq Ch(t)\varphi_p(\|u_n\|_1(t - t_0))
\]

\[
\leq CK^{p-1}h(t)(t - t_0)^{p-1}.
\]

for \(t \in [t_0, \beta] \). So by the Lebesgue dominated convergence theorem, we have

\[
G(u_n)(t) = \int_{t_0}^{t} \varphi_p^{-1}\left(\varphi_p(a) - \int_{t_0}^{s} h(\tau)f(u_n(\tau))d\tau \right) ds \to \int_{0}^{t} \varphi_p^{-1}\left(\varphi_p(a) - \int_{t_0}^{s} h(\tau)f(u(\tau))d\tau \right) ds = v(t),
\]

uniformly in \(t \in [t_0, \beta] \), and

\[
(G(u_n))'(t) = \varphi_p^{-1}\left(\varphi_p(a) - \int_{t_0}^{t} h(\tau)f(u_n(\tau))d\tau \right) \to \varphi_p^{-1}\left(\varphi_p(a) - \int_{t_0}^{t} h(\tau)f(u(\tau))d\tau \right),
\]

uniformly in \(t \in [t_0, \beta] \). So \(v \in C^1_0[0, 1] \) and

\[
v'(t) = \varphi_p^{-1}\left(\varphi_p(a) - \int_{t_0}^{t} h(\tau)f(u(\tau))d\tau \right).
\]

Clearly, \(\|v\|_1 \leq K \). Therefore, \(G : M \to M \) is compact. The proof is complete. \(\square \)

Now we are in a position to give the proofs of the main results.

Proof of Theorem 2.1. Lemma 3.1 leads to the conclusion for the special case \(a = 0 \). Now we assume that \(a \neq 0 \). It follows from Lemma 3.2 and 3.3 that \(G : M \to M \) is completely continuous. Then by Schauder’s Fixed Point Theorem, \(G \) has a fixed point in \(M \). That is problem (IVP\(_{t_0}\)) has a local solution \(u \in M \).

Now we prove the global existence of solutions of problem (IVP\(_{t_0}\)). Let \([t_0, T)\) be the right maximal interval of existence for solution \(u \). It is enough to show
that $T = 1$. Suppose on the contrary that $T < 1$. Then by (H_1), for $t \in [t_0, T)$ we have
\[
|\varphi_p(u'(t))| = \left| \varphi_p(a) - \int_{t_0}^{t} h(\tau)f(u(\tau))d\tau \right| \leq \varphi_p(|a|) + C \int_{t_0}^{t} h(\tau)|u(\tau)|^{p-1}d\tau \\
\leq \varphi_p(|a|) + C \int_{t_0}^{t} h(\tau)(\tau - t_0)^{p-1} \max_{s \in [t_0, \tau]} |u'(s)|^{p-1}d\tau,
\]
so we have
\[
\max_{r \in [t_0, t]} |u'(r)|^{p-1} \leq \varphi_p(|a|) + C \int_{t_0}^{t} (\tau - t_0)^{p-1} \max_{s \in [t_0, \tau]} |u'(s)|^{p-1}d\tau.
\]
By the Gronwall inequality, we obtain
\[
\max_{r \in [t_0, t]} |u'(r)|^{p-1} \leq \varphi_p(|a|) \exp \left(C \int_{t_0}^{t} (\tau - t_0)^{p-1}d\tau \right) \\
\leq \varphi_p(|a|) \exp \left(C \int_{t_0}^{t} h(\tau)(\tau - t_0)^{p-1}d\tau \right),
\]
which implies that u' is bounded in $[t_0, T)$, and consequently u is bounded in $[t_0, T)$. This contradicts the fact that $[0, T)$ with $T < 1$ is the maximal existence interval for solution u. The proof is complete. \hfill \Box

Proof of Theorem 2.2. We prove statement (i). By a similar argument we can prove statement (ii) and we omit the details. Moreover, we only prove statement (i) for the case $a > 0$ and $t_0 \in [0, 1)$. The case $a < 0$ and $t_0 \in (0, 1]$ can be proved similarly and we also omit the details.

Suppose u, v are two solutions of problem (IVP_{t_0}). It suffices to prove that $u(t) = v(t)$ for $t \in [t_0, \beta]$ with some $\beta \in (t_0, 1)$ which will be determined later.

Let $K > a$ such that $\max\{|u'(t)|, |v'(t)|\} \leq K$ for all $t \in [t_0, (1 + t_0)/2]$. Since $a > 0$, we can choose $\beta_1 \in (t_0, (1 + t_0)/2)$ such that $u(t), v(t) > 0$ for all $t \in (t_0, \beta_1)$. By $(H_{2+}),$ there exists some $C > 0$ such that
\[
|f(u)| \leq C\varphi_p(u), \quad |f(u) - f(v)| \leq C|\varphi_p(u) - \varphi_p(v)| \quad \text{for } u, v \in [0, K]. \quad (3.9)
\]
Then
\[
|f(u(t))| \leq C\varphi_p(u(t)), \quad |f(v(t))| \leq C\varphi_p(v(t)) \quad \text{and} \quad (3.10)
\]
\[
|f(u(t)) - f(v(t))| \leq C|\varphi_p(u(t)) - \varphi_p(v(t))| \quad \text{for } t \in [t_0, \beta_1]. \quad (3.11)
\]
Since $h \in B$, we can choose $\beta \in (t_0, \beta_1)$ such that
\[
\int_{t_0}^{t_0 + \beta} h(s)(s - t_0)^{p-1}ds < \min \left\{ \frac{\varphi_p(a/K)}{2C}, \frac{1}{(3\varphi_p(a)/2)^{q-2}K^{p-2}C} \right\}. \tag{3.12}
\]
where $q = p/(1 - p)$, K and C are the same constants as in (3.9). It is obvious that
\[
u, v \in M = \{ w \in C_0^1[t_0, \beta] : \|w\|_1 \leq K \}.
\]
Then by (3.10), (3.12) and the same way to get (3.4), we can obtain that (3.4) also holds for these u, v. That is
\[
\left| \varphi_p(a) - \int_{t_0}^{t} h(\tau)f(x(\tau))d\tau \right| \leq 3\varphi_p(a)/2 \quad \text{for } t \in [t_0, \beta], \tag{3.13}
\]
where $x = u, v$. Meanwhile, by the Mean Value Theorem, for $t \in [t_0, \beta]$, there exist some $\theta_1, \theta_2, \theta_3 \in (t_0, t)$ such that
\[
\left| \frac{u(t)}{t - t_0} \right| = |u'(\theta_1)| \leq \|u\|_1 \leq K, \tag{3.14}
\]
\[
\left| \frac{v(t)}{t - t_0} \right| = |v'(\theta_2)| \leq \|v\|_1 \leq K, \tag{3.15}
\]
\[
\left| \frac{u(t) - v(t)}{t - t_0} \right| = |u'(\theta_3) - v'(\theta_3)| \leq \|u - v\|_1. \tag{3.16}
\]
Notice that $\varphi_p^{-1} = \varphi_q$ and $(p - 1)(q - 1) = 1$. If $\|u - v\|_1 > 0$, then by (3.1), (3.11)–(3.16), for $t \in [t_0, \beta]$,
\[
|u'(t) - v'(t)|
\leq |\varphi_p^{-1}(\varphi_p(a) - \int_{t_0}^{t} h(\tau)f(u(\tau))d\tau) - \varphi_p^{-1}(\varphi_p(a) - \int_{t_0}^{t} h(\tau)f(v(\tau))d\tau)|
\leq (q - 1)(3\varphi_p(a)/2)^{q-2} \int_{t_0}^{t} h(\tau)|f(u(\tau)) - f(v(\tau))|d\tau
\leq (q - 1)(3\varphi_p(a)/2)^{q-2}C \int_{t_0}^{t} h(\tau)|\varphi_p(u(\tau)) - \varphi_p(v(\tau))|d\tau
\leq (q - 1)(3\varphi_p(a)/2)^{q-2}C \int_{t_0}^{t} h(\tau)(\tau - t_0)^{p-1} \left| \varphi_p\left(\frac{u(\tau)}{\tau - t_0} \right) - \varphi_p\left(\frac{v(\tau)}{\tau - t_0} \right) \right| d\tau
\leq (q - 1)(3\varphi_p(a)/2)^{q-2}C \int_{t_0}^{t} h(\tau)(\tau - t_0)^{p-1}(p - 1)K^{p-2} \left| \frac{u(\tau) - v(\tau)}{\tau - t_0} \right| d\tau
Initial value problems of p-Laplacian with a strong singular...

\[\leq \left(3\varphi_p(a)/2\right)^{q-2}K^{p-2}C \int_{t_0}^\beta h(\tau)(\tau - t_0)^{p-1}d\tau \|u - v\|_1 < \|u - v\|_1, \]

which is impossible, and then \(\|u - v\|_1 = 0\), i.e. \(u(t) = v(t)\) for \(t \in [t_0, \beta]\). This completes the proof. \(\square\)

References

HONG-XU LI
DEPARTMENT OF MATHEMATICS
SICHUAN UNIVERSITY
CHENGDU, SICHUAN 610064
P.R. CHINA

E-mail: hoxuli@sohu.com

(Received May 18, 2009)