Some commutativity theorems for Banach algebras

By BERTRAM YOOD (Pennsylvania)

A number of theorems in ring theory, mostly due to HERSTEIN, are devoted to showing that certain rings must be commutative as a consequence of conditions which are seemingly too weak to imply commutativity. See [4, Chapter 3]. In [7] we showed that, in the special case of a Banach algebra, some of these results can be sharpened. We continue this program here.

Let R be a ring with center Z. We let $[a, b]$ denote the Lie product $ab - ba$ and $a \cdot b$ the Jordan product $ab + ba$. In a recent paper [2] R. D. GIRI and A. R. DHOBLE showed the following.

Theorem 1. Suppose that R is a semiprime ring and that n, m are fixed positive integers each larger than one. Suppose that either (a) $[x^n, y^m] \in Z$ for every $x, y \in R$ or (b) $x^n \cdot y^m \in Z$ for every $x, y \in R$. Then R is commutative.

Henceforth A will denote a Banach algebra over the complex field with center Z. For this special case we prove a sharper version of Theorem 1.

Theorem 2. Suppose that there are non-empty open subsets G_1, G_2 of A such that for each $x \in G_1$ and $y \in G_2$ there are positive integers $n = n(x, y), m = m(x, y)$ depending on x and y, $n > 1$, $m > 1$, such that either $[x^n, y^m] \in Z$ or $x^n \cdot y^m \in Z$. Then A is commutative if A is semiprime.

Let $p(t) = \sum_{r=0}^{n} b_r t^r$ be a polynomial in the real variable t with coefficients in A where $p(t) \in Z$ for an infinite set of real values t. Then every $b_r \in Z$. For let $f(x)$ be any bounded linear functional on A which vanishes on Z. Then $\sum_{r=0}^{n} f(b_r) t^r = 0$ for an infinite set of reals so that each $f(b_r) = 0$. As Z is a closed linear subspace of A this implies that each $b_r \in Z$.

We begin the proof of Theorem 2. Fix $x \in G_1$. For positive integers $n \geq 2$, $m \geq 2$ let $V(n, m)$ be the set of $y \in A$ for which $[x^n, y^m] \notin Z$ and $x^n \cdot y^m \notin Z$. Each $V(n, m)$ is open in A. If every $V(n, m)$ is dense then, by the Baire category theorem, so is the intersection W of all the sets $V(n, m)$. But W being dense would violate the nature of G_1 and G_2. Hence there are integers $r \geq 2$ and $s \geq 2$ so that $V(r, s)$ is not dense. Therefore there is a non-empty open subset G_3 in the complement of $V(r, s)$. For each $y \in G_3$ either $[x^r, y^s] \in Z$ or $x^r \cdot y^s \in Z$. Let $y_0 \in G_3$ and $w \in A$. There is positive real number $a > 0$ such that $y_0 + tw \in G_3$ for all t, $0 \leq t \leq a$. For each such t either

\[
[x^r, (y_0 + tw)^s] \in Z
\]

or

\[
x^r \cdot (y_0 + tw)^s \in Z.
\]

Therefore at least one of (1) and (2) must be valid for infinitely many real t. Suppose (1) is valid for these t. Now $[x^r, (y_0 + tw)^s]$ can be written as a polynomial in t with coefficients in A. The coefficient of t^s in that polynomial is $[x^r, w^s]$. Therefore $[x^r, w^s] \in Z$. Likewise if (2) is valid for infinitely many values of t then $x^r \cdot w^s \in Z$.

Thus, given $x \in G_1$, there are positive integers $r > 1$, $s > 1$ so that, for each $w \in A$, either $[x^r, w^s] \in Z$ or $x^r \cdot w^s \in Z$. Let $F_1 = \{w \in A : [x^r, w^s] \in Z\}$ and $F_2 = \{w \in A : x^r \cdot w^s \in Z\}$. Now $A = F_1 \cup F_2$ and each F_k is closed. Then, by the Baire category theorem, at least one of F_1 and F_2 must contain a non-empty open subset of A.

Suppose F_1 contains a ball with center v_0 and radius $r > 0$. Let $z \in A$. For infinitely many t we must have $[x^r, (v_0 + tz)^s] \in Z$. Therefore $[x^r, z^s] \in Z$ for every $z \in A$. Likewise if F_2 has non-void interior then $x^r \cdot z^s \in Z$ for every $z \in A$.

Consequently, given $x \in G_1$, there are positive integers $r > 1$, $s > 1$ so that either $[x^r, z^s] \in Z$ for all $z \in A$ or $x^r \cdot z^s \in Z$ for all $z \in A$.

Now we note that in our set-up with G_1 and G_2 we could replace G_2 by A. Next we reverse the roles of G_1 and G_2 (now replaced by A) in the above arguments. Thus, for each $y \in A$, there are positive integers $r > 1$, $s > 1$ depending on y so that either $[x^r, y^s] \in Z$ for all $x \in A$ or $x^r \cdot y^s \in Z$ for all $x \in A$.

For positive integers $m > 1$ and $n > 1$ let $W(n, m)$ be the set of all $y \in A$ so that either $[x^n, y^m] \in Z$ for all $x \in A$ or $x^n \cdot y^m \in Z$ for all $x \in A$. We check that $W(n, m)$ is closed. For let $\{y_k\}$ be a sequence in $W(n, m)$ and $y_k \to w$. Then either there is an infinite subsequence $\{y_{k_j}\}$ so that $[x^n, y_{k_j}] \in Z$ for all $x \in A$ and each k_j or such a subsequence $\{y_{k_j}\}$ where $x^n \cdot y_{k_j} \in Z$ for all $x \in A$ and each k_j. Thus $w \in W(n, m)$. Inasmuch
as \(A \) is the union of all the sets \(W(n, m) \) we see by the Baire category theorem that some \(W(p, q) \) must contain a non-void open subset \(G_4 \) of \(A \). Let \(y_0 \in G_4 \). For each \(v \in A \) there is some real number \(b > 0 \) so that when \(0 \leq t \leq b \) either \([x^p, (y_0 + tv)^q] \in Z \) for all \(x \in A \) or \(x^p \cdot (y_0 + tv)^q \in Z \) for all \(x \in A \). Now at least one of these alternatives is valid for infinitely many real \(t \). Reasoning already used shows that either \([x^p, v^q] \in Z \) for all \(x \in Z, v \in A \) or \(x^p \cdot v^q \in Z \) for all \(x \in A, v \in A \). If \(A \) is semiprime then \(A \) is now seen to be commutative by Theorem 1.

In the proof of Theorem 2 we needed \(m > 1 \) and \(n > 1 \) in order to use Theorem 1. If \(A \) has an identity we can do with \(m \geq 1, n \geq 1 \), as we do not then cite Theorem 1.

Theorem 3. Suppose that \(A \) has an identity \(e \) and that there are non-empty open subsets \(G_1, G_2 \) of \(A \) where, for each \(x \in G_1, y \in G_2 \), there are integers \(m = m(x, y), n = n(x, y) \), \(m \geq 1, n \geq 1 \), such that either \([x^n, y^m] \in Z \) or \(x^n \cdot y^m \in Z \). If \(Z \) is semisimple then \(A \) is commutative.

By the proof of Theorem 2 there exist positive integers \(p, q \), \(p \geq 1, q \geq 1 \), so that either \([x^p, v^q] \in Z \) for all \(x, v \in A \) or \(x^p \cdot v^q \in Z \) for all \(x, v \in A \). In case \([x^p, v^q] \in Z \) for all \(x, v \in A \) we may replace \(v \) by \(e + tv \). Then \([x^p, (e + tv)^q] \in Z \) for all \(t \). The coefficient of \(t \) in the polynomial \([x^p, (e + tv)^q] = [x^p, v] \). Then \([x^p, v] \in Z \) for all \(x, v \in A \). Now replace \(x \) by \(e + tx \) and \([(e + tx)^p, v] \in Z \) for all \(t \). Then \([x, v] \in Z \) for all \(x, v \in Z \). Likewise if \(x^p \cdot v^q \in Z \) for all \(x, v \in A \), we see that \(x \cdot v \in Z \) for all \(x, v \in A \).

In the case that \(x \cdot v \in Z \) for all \(x, v \), set \(v = e \) to see that \(2x \in Z \) for all \(x \in A \). Then \(A \) is commutative. It remains to consider the case where \([x, v] \in Z \) for all \(x, v \in A \). By the Kleinecke–Shirokov theorem [1, Prop. 13, p.91] each \(w = [x, v] \) is a generalized nilpotent element of \(A \), that is, \(\lim \|w^n\|^{1/n} = 0 \). Then \([x, v] \) is a generalized nilpotent element in the commutative Banach algebra \(Z \) and so is in the radical of \(Z \). As \(Z \) is semisimple \([x, v] = 0 \) so that \(A \) is commutative.

We point out that is easy to show that \(Z \) is semisimple if \(A \) is semisimple. See, for example, [6, Lemma 2.1].

In the situation of Theorem 3 we next drop the requirement that \(Z \) be semisimple. Then \(A \) need not be commutative as the following example shows.

First let \(B \) be the three-dimensional complex algebra with basis \(\{a, b, c\} \) and multiplication given by

\[
(\lambda_1 a + \mu_1 b + \nu_1 c)(\lambda_2 a + \mu_2 b + \nu_2 c) = (\lambda_1 \mu_2 - \lambda_2 \mu_1)c
\]
where the λ_k, μ_k and ν_k are complex scalars. With the norm, say,

$$\|\lambda a + \mu b + \nu c\| = (|\lambda|^2 + |\mu|^2 + |\nu|^2)^{1/2}.$$

B is a Banach algebra (as the product of any three elements of B is zero, B is associative). Now let A be the Banach algebra obtained by adjoining an identity e to B where $\|\gamma e + x\| = |\gamma| + \|x\|$ for $x \in B$ and γ complex. For x, y in B we have

$$[\gamma_1 e + x, \gamma_2 e + y] = [x, y]$$

which is a multiple of c. Therefore, as c is in the center of A, we have $[v, w] \in Z$ for all $v, w \in A$. Hence the requirements of Theorem 3 for G_1 and G_2 hold if $G_1 = G_2 = A$. However A is not commutative.

For the purposes of the next theorem we discuss a point in the theory of non-associative algebras. Let K be a non-associative algebra. By the center of K is meant [5, p.14] the set of all $z \in K$ where $zx = xz$ for all $x \in K$ and where

$$(x, y, z) = (z, x, y) = (x, z, y) = 0$$

for all $x, y \in K$. Here (a, b, c) is the associator of the elements $a, b \text{ and } c$,

$$(a, b, c) = (ab)c - a(bc).$$

Now we consider A as a non-associative algebra A^J with its multiplication the Jordan multiplication $x \cdot y = xy + yx$. Let Z^J be the center of A^J according to the above definition of center.

For a Lie ideal U of A as in [3, p.5] we set

$$T(U) = \{x \in A : [x, A] \subset U\}.$$

As noted there $T(U)$ is both a subalgebra and a Lie ideal of A and $T(U) \supset U$.

Lemma. For A we have $Z^J = T(Z)$.

Proof. A straight-forward calculation shows that

$$(a \cdot b) \cdot c - a \cdot (b \cdot c) = [b, [a, c]]$$

for all $a, b \text{ and } c \in A$. Then Z^J is the set of all $z \in A$ such that

$$[x, [y, z]] = [z, [x, y]] = [y, [z, x]] = 0$$

for all $x, y \in A$. Thus we see that $Z^J \subset T(Z)$. Conversely suppose that $z \in T(Z)$ so that $[[z, x], y] = 0$ for all $x, y \in A$. Inasmuch as the Jacobi identity gives us

$$[[x, y], z] + [[y, z], x] + [[z, x], y] = 0$$

for all $x, y, z \in A$, we also get $T(Z) \subset Z^J$. Also, as $Z \subset T(Z)$, we have $Z \subset Z^J$.
Theorem 4. Let A be a Banach algebra with identity e which satisfies the requirements on G_1 and G_2 of Theorem 3. Then $A = Z^J$.

Proof. As shown in the proof of Theorem 3 either A is commutative (so that also $A = Z^J$) or $[x, y] \in Z$ for all $x, y \in A$. Then $A = T(Z) = Z^J$ by the above lemma.

References

BERTRAM YOOD
DEPARTMENT OF MATHEMATICS
PENNSYLVANIA STATE UNIVERSITY
UNIVERSITY PARK, PA 16802
U.S.A.

(Received December 23, 1992; revised November 29, 1993)