A normality relationship between two families
and its applications

By YAN XU (Nanjing)

Abstract. Let \(k \) be a positive integer, and let \(F \) be a family of meromorphic
functions defined in a domain \(D \subset \mathbb{C} \), all of whose zeros have multiplicity at least \(k \),
and there exists \(M > 0 \) such that \(|f(z)| \leq M \) whenever \(f(z) = 0 \) for \(f \in F \).
If \(F_k = \{ f^{(k)} : f \in F \} \) is normal, then \(F \) is also normal in \(D \). Some applications of this
result are given.

1. Introduction

Let \(D \) be a domain in \(\mathbb{C} \), and \(F \) be a family of meromorphic functions defined
on \(D \). \(F \) is said to be normal on \(D \), in the sense of Montel, if for any sequence
\(\{ f_n \} \in F \) there exists a subsequence \(\{ f_{n_j} \} \), such that \(\{ f_{n_j} \} \) converges spherically
locally uniformly on \(D \), to a meromorphic function or \(\infty \) (see [6], [9], [12]).

Let \(k \) be a positive integer. Consider the family \(F_k \) consisting of \(k \)th deriva-
tive functions of all \(f \in F \), that is, \(F_k = \{ f^{(k)} : f \in F, z \in D \} \). It is natural to
consider the normality relation between these two families. However, the following
examples show that there seems no direct relation between \(F \) and \(F_k \).

Example 1. Let \(\Delta = \{ z : |z| < 1 \} \), and \(F = \{ f_n(z) = n(z^2 - n^2) : n = 1, 2, \ldots \} \).
Then \(F_1 = \{ f'_n(z) = 2nz : n = 1, 2, \ldots \} \). For each \(z \in \Delta \),

\[
f''_n(z) = \frac{|2nz|}{1 + |n(z^2 - n^2)|^2} \leq \frac{2n}{1 + (n^3 - n)^2} \to 0
\]

Mathematics Subject Classification: 30D45.
Key words and phrases: meromorphic function, derivative function, normal family.
The author is supported by NSFC (Grant Nos. 10871094;11171045).
as \(n \to \infty \), where \(f_n^\#(z) = |f_n'(z)|/(1 + |f_n(z)|^2) \) is the spherical derivative of \(f_n \). By Marty’s criterion, \(\mathcal{F} \) is normal in \(\Delta \). But it is easy to see that \(\mathcal{F}_1 \) is not normal in \(\Delta \).

Example 2. Let \(\Delta = \{ z : |z| < 1 \} \), and \(\mathcal{F} = \{ f_n(z) = nz : n = 1, 2, \ldots \} \). Then \(\mathcal{F}_1 = \{ f_n'(z) = n : n = 1, 2, \ldots \} \). Clearly, \(\mathcal{F}_1 \) is normal in \(\Delta \); but \(\mathcal{F} \) is not normal in \(\Delta \).

In 1996, CHEN and LAPPAN [2] first gave an interesting normality relation between \(\mathcal{F} \) and \(\mathcal{F}_k \) under an additional condition, as follows.

Theorem A ([2, Corollary 4]). Let \(k \) be a positive integer, and let \(\mathcal{F} \) be a family of meromorphic functions defined in a domain \(D \), all of whose zeros have multiplicity at least \(k+1 \). If \(\mathcal{F}_k = \{ f^{(k)} : f \in \mathcal{F} \} \) is normal, then \(\mathcal{F} \) is also normal in \(D \).

In this paper, by using a different method from that in [2], we first give an extension to the above result, as follows.

Theorem 1. Let \(k \) be a positive integer, and let \(\mathcal{F} \) be a family of meromorphic functions defined in a domain \(D \), all of whose zeros have multiplicity at least \(k \), and there exists \(M > 0 \) such that \(|f^{(k)}(z)| \leq M \) whenever \(f(z) = 0 \), \(f \in \mathcal{F} \). If \(\mathcal{F}_k = \{ f^{(k)} : f \in \mathcal{F} \} \) is normal, then \(\mathcal{F} \) is also normal in \(D \).

Remark 1. Theorem 1 is sharp, which can also be shown by Example 2.

The above normality relation between \(\mathcal{F} \) and \(\mathcal{F}_k \) is indeed useful to study normal families. In section 3, we shall give some applications of Theorem 1.

2. Proof of Theorem 1

We need the following well-known PANG–ZALCMAN lemma, which is the local version of [8, Lemma 2](cf. [13, pp. 216–217]).

Lemma 1. Let \(k \) be a positive integer and let \(\mathcal{F} \) be a family of functions meromorphic in a domain \(D \), all of whose zeros have multiplicity at least \(k \), and suppose that there exists \(A \geq 1 \) such that \(|f^{(k)}(z)| \leq A \) whenever \(f(z) = 0 \), \(f \in \mathcal{F} \). Then if \(\mathcal{F} \) is not normal at \(z_0 \in D \), there exist, for each \(\alpha, 0 \leq \alpha \leq k \),

- (a) points \(z_n \in D, z_n \to z_0 \),
- (b) positive numbers \(\rho_n \to 0 \), and
- (c) functions \(f_n \in \mathcal{F} \)
such that \(g_n(\zeta) = \rho_n^{-\alpha} f_n(z_n + \rho_n \zeta) \to g(\zeta) \) locally uniformly with respect to the spherical metric, where \(g \) is a nonconstant meromorphic function in \(\mathbb{C} \), all of whose zeros have multiplicity at least \(k \), such that \(g^#(\zeta) \leq g^#(0) = kA + 1 \).

Proof of Theorem 1. Suppose that \(\mathcal{F} \) is not normal at \(z_0 \in D \). By Lemma 1, there exist functions \(f_n \in \mathcal{F} \), points \(z_n \to z_0 \) and positive numbers \(\rho_n \to 0 \), such that

\[
g_n(\zeta) = \frac{f_n(z_n + \rho_n \zeta)}{\rho_n^k} \to g(\zeta)
\]

converges spherically uniformly on compact subsets of \(\mathbb{C} \), where \(g(\zeta) \) is a nonconstant meromorphic function in \(\mathbb{C} \), all of whose zeros have multiplicity at least \(k \), and \(g^#(\zeta) \leq g^#(0) = kM + 1 \). (Without loss of generality, we assume that \(M > 1 \)).

From (1), we have

\[
g_n^{(k)}(\zeta) = f_n^{(k)}(z_n + \rho_n \zeta) \to g^{(k)}(\zeta)
\]

converges uniformly on compact subsets of \(\mathbb{C} \) disjoint from the poles of \(g \). Suppose that \(g(\zeta_0) = 0 \), by Hurwitz’s theorem, there exist \(\zeta_n \to \zeta_0 \) such that \(f_n(z_n + \rho_n \zeta_n) = 0 \). By the assumption of Theorem 1, we have \(|f_n^{(k)}(z_n + \rho_n \zeta_n)| \leq M \). Now, it follows from (2) that \(|g^{(k)}(\zeta_0)| \leq M \). This proves that \(|g^{(k)}| \leq M \) whenever \(g = 0 \).

We claim that \(g \) cannot be a polynomial of degree less than \(k + 1 \). Indeed, \(g \) cannot be a polynomial of degree less than \(k \) since all zeros of \(g \) have multiplicity at least \(k \). Now assume that \(g \) is a polynomial of degree \(k \). It follows that \(g \) has the form

\[
g(\zeta) = \frac{A}{k!}(\zeta - \alpha)^k
\]

where \(A, \alpha \) are complex numbers. Since \(g = 0 \Rightarrow |g^{(k)}| \leq M \), we see that \(|A| \leq M \). Calculating \(g^#(0) \), we get

\[
g^#(0) = \frac{|A| |\alpha|^{k-1}}{1 + \left(\frac{|A| |\alpha|^k}{k!}\right)^2} = \frac{k}{|\alpha|} \cdot \frac{|A| |\alpha|^k}{1 + \left(\frac{|A| |\alpha|^k}{k!}\right)^2}.
\]

From the middle expression, we see that \(g^#(0) \leq |A| \) if \(|\alpha| \leq 1 \), and from the expression on the right we see that \(g^#(0) < k/2 \) if \(|\alpha| > 1 \). But these contradict the fact that \(g^#(0) = kM + 1 \) and \(|A| \leq M \).

Hence, there exist a point \(\zeta_0 \) and \(M_1 > 0 \) such that

\[
M_1^{-1} \leq |g^{(j)}(\zeta_0)| \leq M_1, \quad \text{for } j = k, k + 1.
\]
It follows that $(2M_1)^{-1} \leq |g_n^{(j)}(\zeta_0)| \leq 2M_1(j = k, k + 1)$ for sufficiently large n. From (2), $g_n^{(k)}(\zeta_0) = f_n^{(k)}(z_n + \rho_n \zeta_0)$, and then $|f_n^{(k)}(z_n + \rho_n \zeta_0)| \leq 2M_1$ for sufficiently large n. So we have

$$(2M_1)^{-1} \leq |g_n^{(k+1)}(\zeta_0)| = \rho_n |f_n^{(k+1)}(z_n + \rho_n \zeta_0)| \leq \rho_n (1 + 4M_2) \frac{|f_n^{(k+1)}(z_n + \rho_n \zeta_0)|}{1 + |f_n^{(k)}(z_n + \rho_n \zeta_0)|^2},$$

for sufficiently large n.

On the other hand, by Marty’s criterion, the normality of the family F_k implies that for each compact subset $K \subset D$, there exists a positive number M_2 such that

$$\frac{|f^{(k+1)}(z)|}{1 + |f^{(k)}(z)|^2} \leq M_2$$

for each $f \in F$ and $z \in K$. Then, for sufficiently large n, we have

$$\frac{|f_n^{(k+1)}(z_n + \rho_n \zeta_0)|}{1 + |f_n^{(k)}(z_n + \rho_n \zeta_0)|^2} \leq M_2.$$

Substituting (5) in (4), we obtain

$$(2M_1)^{-1} \leq |g_n^{(k+1)}(\zeta_0)| \leq \rho_n (1 + 4M_2^2) M_2 \to 0,$$

as $n \to \infty$, a contradiction. Theorem 1 is thus proved.

3. Some applications of Theorem 1

In this section, we shall give some applications of Theorem 1.

Recently, Chang [1] proved the following result, which improve and generalize the related results due to Pang and Zalcman [8], Fang and Zalcman [5].

Theorem B ([1, Theorem 1]). Let F be a family of meromorphic functions defined in a domain D, let a, b be two nonzero complex numbers such that $a/b \notin \mathbb{N} \setminus \{1\}$. If, for each $f \in F$, $f = a \Rightarrow f'(z) = a$, and $f'(z) = b \Rightarrow f''(z) = b$ in D, then F is normal.

There is an example [1, Example 1], which shows that the condition ‘$a/b \notin \mathbb{N} \setminus \{1\}$’ in Theorem B is necessary. Chang proved another result without the condition ‘$a/b \notin \mathbb{N} \setminus \{1\}$’, as follows.
Theorem C ([1, Theorem 2]). Let \mathcal{F} be a family of meromorphic functions defined in a domain D, let a, b be two nonzero complex numbers. If, for each $f \in \mathcal{F}$, $f = a \Rightarrow f'(z) = a, f''(z) \neq b$ in D, then \mathcal{F} is normal.

Remark 2. Chang also gave another example [1, Example 2] to show that the condition $f''(z) \neq b$ in Theorem C can not be omitted. However, it is easy to see that $f''(z) \neq b$ in Theorem C is not necessary for the case $a = b(\neq 0)$. Indeed, $f = a \Rightarrow f'(z) = a$ and $f''(z) \neq b$ yield that $f \neq a$ and $f' \neq a$ since $a = b$, then Gu’s normal criterion [3] implies that \mathcal{F} is normal. We also find that ‘a is nonzero’ in Theorem C can be removed. In fact, if $a = 0$ and $b \neq 0$, noting that $f' \neq b$ and $f'' \neq b$, Gu’s normal criterion asserts that $\mathcal{F}_1 = \{f' : f \in \mathcal{F}\}$ is normal in D. Since $f = 0 \Rightarrow f' = 0$, we conclude from Theorem 1 that \mathcal{F} is also normal in D.

Here, by using Theorem 1 and some known results, we can prove the following results, which improve and generalize Theorem C much more.

Theorem 2. Let a, b, c be three complex numbers with $c \neq 0$, k, l be two positive integers, and let \mathcal{F} be a family of meromorphic functions defined in a domain D. Suppose that, for each $f \in \mathcal{F}$ and $z \in D$,

1. all zeros of $f - a$ have multiplicity at least k, and there exists $M > 0$ such that $f = a \Rightarrow |f^{(k)}| \leq M$;
2. all zeros of $f^{(k)} - b$ have multiplicity at least $l + 1$, and $f^{(k+l)} \neq c$.

Then \mathcal{F} is normal in D.

Let $k = l = 1$ and $b = c$ in Theorem 2, we have

Corollary 1. Let a, b be two complex numbers with $b \neq 0$, and let \mathcal{F} be a family of meromorphic functions defined in a domain D. Suppose that, for each $f \in \mathcal{F}$ and $z \in D$,

1. there exists $M > 0$ such that $f = a \Rightarrow |f'| \leq M$;
2. all zeros of $f' - b$ have multiplicity at least 2, and $f'' \neq b$.

Then \mathcal{F} is normal in D.

Obviously, the above results improve and generalize Theorem C.

Next we give some more general extensions of Theorem C by extending constants ‘a, b, c’ in Theorem 2 to functions ‘$a(z), b(z), c(z)$’.

Theorem 3. Let k, l be two positive integers, D be a domain in \mathbb{C}, let $a(z)$, $b(z)$ be two holomorphic functions in D, and $c(z)$ be a meromorphic function in D such that $c(z) \neq \infty$ and $c(z) \neq b'(z)$, and let \mathcal{F} be a family of meromorphic functions defined in D. Suppose that, for each $f \in \mathcal{F}$ and $z \in D$,
(i) all zeros of \(f(z) - a(z) \) have multiplicity at least \(k \), and there exists \(M > 0 \) such that \(f(z) = a(z) \Rightarrow |f^{(k)}| \leq M \);
(ii) all zeros of \(f^{(k)}(z) - b(z) \) have multiplicity at least \(k \), and \(f^{(k+1)}(z) \neq c(z) \).

Then \(\mathcal{F} \) is normal in \(D \).

Theorem 4. Let \(k, l \geq 2 \) be two positive integers, \(D \) be a domain in \(\mathbb{C} \), let \(a(z), b(z) \) be two holomorphic functions in \(D \), and \(c(z) \) be a meromorphic function in \(D \) such that \(c(z) \neq \infty \) and \(c(z) \neq b^{(l)}(z) \), and let \(\mathcal{F} \) be a family of meromorphic functions defined in \(D \). Suppose that, for each \(f \in \mathcal{F} \) and \(z \in D \),

(i) all zeros of \(f(z) - a(z) \) have multiplicity at least \(k \), and there exists \(M > 0 \) such that \(f(z) = a(z) \Rightarrow |f^{(k)}| \leq M \);
(ii) all zeros of \(f^{(k)}(z) - b(z) \) have multiplicity at least \(l + 1 \), and \(f^{(k+1)}(z) \neq c(z) \).

Then \(\mathcal{F} \) is normal in \(D \).

Remark 3. If \(k = 1 \), the condition ‘all zeros of \(f - a \) or \((f - a(z)) \) have multiplicity at least \(k \)’ in Theorem 2–4 holds naturally, and then can be removed.

Remark 4. The condition \(c \neq 0 \) in Theorem 2 (\(b \neq 0 \) in Corollary 1), \(c(z) \neq b'(z) \) in Theorem 3, and \(c(z) \neq b^{(l)}(z) \) in Theorem 4 can not be omitted, as is shown by the following examples.

Example 3. Let \(\Delta = \{ z : |z| < 1 \} \), \(a \neq 0 \) and \(b = c = 0 \), and let \(\mathcal{F} = \{ f_n(z) = e^{az} + a : n = 1, 2, \ldots ; z \in \Delta \} \). Obviously, \(f_n(z) \neq a \), thus \(f(z) = a \Rightarrow f^{(1)} = a \);
\(f'_n(z) = ne^{az} \neq 0 \), and \(f''_n(z) = n^2e^{az} \neq 0 \). Then all conditions excepting \(c \neq 0 \) (or \(c \neq 0 \)) of Theorem 2 (Corollary 1) are satisfied. But \(\mathcal{F} \) is not normal in \(\Delta \).

Example 4. Let \(\Delta = \{ z : |z| < 1 \} \), \(a(z) = b(z) = c(z) = e^z \), and let \(\mathcal{F} = \{ f_n(z) = e^{az} + e^z : n = 1, 2, \ldots ; z \in \Delta \} \). It is easy to see that all conditions excepting \(c(z) \neq b'(z) \) (\(c(z) \neq b^{(l)}(z) \)) of Theorem 3–4 are satisfied. But \(\mathcal{F} \) is not normal in \(\Delta \).

Remark 5. Example 4 also shows that ‘nonzero constants \(a, b \)’ in Theorem B can not be replaced two nonconstant functions (even for non-vanishing holomorphic functions).

To prove the above theorems, we need some known results.

Lemma 2 ([10, Theorem 5]). Let \(k \) be a positive integer, and let \(\mathcal{F} \) be a family of meromorphic functions defined in a domain \(D \), all of whose poles are multiple and whose zeros all have multiplicity at least \(k + 1 \). If, for each \(f \in \mathcal{F} \), \(f^{(k)}(z) \neq 1 \) in \(D \), then \(\mathcal{F} \) is normal in \(D \).
Lemma 3 ([7, Theorem 1.3], cf. [11, Theorem 2]). Let \(F \) be a family of meromorphic functions defined in a domain \(D \), all of whose poles are multiple and whose zeros all have multiplicity at least 3, and let \(\psi(z)(\neq 0, \infty) \) be a function meromorphic in \(D \). If, for each \(f \in F \) and for each \(z \in D \), \(f'(z) \neq \psi(z) \), then \(F \) is normal in \(D \).

Lemma 4 ([14, Theorem 2]). Let \(k \geq 2 \) be an integer, \(F \) be a family of meromorphic functions defined in a domain \(D \), all of whose poles are multiple and whose zeros all have multiplicity at least \(k + 1 \), and let \(\psi(z)(\neq 0, \infty) \) be a function meromorphic in \(D \). If, for each \(f \in F \) and for each \(z \in D \), \(f^{(k)}(z) \neq \psi(z) \), then \(F \) is normal in \(D \).

Proof of Theorem 2. Let \(G = \{g = f^{(k)} - b : f \in F\} \). Obviously, the poles of \(g \) have multiplicity at least \(k + 1 \geq 2 \). By the assumptions of theorem, for each \(g \in G \), all zeros of \(g \) have multiplicity at least \(l + 1 \), and \(g^{(l)} = f^{(k+l)} \neq c \). Lemma 2 implies that \(G \) is normal in \(D \). Hence, the family \(H_k = ((f-a)^{k} : f \in F, z \in D) \) is also normal in \(D \), where \(H = \{f - a : f \in F\} \). Noting condition (1), by Theorem 1, we get that \(H \) is normal, and then \(F \) is normal in \(D \). Theorem 2 is proved.

Proof of Theorem 3. Since normality is a locally property, we only need to prove \(F \) is normal at each point in \(D \).

Let \(z_0 \in D \), then there exists \(\delta > 0 \) such that \(D_\delta(z_0) \subset D \), where \(D_\delta(z_0) = \{z : |z - z_0| \leq \delta\} \). Let \(G = \{g(z) = f^{(k)}(z) - b(z) : f \in F\} \). Clearly, all poles of \(g \in G \) are multiple. By the hypotheses of the theorem, for each \(g \in G \), all zeros of \(g \) have multiplicity at least 3. Noting that \(b(z) \) is holomorphic and \(f^{(k+1)}(z) \neq c(z) \), we have \(g' = f^{(k+1)}(z) - b'(z) \neq c(z) - b'(z) (\neq 0) \). Then, by Lemma 3, \(G \) is normal in \(D \), and then in \(D_\delta(z_0) = \{z : |z - z_0| < \delta\} \). It follows that the family \(H_k = \{(f(z) - a(z))^{(k)} : f \in F\} \) is normal in \(D_\delta(z_0) \), where \(H = \{h = f(z) - a(z) : f \in F\} \). By the hypotheses of the theorem, for each \(h \in H \), all zeros of \(h \) have multiplicity at least \(k \). Moreover, if \(h(z) = 0 \), that is, \(f(z) = a(z) \), then \(|f^{(k)}(z)| \leq M \), and thus

\[
|h^{(k)}(z)| \leq M + |a^{(k)}(z)|.
\]

Noting that \(a(z) \) is holomorphic in \(D \), there exists \(M_1 > 0 \) such that \(|a^{(k)}(z)| \leq M_1 \) in \(D_\delta(z_0) \), and then in \(D_\delta(z_0) \). We get that \(h(z) = 0 \Rightarrow |h^{(k)}(z)| \leq M_2 \) for \(z \in D_\delta(z_0) \), where \(M_2 = M + M_1 \). By Theorem 1, \(H \) is normal in \(D_\delta(z_0) \). It follows that \(F \) is normal in \(D_\delta(z_0) \), and this means that \(F \) is normal at \(z_0 \). Theorem 3 is thus proved.
Proof of Theorem 4. Using the same argument as in Theorem 3 and Lemma 4, we can prove Theorem 4. We here omit the details. □

Next we give another application of Theorem 1. In [4], Fang and Chang gave an extension to Gu’s normal criterion in some sense, by allowing \(f^{(k)} - 1 \) have zeros but restricting the zeros of \(f^{(k)} \), as follows.

Theorem D ([4, Theorem 1]). Let \(\mathcal{F} \) be a family of meromorphic functions defined in a domain \(D \), and let \(k \) be a positive integer. If, for each \(f \in \mathcal{F}, \ f \neq 0 \), \(f^{(k)} \neq 0 \) and the zeros of \(f^{(k)} - 1 \) have multiplicity at least \((k + 2)/k \), then \(\mathcal{F} \) is normal.

Here, we can prove the following extension of Theorem D.

Theorem 5. Let \(k, l_1, l_2 \) be three positive integers (\(l_1, l_2 \) can be \(\infty \)) with \(1/l_1 + 1/l_2 < k/(k + 1) \), and let \(\mathcal{F} \) be a family of meromorphic functions defined in a domain \(D \). Suppose that, for each \(f \in \mathcal{F} \) and \(z \in D \),

1. all zeros of \(f \) have multiplicity at least \(k \) and there exists \(M > 0 \) such that \(|f^{(k)}(z)| \leq M \) whenever \(f(z) = 0 \);
2. all zeros of \(f^{(k)} \) have multiplicity at least \(l_1 \); and
3. all zeros of \(f^{(k)} - 1 \) have multiplicity at least \(l_2 \).

Then \(\mathcal{F} \) is normal in \(D \).

Remark 6. We should indicate that Theorem 5 can be followed from [4, Theorem 2] if condition (1) is replaced by a stronger condition “all zeros of \(f \) have multiplicity at least \(k + 1 \)”. However, the method in [4] does not work here, and our proof is very simple.

To prove Theorem 5, we need the following classical result due to Bloch and Valiron, which can be found in [6], [9], [12].

Lemma 5. Let \(a_1, a_2, \ldots, a_q \) be \(q \) distinct complex numbers, and \(l_1, l_2, \ldots, l_q \) be positive integers (may equal to \(\infty \)) with \(\sum_{i=1}^{q}(1-1/l_i) > 2 \). Let \(\mathcal{F} \) be a family of meromorphic functions defined in a domain \(D \). If, for each \(f \in \mathcal{F} \), the zeros of \(f - a_i \) have multiplicity at least \(l_i \) \((i = 1, 2, \ldots, q) \) in \(D \), then \(\mathcal{F} \) is normal in \(D \).

Proof of Theorem 5. Obviously, the poles of \(f^{(k)} \) have multiplicity at least \(k + 1 \). Since

\[
\frac{1}{l_1} + \frac{1}{l_2} < \frac{k}{k + 1},
\]

we have

\[
\left(1 - \frac{1}{l_1}\right) + \left(1 - \frac{1}{l_2}\right) + \left(1 - \frac{1}{k + 1}\right) > 2.
\]
Let $q = 3$, $a_1 = 0$, $a_2 = 1$ and $a_3 = \infty$, applying Lemma 6 for $F_k = \{f^{(k)} : f \in F\}$, we know that F_k is normal in D. Noting condition (1), Theorem 1 implies that F is also normal in D. Theorem 5 is proved.

Acknowledgement. The author thanks Professor H. H. Chen for helpful discussions. The author also thanks the referee for his/her valuable comments and suggestions made to this paper.

References

YAN XU
INSTITUTE OF MATHEMATICS
DEPARTMENT OF MATHEMATICS
NANJING NORMAL UNIVERSITY
NANJING 210046
P.R. CHINA

E-mail: xuyan@nju.edu.cn

(Received February 26, 2010; revised February 24, 2011)