On the Diophantine equation \(ax^2 - by^2 = c \)

By A. GRELAK (Zielona Góra) and A. GRYTCZUK (Zielona Góra)

1. Introduction

In the paper [3] there has been given a matrix method for the study of some properties of the solutions in integers \(x, y \) of the Diophantine equation

\[
ax^2 - by^2 = c.
\]

The study of (1.1) was begun by Lagrange and continued by several authors, see C. U. Jensen [5], P. Kaplan [6], J. C. Lagarias [7], H. Lienen [8], T. Nagell [9], [10], [11] and many others.

From Theorems 2 and 3 of our paper [3] we get the following solvability criteria in integers \(x, y \) for (1.1) when \(c = 1 \) or \(c = 2 \):

Criterion 1. Let \(a > 1, b \) be positive integers such that \((a, b) = 1 \) and \(d = ab \) is not a square of a natural number. Moreover let \(\langle u_0, v_0 \rangle \) denote the least positive integer solution of Pell’s equation

\[
u^2 - dv^2 = 1. \tag{1.2}
\]

Then equation (1.1) with \(c = 1 \) has a solution in positive integers \(x, y \) iff

\[
2a \mid u_0 + 1 \quad \text{and} \quad 2b \mid u_0 - 1. \tag{1.3}
\]

We note that this result has been proved also by W. Górzny [2], but in another way.

Criterion 2. Let \(a, b \) be positive integers such that \((a, b) = (a, 2) = (b, 2) = 1 \) and \(d = ab \) is not a square of a natural number and let \(\langle u_0, v_0 \rangle \) denote the least positive integer solution of (1.2). Then the equation (1.1) with \(c = 2 \) has a solution in positive integers \(x, y \) iff

\[
a \mid u_0 + 1 \quad \text{and} \quad b \mid v_0 - 1. \tag{1.4}
\]
By using an idea contained in [3] we give in this paper a solvability criterion for (1.1) when \(c > 2 \). Namely, we reduce the problem of the solvability of (1.1) in integers \(x, y \) to the investigation of the integer solutions of the following Diophantine equation

\[
u^2 - abv^2 = c^2.\]

We conclude the introduction by expressing our thanks to referee for the remarks incorporated in the present version of the paper.

2. Notations and Lemmas

Let \(d = ab \) and suppose that \((a,b) = (b,c) = (c,a) = 1\). In a similar way as in [3] we introduce the matrix

\[
S = \begin{bmatrix}
\sqrt{a}x & d & \sqrt{a}y \\
1 & \sqrt{a}y & \sqrt{a}x
\end{bmatrix}
\]

associated with the Diophantine equation (1.1). The matrix \(S \) will be called a solvable matrix if \(x, y \) are integers such that \((x,c) = 1\) and

\[
\det S = ax^2 - by^2 = c.
\]

In the case \(a = c = 1 \) the solvable matrix \(S \) will be called Pell’s solvable matrix. Hence

\[
P = \begin{bmatrix}
u & dv \\
v & u
\end{bmatrix}
\]

and

\[
\det P = u^2 - dv^2 = 1.
\]

Let \(\langle u_0, v_0 \rangle \) denote the least positive integer solution of (2.4), such a solution we will be called a primitive Pell’s solution. Now we can define the primitive solution of (1.1).

The solution \(\langle x_0, y_0 \rangle \) of (1.1) will be called primitive solution, if \(ax_0^2 - by_0^2 = c \) and \(x_0 \leq x \) for any positive integer \(x \) satisfying (1.1). Let \(S_0, P_0 \) be matrices associated with a primitive solution of (1.1) and a primitive Pell’s solution, respectively.
By (2.1) and (2.3) we have
\begin{equation}
S_0 = \begin{bmatrix}
\sqrt{a} x_0 & d \\
\sqrt{a} y_0 & \sqrt{a} x_0
\end{bmatrix}
\end{equation}
\begin{equation}
P_0 = \begin{bmatrix}
u_0 & dv_0 \\
v_0 & u_0
\end{bmatrix}
\end{equation}
From (2.5) and (2.6) we obtain
\begin{equation}
S_1 = S_0 P_0 = P_0 S_0 = \begin{bmatrix}
\sqrt{a} x_1 & d \\
\sqrt{a} y_1 & \sqrt{a} x_1
\end{bmatrix}
\end{equation}
where
\begin{equation}
x_1 = x_0 u_0 + by_0 v_0, \quad y_1 = y_0 u_0 + ax_0 v_0.
\end{equation}
From (2.7) and Cauchy’s Theorem on the product of determinants we get
\begin{equation}
\det S_1 = \det S_0 \cdot \det P_0 = \det P_0 \cdot \det S_0 = ax_1^2 - by_1^2 = c,
\end{equation}
because \(\det S_0 = c \) and \(\det P_0 = 1 \). From (2.9) it follows that the numbers \(x_1, y_1 \) given in (2.8) are solutions of (1.1).

Now we define the singular solution of (1.1).

Definition 1. The solution \(\langle u, v \rangle \) of (1.1) will be called a singular solution of (1.1) if
\begin{equation}
x_0 < u < x_1
\end{equation}
where \(x_1 \) is given by (2.8) and \(\langle x_0, y_0 \rangle \) is the primitive solution of (1.1).

We can prove the following

Lemma 1. Let \(c > 2 \) not be a square of a natural number and suppose that equation (1.1) has a primitive solution in positive integers \(x_0, y_0 \) such that \((x_0, c) = 1 \). Then there exists a singular solution \(\langle u, v \rangle \) of (1.1).

Proof. Let \(d = ab \) and
\begin{equation}
u = x_0 u_0 - by_0 v_0, \quad v = y_0 u_0 - ax_0 v_0.
\end{equation}
It is easy to see that by (2.6) we have
\begin{equation}
P_0^{-1} = \begin{bmatrix}
u_0 & -dv_0 \\
-v_0 & u_0
\end{bmatrix}
\end{equation}
and \(\det P^{-1} = 1 \), thus by (2.7) and (2.8) it follows that the \(\langle u, |v| \rangle \) given by (2.11) is a solution of (1.1).

Since \(u_0^2 - abv_0^2 = 1 \) then \(u_0 > \sqrt{ab} v_0 \) and

\[
u = x_0 u_0 - by_0 v_0 > \sqrt{ab} v_0 x_0 - by_0 v_0 = v_0 \sqrt{b} (\sqrt{a} x_0 - \sqrt{b} y_0).
\]

On the other hand from the \(ax_0^2 - by_0^2 = c \), \(c > 2 \) follows that \(\sqrt{a} x_0 - \sqrt{b} y_0 > 0 \) and we obtain \(u > 0 \). Then from (2.11) and (2.8) we have

\[
0 < u < x_1.
\]

We remark that \(v \neq 0 \). Indeed, suppose that \(v = 0 \) then by (1.1) we have \(au^2 = c \). Since \((a, c) = 1 \) thus \(a = 1 \) and \(u^2 = c \) contradicting our assumption that \(c \) is not a square of a positive integer. Since \(\langle x_0, y_0 \rangle \) is a primitive solution of (1.1), by (2.13) and the definition of a primitive solution we obtain

\[
x_0 \leq u < x_1.
\]

Suppose that in (2.14) we have \(u = x_0 \). Then by (2.11) it follows that

\[
x_0 (u_0 - 1) = by_0 v_0.
\]

On the other hand, since \(\langle u, |v| \rangle \) is a solution of \(ax^2 - by^2 = c \) by (2.11) we have

\[
a x_0^2 - b (ax_0 v_0 - y_0 u_0)^2 = c.
\]

From the last equality we obtain

\[
ax_0^2 - ax_0^2 (abv_0^2) + 2 au_0 x_0 (by_0 v_0) - u_0^2 (by_0^2) = c.
\]

From the assumptions we have \(ax_0^2 - by_0^2 = c \) and \(u_0^2 - abv_0^2 = 1 \) and therefore \(by_0^2 = ax_0^2 - c \) and \(abv_0^2 = u_0^2 - 1 \).

Substituting the last equality and (2.15) into (2.16) we obtain

\[
ax_0^2 - ax_0^2 (u_0^2 - 1) + 2 au_0 x_0^2 (u_0 - 1) - u_0^2 (ax_0^2 - c) = c.
\]

From (2.17) we get

\[
2 ax_0^2 - 2 ax_0^2 u_0 = c (1 - u_0^2)
\]

and consequently

\[
2 ax_0^2 (1 - u_0) = c (1 - u_0) (1 + u_0).
\]

Since \(u_0 \neq 1 \), the last equality implies

\[
2 ax_0^2 = c (u_0 + 1).
\]

Since \((a, c) = 1 \) and \((x_0, c) = 1 \), by (2.18) we get \(c \mid 2 \), thus \(c \leq 2 \), and this is impossible, because \(c > 2 \). Therefore \(u \neq x_0 \) and by (2.14) and the Definition 1 our Lemma follows.
Lemma 2. Let S_1, S_2 be the matrices associated with the solutions $\langle x_1, y_1 \rangle$ and $\langle x_2, y_2 \rangle$ of (1.1). Then the matrix $R = S_1 S_2 = S_2 S_1$ has the form

$$R = \begin{bmatrix} x_3 & dy_3 \\ y_3 & x_3 \end{bmatrix}$$

where

$$x_3 = ax_1 x_2 + by_1 y_2, \quad y_3 = x_1 y_2 + y_1 x_2$$

and R is associated with the solution $\langle x_3, y_3 \rangle$ of the Diophantine equation

$$u^2 - dv^2 = c^2$$

where $d = ab$.

Proof. We have

$$(2.19) \quad R = S_1 S_2 = S_2 S_1 = \begin{bmatrix} \sqrt{a} x_1 & \frac{d}{\sqrt{a}} y_1 \\ \frac{1}{\sqrt{a}} y_1 & \sqrt{a} x_1 \end{bmatrix} \cdot \begin{bmatrix} \sqrt{a} x_2 & \frac{d}{\sqrt{a}} y_2 \\ \frac{1}{\sqrt{a}} y_2 & \sqrt{a} x_2 \end{bmatrix}. $$

From (2.19) we get

$$(2.20) \quad R = \begin{bmatrix} ax_1 x_2 + by_1 y_2 & d(x_1 y_2 + y_1 x_2) \\ x_1 y_2 + y_1 x_2 & ax_1 x_2 + by_1 y_2 \end{bmatrix}. $$

Putting in (2.20)

$$(2.21) \quad x_3 = ax_1 x_2 + by_1 y_2, \quad y_3 = x_1 y_2 + y_1 x_2$$

we get

$$(2.22) \quad R = \begin{bmatrix} x_3 & dy_3 \\ y_3 & x_3 \end{bmatrix}. $$

From (2.19) and the assumptions of our Lemma we get $\det S_1 = \det S_2 = c$ and therefore by Cauchy’s theorem on the product of determinants we obtain

$$(2.23) \quad \det R = \det S_1 \cdot \det S_2 = c^2. $$

On the other hand by (2.22) it follows that $\det R = x_3^2 - dy_3^2$ and therefore by (2.23) we get

$$x_3^2 - dy_3^2 = c^2, \quad \text{where } d = ab$$

and the proof is complete.
Lemma 3. All positive integral solutions of the equation
\[x^2 - dy^2 = z^2 \]
are given by the formulas
\[x = (am^2 + bn^2)\varrho, \quad y = 2mn\varrho, \quad z = (am^2 - bn^2)\varrho \]
if \(d = ab \) is even, or
\[x = \frac{1}{2}(am^2 + bn^2)\varrho, \quad y = mn\varrho, \quad z = \frac{1}{2}(am^2 - bn^2)\varrho \]
if \(d = ab \) is odd and \(\varrho \) is any integer when \(m \) and \(n \) are odd, but \(\varrho \) is even when one of \(m \) and \(n \) is even and the other is odd. In all cases \(m, n \) are positive integers and relatively prime.

For the proof see [1], Th. 40, p. 41.

3. Result

In this part of our paper we prove the following

Theorem. Let \(a, b \) and \(c > 2 \) be positive integers such that \((a, b) = (b, c) = (c, a) = 1 \) and \(d = ab \) is not a square of an integer. Then the equation
\[ax^2 - by^2 = c \]
has a solution in positive integers \(x, y \) with \((x, y) = 1 \) iff there exists an integer solution \(\langle u, v \rangle \) of the equation
\[u^2 - dv^2 = c^2 \]

Proof. Suppose that the assumptions of our Theorem are fulfilled and let the equation (3.2) have an integer solution \(\langle u, v \rangle \). By Lemma 3 it follows that all positive integer solutions of (3.2) are given by the formulae
\[u = (am^2 + bn^2)\varrho, \quad v = 2mn\varrho, \quad c = (am^2 - bn^2)\varrho \]
if \(d = ab \) is even, or
\[u = \frac{1}{2}(am^2 + bn^2)\varrho, \quad v = mn\varrho, \quad c = \frac{1}{2}(am^2 - bn^2)\varrho \]
if \(d = ab \) is odd, where \(\varrho \) is any integer when \(m \) and \(n \) are odd, but \(\varrho \) is even when one of \(m \) and \(n \) is even and the other is odd. In all cases \((m, n) = 1 \).

Let \(d = ab \) be even. Then by (3.3) in the case \(\varrho = 1 \) we obtain
\[u = am^2 + bn^2, \quad c = am^2 - bn^2 \]
On the Diophantine equation $ax^2 - by^2 = c$ and consequently

$$\frac{u + c}{2} - \frac{u - c}{2} = am^2 - bn^2 = c,$$

so denote that the equation $ax^2 - by^2 = c$, has a solution in positive integers m, n such that $(m, n) = 1$.

Let $d = ab$ be odd. Then by (3.4) in the case $\varrho = 2\varrho_1$ we have

$$u = (am^2 + bn^2)\varrho_1, \quad c = (am^2 - bn^2)\varrho_1$$

where $(m, n) = 1$ and m, n are different parity. Thus for $\varrho_1 = 1$ we obtain

$$\frac{u + c}{2} - \frac{u - c}{2} = am^2 - bn^2 = c,$$

and we get a solution in positive integers m, n of the equation $ax^2 - by^2 = c$. Now we can assume that the equation (3.1) has a primitive solution $\langle x_0, y_0 \rangle$ such that $(x_0, y_0) = 1$ and $(x_0, c) = 1$. Then there exists a solution $\langle x_1, y_1 \rangle$ given by (2.8). Since $(x_0, c) = 1$ then by Lemma 1 we obtain that there exists a singular solution $\langle u, v \rangle$ of (3.1).

By Lemma 2 it follows that there exists a solution in positive integers of the equation (3.2). The proof is complete.

4. Application

Let $K = \mathbb{Q}(\sqrt{d})$, $d > 0$ be a given quadratic number field and let h denote the class-number of this field. Then from well-known results of C. S. Herz [4], (Cf. [12], p. 483) it follows that if $h = 1$ then

$$d = p, \ 2q, \ qr$$

where p is a prime and $q \equiv r \equiv 3 \pmod{4}$ are primes.

From this results follows that for the investigation of the famous Gauss problem concerning the existence of infinitely many real quadratic number fields with class-number $h = 1$ it suffices to consider one of the cases given in (4.1). Consider the case $d = p \equiv 3 \pmod{4}$. Then if R_K is the ring of all integers of $K = \mathbb{Q}(\sqrt{p})$ and if $\alpha \in R$ then for some rational integers x, y we have

$$\alpha = x + y\sqrt{p} \quad \text{and} \quad N(\alpha) = x^2 - py^2.$$

On the other hand it is well-known that if D_K is the discriminant of K then for every rational prime q we have

$$q = P^2, \quad N(P) = q \quad \text{if} \quad q \mid D_K$$
and if \(q \nmid D_K \) then

\[
(q) = P_1P_2, \quad P_1 \neq P_2, \quad N(P_1) = N(P_2) = q \text{ if } \left(\frac{D_K}{q} \right) = +1
\]

\[
(q) = P, \quad N(P) = q^2 \text{ if } \left(\frac{D_K}{q} \right) = -1
\]

where \(P, P_1, P_2 \) are prime ideals in \(R_K \) and \(\left(\frac{q}{p} \right) \) denotes the Legendre symbol. In the case \(d = p \equiv 3 \pmod{4} \) we have \(D = 4d = 4p \). From (4.3) we have \(q = 2 \) or \(p \) and if \(P = (\alpha) \) then \(N(P) = N((\alpha)) = |N(\alpha)| \) and conversely. By (4.2) we obtain that this condition is equivalent to the condition that the equation \(|x^2 - py^2| = 2 \) or \(p \) has a solution in integers \(x, y \). But it is easy to see that the equation \(|x^2 - py^2| = p \) always has the solution \(x = 0, y = \pm 1 \) and it remains to investigate the equations

\[
x^2 - py^2 = 2, \quad x^2 - py^2 = -2.
\]

Let \(\langle u_0, v_0 \rangle \) be the primitive solutions of Pell’s equation \(u^2 - pv^2 = 1 \), then we have \((u_0 - 1)(u_0 + 1) = pv_0^2 \) and we obtain

\[
p \mid u_0 - 1 \quad \text{or} \quad p \mid u_0 + 1.
\]

From (4.7) and Criterion 2 we get that one of the equations (4.6) has a solution in integers \(x, y \). Therefore we can investigate the cases (4.4) and (4.5). Similarly as in the above case we obtain that if one of the equations

\[
x^2 - py^2 = q, \quad x^2 - py^2 = -q.
\]

has a solution in integers \(x, y \) for every odd prime \(q \neq p \) such that \(\left(\frac{q}{p} \right) = -1 \) then every prime ideal \(P \) of \(R_K \) is principal and consequently any integer ideal is also principal and we get that in this case \(h = 1 \).

Applying our Theorem to (4.8) we get the following

Corollary. Let \(K = \mathbb{Q}(\sqrt{p}) \), where \(p \equiv 3 \pmod{4} \) is a prime. If the equation

\[
u^2 - pv^2 = q^2
\]

has an integer solution \(\langle u, v \rangle \) for every odd prime \(q \neq p \), such that \(\left(\frac{q}{p} \right) = +1 \), then \(h = 1 \).

References

On the Diophantine equation \(ax^2 - by^2 = c \)