The convergence of the sequences coding the ground model reals

By MILOŠ S. KURILIĆ (Novi Sad) and ALEKSANDAR PAVLOVIĆ (Novi Sad)

Abstract. We investigate the convergence λ_1 on a complete Boolean algebra \mathbb{B} defined in the following way: a sequence $x = \langle x_n : n \in \omega \rangle$ in \mathbb{B} converges to the point $\limsup x$ of \mathbb{B}, if in each generic extension $V_\mathbb{B}[G]$ the real coded by the name $\tau_x = \{(\bar{n}, x_n) : n \in \omega\}$ belongs to the ground model V; otherwise, x has no limit points. It is shown that λ_1 generates the same topology as the convergence $\bar{\lambda}_4$, generalizing the sequential convergence on the Aleksandrov cube and that for a c.B.a. \mathbb{B} the following conditions are equivalent: (1) The algebra \mathbb{B} is $(\omega, 2)$-distributive; (2) The (L2)-closure of λ_1, $\bar{\lambda}_1$, is a topological convergence; (3) $\bar{\lambda}_1 = \bar{\lambda}_4$; (4) $\lambda_1 = \lambda_4$; and, for the algebras satisfying $\text{hcc}(\mathbb{B}) > \mathfrak{c}$, (5) λ_1 is a weakly topological convergence. Also, it is shown that the convergence $\bar{\lambda}_1$ is not weakly topological, if forcing by \mathbb{B} produces splitting reals.

1. Preliminaries

Topologies and convergence structures on Boolean algebras as well as the interplay between the topological, algebraic and forcing-related properties of Boolean algebras are extensively investigated. The results concerning this interplay are useful because, for example, they enable us to attack algebraic problems by topological methods (see e.g. [3]) or topological problems using the techniques of forcing [7].

In this paper we investigate the convergence λ_1 on an arbitrary complete...
Boolean algebra \mathcal{B} defined in the following way: a sequence $x = (x_n : n \in \omega)$ converges to $\limsup x$, if $1 \vdash \tau_x \in V$, where $\tau_x = \{ (\tilde{n}, x_n) : n \in \omega \}$ and, otherwise, x has no limit points. In addition, we compare this convergence with some convergences considered in [8]. One of them is the algebraic convergence [11], [1] related to the von Neumann and the Maharam problem and generalizing the convergence on the Cantor cube; another one is a generalization of the convergence on the Alexandrov cube considered in [9].

Our notation is mainly standard. So, ω denotes the set of natural numbers, Y^X the set of all functions $f : X \to Y$ and ω^ω the set of all strictly increasing functions from ω into ω. A sequence in a set X is each function $x : \omega \to X$; instead of $x(n)$ we usually write x_n and also $x = (x_n : n \in \omega)$. The constant sequence $\langle a, a, a, \ldots \rangle$ is denoted by $\langle a \rangle$. If $f \in \omega^\omega$, the sequence $y = x \circ f$ is said to be a subsequence of the sequence x and we write $y \prec x$.

If (X, O) is a topological space, a point $a \in X$ is said to be a limit point of a sequence $x \in X^\omega$ (we will write: $x \xrightarrow{O} a$) iff each neighborhood U of a contains all but finitely many members of the sequence. A space (X, O) is called sequential iff a set $A \subseteq X$ is closed whenever it contains each limit of each sequence in A.

If X is a non-empty set, each mapping $\lambda : X^\omega \to P(X)$ is a convergence on X and the mapping $u_\lambda : P(X) \to P(X)$, defined by $u_\lambda(A) = \bigcup_{x \in A^\omega} \lambda(x)$, is called the operator of sequential closure determined by λ. If λ_1 is another convergence on X, then we will write $\lambda \leq \lambda_1$ iff $\lambda(x) \subseteq \lambda_1(x)$, for each sequence $x \in X^\omega$. Clearly, \leq is a partial order on the set $\operatorname{Conv}(X) = \{ \lambda : \lambda$ is a convergence on $X \}$. If (X, O) is a topological space, then the mapping $\lim_O : X^\omega \to P(X)$ defined by $\lim_O(x) = \{ a \in X : x \xrightarrow{O} a \}$ is the convergence on X determined by the topology O and for the operator $\lambda = \lim_O$ we have (see [2])

(L1) $\forall a \in X \ a \in \lambda(\langle a \rangle)$;
(L2) $\forall x \in X^\omega \ \forall y \prec x \ \lambda(x) \subseteq \lambda(y)$;
(L3) $\forall x \in X^\omega \ \forall a \in X \ (\forall y \prec x \exists z \prec y \ a \in \lambda(z)) \Rightarrow a \in \lambda(x)$.

A convergence $\lambda : X^\omega \to P(X)$ is called a topological convergence iff there is a topology O on X such that $\lambda = \lim_O$. The following fact (see, for example, [8]) shows that each convergence has a minimal topological extension and connects topological and convergence structures.

Fact 1.1. Let $\lambda : X^\omega \to P(X)$ be a convergence on a non-empty set X. Then

(a) There is the maximal topology O_λ on X satisfying $\lambda \leq \lim_{O_\lambda}$;

(b) $O_\lambda = \{ O \subseteq X : \forall x \in X^\omega \ (O \cap \lambda(x) \neq \emptyset \Rightarrow \exists n_0 \in \omega \ \forall n \geq n_0 \ x_n \in O) \}$.

The convergence of the sequences coding the ground model reals 279

(c) \(\langle X, \mathcal{O}_\lambda \rangle \) is a sequential space;
(d) \(\mathcal{O}_\lambda = \{ X \setminus F : F \subseteq X \land u_\lambda(F) = F \} \), if \(\lambda \) satisfies (L1) and (L2);
(e) \(\lim_{\mathcal{O}_\lambda} = \min \{ \lambda' \in \text{Conv}(X) : \lambda' \text{ is topological and } \lambda \leq \lambda' \} \);
(f) \(\mathcal{O}_{\lim_{\mathcal{O}_\lambda}} = \mathcal{O}_\lambda \);
(g) If \(\lambda_1 : X^w \to P(X) \) and \(\lambda_1 \leq \lambda_0 \), then \(\mathcal{O}_\lambda \subseteq \mathcal{O}_{\lambda_1} \);
(h) \(\lambda \) is a topological convergence iff \(\lambda = \lim_{\mathcal{O}_\lambda} \).

In our proofs we will mainly use the technique of forcing (see [4]). So, if \(\mathcal{B} \) is a complete Boolean algebra belonging to the ground model \(V \) of ZFC, \(V^\mathcal{B} \) will be the class of \(\mathcal{B} \)-names. For a formula \(\varphi(v_0, \ldots, v_n) \) and \(\tau_0, \ldots, \tau_n \in V^\mathcal{B} \) the corresponding Boolean value will be denoted by \(\| \varphi(\tau_0, \ldots, \tau_n) \|. \) If \(G \) is a \(\mathcal{B} \)-generic filter over \(V \) and \(\tau \in V^\mathcal{B} \), the \(G \)-evaluation of \(\tau \) will be denoted by \(\tau_G \).

For \(A \in V \), the corresponding \(\mathcal{B} \)-name will be \(\dot{A} = \{ (a, 1) : a \in A \} \).

Subsets of \(\omega \) are called \emph{reals} and can be coded by convenient names. Namely, each real belonging to a generic extension has a nice name of the form \(\tau_x = \{ \langle \dot{n}, x_n \rangle : n \in \omega \} \), where \(x_n = \| \dot{n} \in \tau \| \), for each \(n \in \omega \).

A real \(r \in [\omega]^w \cap V^\mathcal{B} [G] \) will be called: new iff \(r \notin V \); old iff \(r \in V \); dependent iff there is \(A \in [\omega]^w \cap V \) such that \(A \subset r \) or \(A \subset \omega \setminus r \); independent or a splitting real iff it is not dependent [6]; supported iff there is \(A \in [\omega]^w \cap V \) such that \(A \subset r \); unsupported if it is not supported [5]. Using the elementary properties of forcing it is easy to prove the following two facts (see [9])

Fact 1.2. Let \(x = \langle x_n : n \in \omega \rangle \) be a sequence in a complete Boolean algebra \(\mathcal{B} \) and \(\tau_x = \{ \langle \dot{n}, x_n \rangle : n \in \omega \} \) the corresponding \(\mathcal{B} \)-name for a subset of \(\omega \). Then

(a) \(\| \tau_x \in \omega \| = \bigwedge_{n \in \omega} x_n \);
(b) \(\| \tau_x \text{ is cofinite} \| = \bigvee_{k \in \omega} \bigwedge_{n \geq k} x_n = (\lim \inf x) \);
(c) \(\| \tau_x \text{ is old infinite} \| = \bigvee_{A \in [\omega]^w} \bigwedge_{n \in \omega} x_n^{\lambda \leq (n)} \); where \(x_n^1 = x_n, x_n^0 = x'_n \).
(d) \(\| \tau_x \text{ is supported} \| = \bigvee_{A \in [\omega]^w} \bigwedge_{n \in A} x_n \);
(e) \(\| \tau_x \text{ is dependent} \| = \bigvee_{A \in [\omega]^w} \bigwedge_{n \in A} x_n \lor \bigwedge_{n \in A} x'_n \);
(f) \(\| \tau_x \text{ is infinite} \| = \bigwedge_{k \in \omega} \bigvee_{n \geq k} x_n = (\lim \sup x) \);
(g) \(\| \tau_x = \omega \| \leq \| \tau_x \text{ is cofinite} \| \leq \| \tau_x \text{ is old infinite} \| \leq \| \tau_x \text{ is supported} \| \leq \| \tau_x \text{ is infinite dependent} \| \leq \| \tau_x \text{ is infinite} \| \).

Proof. We prove (c) and the rest of the proof is similar.

\[\| \tau_x \text{ is old infinite} \| = \| \exists A \in (\omega)^{\omega} \forall \forall n \in A (n \in \tau_x) \land \forall n \in \omega \setminus A (n \notin \tau_x) \| = \bigvee_{A \in [\omega]^w} \bigwedge_{n \in A} x_n \land \bigwedge_{n \in \omega \setminus A} x'_n = \bigvee_{A \in [\omega]^w} \bigwedge_{n \in \omega} x_n^{\lambda \leq (n)} . \]
Fact 1.3. If \(x = (x_n : n \in \omega) \) is a sequence in a c.B.a. \(B \) and \(f \in \omega^{\omega} \), then \(y = x \circ f \) is a subsequence of \(x \) and for the \(\mathbb{B} \)-names \(\tau_x \) and \(\tau_y \) we have

(a) \(1 \Vdash \tau_y = f^{-1}[\tau_x] \);
(b) \(\limsup y = \| f[\omega]^\omega \cap \tau_x \| = \check{\omega} \| \);
(c) \(\liminf y = \| f[\omega]^\omega \subseteq \ast \tau_x \| \);
(d) \(\liminf x \leq \liminf y \leq \limsup y \leq \limsup x \).

2. The convergence \(\lambda_1 \)

First, choosing a convenient notation, we present this research in the context of some previous results. Let \(B \) be a complete Boolean algebra and let the convergences \(\lambda_i : B^\omega \to P(B) \), for \(i \in \{0, 1, 2, 3, 4\} \), be defined by

\[
\lambda_i(x) = \begin{cases}
\{b_i(x)\} & \text{if } b_i(x) = b_4(x), \\
\emptyset & \text{if } b_i(x) < b_4(x),
\end{cases}
\]

where

\[
b_0(x) = \| \tau_x \text{ is cofinite} \| = \liminf x,
b_1(x) = \| \tau_x \text{ is old infinite} \|,
b_2(x) = \| \tau_x \text{ is supported} \|,
b_3(x) = \| \tau_x \text{ is infinite dependent} \|,
b_4(x) = \| \tau_x \text{ is infinite} \| = \limsup x.
\]

Then \(\lambda_0 \) is the well known algebraic convergence \[11\] generating the sequential topology \(O_{\lambda_0} \) on \(B \) \[1\] related to the von-Neumann and the Maharam problem, \(\lambda_1 \) will be considered in this paper and the convergences \(\lambda_2, \lambda_3 \) and \(\lambda_4 \) were investigated in \[8\] and \[9\] and are related in the following way (see \[8\]).

Fact 2.1. Let \(B \) be a complete Boolean algebra. Then

(a) \(\lambda_2 \leq \lambda_3 \leq \lambda_4 \);
(b) \(\lambda_2, \lambda_3 \) and \(\lambda_4 \) satisfy condition (L1), but do not satisfy (L2);
(c) \(\lambda_3 = \lambda_4 \) iff \(\lambda_2 = \lambda_4 \) iff the algebra \(B \) is \((\omega, 2) \)-distributive;
(d) \(\lambda_3 = \lambda_4 \) iff forcing by \(B \) does not produce splitting reals.

Thus \(\lambda_4(x) = \{ \limsup x \} \), if \(\| \tau_x \text{ is old infinite} \| = \| \tau_x \text{ is infinite} \| \) and \(\lambda_4(x) = \emptyset \), otherwise. Preliminarily we have
The convergence of the sequences coding the ground model reals

Theorem 2.2. Let \(\mathcal{B} \) be a complete Boolean algebra. Then

(a) For each sequence \(x \) in \(\mathcal{B} \) we have

\[
\lambda_1(x) = \begin{cases}
\{\limsup x\} & \text{if } 1 \Vdash \tau_x \text{ is old,} \\
\emptyset & \text{otherwise;}
\end{cases}
\]

(b) \(\lambda_0 \leq \lambda_1 \leq \lambda_2 \);

(c) The convergence \(\lambda_1 \) satisfies condition (L1), but does not satisfy (L2);

(d) \(\lambda_1 = \lambda_2 \) iff the algebra \(\mathcal{B} \) is \((\omega, 2)\)-distributive;

(e) \(\lambda_1 = \lambda_4 \) iff the algebra \(\mathcal{B} \) is \((\omega, 2)\)-distributive.

Proof. (a)

\[
\lambda_1(x) \neq \emptyset \iff \|\tau_x\text{ is infinite}\| \land \|\tau_x\text{ is old}\| = \|\tau_x\text{ is infinite}\|
\]

\[
\iff \|\tau_x\text{ is infinite}\| \leq \|\tau_x\text{ is old}\|
\]

\[
\iff 1 \Vdash \tau_x \text{ is infinite} \Rightarrow \tau_x \text{ is old}
\]

\[
\iff 1 \Vdash \tau_x \text{ is finite} \lor \tau_x \text{ is old}
\]

\[
\iff 1 \Vdash \tau_x \text{ is old.}
\]

(b) follows from Fact 1.2(g).

(c) For a constant sequence \(x = \langle a \rangle \) we have \(a \Vdash \tau_x = \bar{\omega} \) and \(a' \Vdash \tau_x = \emptyset \), which implies \(1 \Vdash "\tau_x \text{ is old}" \). Since \(\limsup x = a \), by (a) we have \(a \in \lambda_1(\langle a \rangle) \) and (L1) holds. For the sequence \(x = \langle 1, 0, 1, 0, \ldots \rangle \) we have \(1 \Vdash \tau_x = \{0, 2, 4, \ldots \} \in V \) and, by (a), \(\lambda_1(x) = \{\limsup x\} = \{1\} \). But \(y = \langle 0, 0, 0, \ldots \rangle \prec x \) and \(1 \Vdash \tau_y = \emptyset \), which, by (a), implies \(\lambda_1(y) = \{0\} \not\subseteq \lambda_1(x) \).

(d) By Theorem 7.5 of [8] for each sequence \(x \) in \(\mathcal{B} \) we have

\[
\lambda_2(x) = \begin{cases}
\{\limsup x\} & \text{if } 1 \Vdash \tau_x \text{ is finite or supported,} \\
\emptyset & \text{otherwise.}
\end{cases}
\]

(\(\Leftarrow \)) If \(\mathcal{B} \) is \((\omega, 2)\)-distributive, it does not produce new reals and, hence, for each sequence \(x \) in \(\mathcal{B} \) we have \(1 \Vdash "\tau_x \text{ is old}" \) and, clearly, \(1 \Vdash "\tau_x \text{ is finite or supported}" \). So, by (a) and (2), \(\lambda_1(x) = \{\limsup x\} = \lambda_2(x) \).

(\(\Rightarrow \)) Suppose that the algebra \(\mathcal{B} \) is not \((\omega, 2)\)-distributive. Then there is an extension \(V[G] \) containing a new set \(X \subseteq \omega \). Let \(\sigma \) be a \(\mathcal{B} \)-name such that \(X = \sigma_G \) and \(1 \Vdash \sigma \subset \bar{\omega} \) and let \(b \in G \), where

\[
b \Vdash \sigma \text{ is new.}
\]
If \(y = \langle y_n : n \in \omega \rangle \), where \(y_n = \| \hat{n} \in \sigma \| \), \(n \in \omega \), for \(\tau_y = \{ \langle \hat{n}, y_n \rangle : n \in \omega \} \) we have
\[
1 \models \sigma = \tau_y.
\]
For \(x = \langle y_0, 1, y_1, 1, y_2, 1, \ldots \rangle \) we have \(1 \models \{ 1, 3, 5, \ldots \} \subset \tau_x \) and, hence, \(1 \models \tau_x \) is supported, which, by (2) implies \(\lambda_2(x) \neq \emptyset \).

On the other hand \(y = x \circ f \), where \(f : \omega \to \omega \) is defined by \(f(k) = 2k \), so, by Fact 1.3(a), \(1 \models \tau_y = f^{-1}[\tau_x] \), which, together with (3) and (4), implies \(b \models \text{”} f^{-1}[\tau_x] \text{ is new”} \). Now, since \(f \in V \), we have \(b \models \text{”} \tau_x \text{ is new”} \) and, by (a), \(\lambda_1(x) = \emptyset \). So \(\lambda_1 \neq \lambda_2 \).

(e) follows from (d) and Fact 2.1(c).

Remark 2.3. Imitating the proof of the part (a) of the previous theorem one can easily show that, if \(B \) is a complete Boolean algebra, \(x \) a sequence in \(B \) and \(\tau_x \) the corresponding name for a real, then the real determined by \(\tau_x \) is
- always old iff \(\lambda_1(x) \neq \emptyset \);
- sometimes new, but always supported iff \(\lambda_1(x) = \emptyset \) and \(\lambda_2(x) \neq \emptyset \);
- sometimes unsupported, but always unsplitting iff \(\lambda_2(x) = \emptyset \) and \(\lambda_3(x) \neq \emptyset \);
- sometimes splitting iff \(\lambda_3 = \emptyset \) and \(\lambda_4(x) \neq \emptyset \).

(Here “always” means in each and “sometimes” in some generic extension.)

By Fact 2.1(a) and Theorem 2.2(b) we have \(\lambda_1 \leq \lambda_2 \leq \lambda_3 \leq \lambda_4 \); by Fact 2.1(c), \(\lambda_3 < \lambda_4 \) is impossible and, by Fact 2.1(c) and Theorem 2.2(d), \(\lambda_1 = \lambda_2 \Leftrightarrow \lambda_2 = \lambda_3 \). Now, using Fact 2.1(c), (d) and Theorem 2.2(d), we show that, up to these restrictions, everything is possible.

Example 2.4. \(\lambda_1 = \lambda_2 = \lambda_3 = \lambda_4 \) holds in each \((\omega, 2)\)-distributive and, in particular, each atomic complete Boolean algebra.
\(\lambda_1 < \lambda_2 < \lambda_3 = \lambda_4 \) holds in each complete Boolean algebra which produces new reals, but does not produce splitting reals, for example in \(\text{r.o.}(P) \), where \(P \) is the Sacks or the Miller forcing.
\(\lambda_1 < \lambda_2 < \lambda_3 < \lambda_4 \) holds in each complete Boolean algebra which produces splitting reals, for example in \(\text{r.o.}(\mathbb{P}) \), where \(\mathbb{P} \) is the Cohen or the random forcing.

3. The closure of \(\lambda_1 \) under (L2)

By Theorem 2.2(c), the convergence \(\lambda_1 \) does not satisfy (L2) and, hence, it is never a topological convergence. The minimal closures of a convergence under (L2) and (L3) are described in the following general fact (see [8]).
Fact 3.1. Let \(\lambda : X^\omega \to P(X) \) be a convergence satisfying condition (L1). Then

(a) The mapping \(\tilde{\lambda} : X^\omega \to P(X) \) defined by \(\tilde{\lambda}(y) = \bigcup_{x \in X^\omega, f \in \omega^\omega, y = x \circ f} \lambda(x) \) is the minimal convergence bigger than \(\lambda \) and satisfying (L1) and (L2);

(b) \(\check{\lambda}^* : X^\omega \to P(X) \) defined by \(\check{\lambda}^*(y) = \bigcap_{f \in \omega^\omega} \bigcup_{g \in \omega^\omega} \check{\lambda}(y \circ f \circ g) \) is the minimal convergence bigger than \(\check{\lambda} \) and satisfying (L1)–(L3);

(c) \(\lambda \leq \check{\lambda} \leq \check{\lambda}^* \leq \lim \mathcal{O}_\lambda \);

(d) \(\mathcal{O}_\lambda = \mathcal{O}_{\check{\lambda}} = \mathcal{O}_{\check{\lambda}^*} \).

For a subset \(A \) of a complete Boolean algebra \(\mathbb{B} \) let \(A \uparrow = \{ b \in \mathbb{B} : \exists a \in A \ a \leq b \} \). The (L2)-closures of the convergences \(\lambda_2 \), \(\lambda_3 \) and \(\lambda_4 \) are described in the following fact (see [8] and [9]).

Fact 3.2. Let \(\mathbb{B} \) be a complete Boolean algebra. Then

(a) \(\check{\lambda}_4(y) = \{ \limsup y \} \uparrow \), for each sequence \(y \) in \(\mathbb{B} \);

(b) \(\check{\lambda}_2 = \check{\lambda}_3 = \check{\lambda}_4 \);

(c) The convergence \(\check{\lambda}_4 \) generalizes the convergence on the Aleksandrov cube.

Now, concerning the convergence \(\lambda_1 \) we have

Theorem 3.3. Let \(\mathbb{B} \) be a complete Boolean algebra. Then

(a) The closure of \(\lambda_1 \) under (L2) is given by

\[
\check{\lambda}_1(y) = \begin{cases}
\{ \limsup y \} \uparrow & \text{if } 1 \forces \tau_y \text{ is old}, \\
\emptyset & \text{otherwise};
\end{cases}
\]

(b) \(\check{\lambda}_1 = \check{\lambda}_4 \) iff the algebra \(\mathbb{B} \) is \((\omega, 2)\)-distributive.

Proof. (a) Claim 1. \(\check{\lambda}_1(y) = \{ \limsup y \} \uparrow \) if and only if \(1 \forces \tau_y \) is old.

Proof of Claim 1. (\(\Rightarrow \)) Let \(\check{\lambda}_1(y) = \{ \limsup y \} \uparrow \). Then, by Fact 3.1(a) the set \(\lambda_1(y) = \bigcup_{x \in \mathbb{B}^\omega, f \in \omega^\omega, y = x \circ f} \lambda_1(x) \) is nonempty and, hence there are \(x \in \mathbb{B}^\omega \) and \(f \in \omega^\omega \) such that \(y = x \circ f \) and \(\lambda_1(x) \neq \emptyset \). By Theorem 2.2(a), \(1 \forces \tau_x \) is old and by Fact 1.3(a), \(1 \forces \tau_y = f^{-1}[^1[\tau_x]], \) which implies \(1 \forces \tau_y \) is old".

(\(\Leftarrow \)) Let \(1 \forces \tau_y \) is old. According to Fact 3.1(a) we show that

\[
\bigcup_{x \in \mathbb{B}^\omega, f \in \omega^\omega, y = x \circ f} \lambda_1(x) = \{ \limsup y \} \uparrow .
\]

(\(\subseteq \)) Suppose that \(x \in \mathbb{B}^\omega, f \in \omega^\omega, y = x \circ f \) and \(b \in \lambda_1(x) \). Then \(b = \limsup x \) and, since \(y \prec x \), by Fact 1.3(d) we have \(\limsup y \leq \limsup x = b \).
(>) Let \(b \geq \limsup y \). Let \(x = \langle y_0, b, y_1, b, y_2, \ldots \rangle \) and \(f, g \in \omega^\omega \), where \(f(k) = 2k \) and \(g(k) = 2k + 1 \). Then \(y = x \circ f \) and, if \(z = x \circ g \), using Facts 1.2(f) and 1.3(b) we have

\[
\limsup x = ||\tau_x| = \hat{\omega}|| = ||\tau_x \cap f[\omega]| = \hat{\omega}|| \lor ||\tau_x \cap g[\omega]| = \hat{\omega}||
\]

\[
= ||\tau_y| = \hat{\omega}|| \lor ||\tau_z| = \hat{\omega}|| = ||\tau_y| = \hat{\omega}|| \lor b = b.
\]

So, by Theorem 2.2(a), for a proof that \(b \in \lambda_1(x) \) it remains to be shown that \(1 \vdash \text{“} \tau_x \text{ is old} \)”, which follows from \(1 \vdash \text{“} \tau_y \text{ is old} \) and the following subclaim.

Subclaim 1. (i) \(b' \vdash \tau_x = \bar{f}[\tau_y] \); (ii) \(b \vdash \tau_y = \bar{f}[\tau_y] \cup \{1, 3, 5, \ldots \} \).

Proof of Subclaim 1. By Fact 1.3(a) we have \(1 \vdash \tau_y = \bar{f}^{-1}[\tau_x] \) and, hence,

\[
1 \vdash \bar{f}[\tau_y] \subset \tau_x.
\] (6)

Let \(G \) be a \(\mathcal{B} \)-generic filter over \(V \).

(i) If \(b' \in G \), then for \(n \in \langle \tau_x \rangle_G \) we have \(x_n \in G \) and, since \(b \notin G \), there is \(k \in \omega \) such that \(x_n = x_{2k} = y_k \). Hence \(k \in (\tau_y)_G \) and \(n = f(k) \in f(\tau_y)_G \). So \(b' \vdash \tau_x \subset \bar{f}[\tau_y] \) and, by (6), \(b' \vdash \tau_x = \bar{f}[\tau_y] \).

(ii) Clearly, \(b \vdash \{1, 3, 5, \ldots \} \subset \tau_x \) and, by (6), \(b \vdash \bar{f}[\tau_y] \subset \tau_x \). On the other hand, let \(b \in G \) and \(n \in (\tau_x)_G \), that is \(x_n \in G \). If \(n \) is odd, we are done. Otherwise, as in (a) we show that \(n \in f(\tau_y)_G \). Claim 1 is proved.

Claim 2. \(\lambda_1(y) \neq \emptyset \iff 1 \vdash \tau_y \text{ is old} \).

Proof of Claim 2. (\(\Rightarrow \)) Suppose that \(a \in \lambda_1(y) \). Then, by Fact 3.1(a), there are \(x \in \mathcal{B}^\omega \) and \(f \in \omega^\omega \) such that \(y = x \circ f \) and \(a \in \lambda_1(x) \), which, by Theorem 2.2(a), implies \(1 \vdash \text{“} \tau_x \text{ is old} \)”. By Fact 1.3(a) we have \(1 \vdash \tau_y = f^{-1}[\tau_x] \) and, consequently, \(1 \vdash \text{“} \tau_y \text{ is old} \)”. (\(\Leftarrow \)) If \(\lambda_1(y) = \emptyset \), then, since \(\lambda_1 \leq \lambda_1 \), we have \(\lambda_1(y) = \emptyset \) and, by Theorem 2.2(a), \(\neg 1 \vdash \tau_y \text{ is old} \).

(b) It is well known [4] that \(\mathcal{B} \) is \((\omega, 2) \)-distributive iff forcing by \(\mathcal{B} \) does not produce new reals, that is \(1 \vdash \tau_y \text{ is old} \), for each sequence \(y \) in \(\mathcal{B} \). So we apply (a) and Fact 3.2(a).

4. The topology generated by \(\lambda_1 \)

By Theorem 3.3(b) and Fact 3.1(d), if \(\mathcal{B} \) is an \((\omega, 2) \)-distributive algebra, then \(\mathcal{O}_{\lambda_1} = \mathcal{O}_{\lambda_1} \). In this section we show more, that on each complete Boolean algebra the convergences \(\lambda_1, \lambda_2, \lambda_3 \) and \(\lambda_4 \) generate the same topology, investigated in [9]. Concerning the convergences \(\lambda_0, \lambda_2, \lambda_3 \) and \(\lambda_4 \) we have (see [8] and [9])
Let \(\mathcal{O}_2 = \mathcal{O}_3 = \mathcal{O}_4 \);

(b) \(\mathcal{O}_4 \) is a sequential \(T_0 \) connected compact topology on \(\mathbb{B} \);

(c) \(\mathcal{O}_4 \) and its dual generate the sequential topology, \(\mathcal{O}_{\lambda_0} \), when \(\mathbb{B} \) is a Maharam algebra.

We will use the following general fact (see [8]).

Fact 4.2. Let \(\lambda : X^\omega \to P(X) \) be a convergence satisfying (L1) and (L2) and let the mappings \(u_\alpha^n : P(X) \to P(X), \alpha \leq \omega_1 \), be defined by recursion in the following way: for \(A \subset X \)

\[
\begin{align*}
 u_0^n(A) & = A, \\
 u_{\alpha+1}^n(A) & = u_\alpha(u_\alpha^n(A)) \text{ and} \\
 u_\gamma^n(A) & = \bigcup_{n<\gamma} u_\alpha^n(A), \text{ for a limit } \gamma \leq \omega_1.
\end{align*}
\]

Then \(u_\alpha^n \) is the closure operator in the space \(\langle X, \mathcal{O}_\lambda \rangle \).

We will say that a subset \(A \) of a c.B.a. \(\mathbb{B} \) is **upward closed** iff \(A = A^\uparrow \). A sequence \(x \) in \(\mathbb{B} \) will be called **decreasing** if \(x_0 \geq x_1 \geq x_2 \geq \ldots \).

Lemma 4.3. Let \(\mathbb{B} \) be a complete Boolean algebra. Then

(a) The set \(\tilde{\lambda}_1(x) \) is upward closed, for each sequence \(x \) in \(\mathbb{B} \);

(b) If \(x \) is a decreasing sequence in \(\mathbb{B} \), then \(\tilde{\lambda}_1(x) = \{ \bigwedge_{n \in \omega} x_n \} \);

(c) If \(A \subset \mathbb{B} \) is an upward closed set, then \(u_{\tilde{\lambda}}(A) = u_{\tilde{\lambda}}(A) \);

(d) The set \(u_{\tilde{\lambda}}(A) \) is upward closed, for each \(A \subset \mathbb{B} \).

Proof. (a) follows from Theorem 3.3.

(b) If \(x = \langle x_n : n \in \omega \rangle \) is decreasing, then \(\limsup x = \bigwedge_{n \in \omega} \bigvee_{k \geq n} x_k = \bigwedge_{n \in \omega} x_n \) and, by Theorem 2.2(a), it remains to be shown that \(1 \vdash \tau \) is old. If \(G \) is a \(\mathbb{B} \)-generic filter over \(V \), then \((\tau_G) = \{ n : x_n \in G \} \), so if \(m < n \in (\tau_G)_G \), then \(x_m \geq x_n \in G \), which implies \(x_m \in G \) and, hence, \(m \in (\tau_G)_G \). Thus \((\tau_G)_G \) is either a finite set or equal to \(\omega \) and, consequently, belongs to \(V \).

(c) Let \(A \subset \mathbb{B} \) be an upward closed set.

(\(\supset \)) Since \(\lambda_1 \leq \lambda_2 \leq \lambda_3 \), by the minimality of \(\lambda_1 \) (see Fact 3.1(a)) we have \(\lambda_1 \leq \lambda_2 \) and, hence, \(u_{\lambda_1}(A) = \bigcup_{x \in A^\omega} \lambda_1(x) \subseteq \bigcup_{x \in A^\omega} \lambda_3(x) = u_{\lambda_2}(A) \).

(\(\subset \)) By Fact 3.2 we have \(\lambda_3(x) = \{ \limsup x \}^\uparrow \). So, for \(x \in A^\omega \) we show that \(\{ \limsup x \}^\uparrow \subset u_{\lambda_1}(A) \). Let \(\limsup x = b \). Then the sequence \(t = \langle t_n : n \in \omega \rangle \) defined by

\[
t_n = b \lor \bigvee_{k \geq n} x_k
\]
is decreasing and, since $t_n \geq x_n \in A$, we have $t \in A^\omega$. Since
\[
\bigwedge_{n \in \omega} t_n = b \lor \bigvee_{n \in \omega} \bigvee_{k \geq n} x_k = b \lor \limsup x = b
\]
by (b) we have $b \in \lambda_1(t) \subset \lambda_1(t)$ and, by (a), \{b\} $\uparrow \lambda_1(t) \uparrow= \lambda_1(t) \subset u\lambda_1(A)$.

(d) We prove that $u\lambda_1(A) \subset u\lambda_1(A)$. If $b \geq a \in u\lambda_1(A)$, then there is $x \in A^\omega$ such that $a \in \lambda_1(x)$. By (a) we have $b \in \lambda_1(x)$, which implies $b \in u\lambda_1(A)$. \square

Theorem 4.4. Let \mathbb{B} be a complete Boolean algebra. Then
\begin{enumerate}[(a)]
 \item $u^{\omega_1}_A(u^{\omega_1}_A(A))$, for each $A \subset \mathbb{B}$;
 \item $O\lambda_1 = O\lambda_1 = O\lambda_2 = O\lambda_3$.
\end{enumerate}

Proof. (a) (\subset) Since $\lambda_1 \leq \lambda_2$, we have $u^{\omega_1}_A(A) \subset u^{\omega_1}_2(A)$, for each $A \subset \mathbb{B}$.

(\supset) First, for $A \subset \mathbb{B}$ using induction we show that for each $\alpha \leq \omega_1$\begin{equation}
\text{(7)} \quad u_{\lambda_1}^{\omega_1}(u_{\lambda_1}(A)) = u_{\lambda_1}^{\omega_1}(u_{\lambda_1}(A)) \text{ and this set is upward closed.}
\end{equation}
By Lemma 4.3(d), (7) is true for $\alpha = 0$.

Let $\beta \leq \omega_1$ and suppose that (7) holds for each $\alpha < \beta$.

If β is a limit ordinal, then, by the induction hypothesis, we have
\[
u_{\lambda_2}^{\beta}(u_{\lambda_1}(A)) = \bigcup_{\alpha < \beta} u_{\lambda_2}^{\alpha}(u_{\lambda_1}(A)) = \bigcup_{\alpha \leq \beta} u_{\lambda_1}^{\omega_1}(u_{\lambda_1}(A)) = u_{\lambda_1}^{\omega_1}(u_{\lambda_1}(A))
\]
and, since the union of upward closed sets is upward closed, (7) is true for β.

If $\beta = \alpha + 1$, then, by the induction hypothesis we have
\begin{equation}
\text{(8)} \quad u_{\lambda_2}^{\alpha+1}(u_{\lambda_1}(A)) = u_{\lambda_2}(u_{\lambda_1}(A)) = u_{\lambda_2}(u_{\lambda_1}^{\omega_1}(u_{\lambda_1}(A))).
\end{equation}
By the hypothesis the set $u_{\lambda_1}^{\omega_1}(u_{\lambda_1}(A))$ is upward closed and, by Lemma 4.3(c),
\begin{equation}
\text{(9)} \quad u_{\lambda_2}(u_{\lambda_1}^{\omega_1}(u_{\lambda_1}(A))) = u_{\lambda_1}(u_{\lambda_1}^{\omega_1}(u_{\lambda_1}(A))) = u_{\lambda_1}^{\omega_1+1}(u_{\lambda_1}(A))
\end{equation}
and $u_{\lambda_2}^{\beta}(u_{\lambda_1}(A)) = u_{\lambda_1}^{\omega_1}(u_{\lambda_1}(A))$ follows from (8) and (9). By Lemma 4.3(d) and (9) this set is upward closed and the proof of (7) is over.

Since $A \subset u_{\lambda_1}(A) \subset u_{\lambda_1}^{\omega_1}(A)$, by Fact 4.2 we have $u_{\lambda_1}(u_{\lambda_1}(A)) = u_{\lambda_1}^{\omega_1}(A)$. Using (7) we obtain $u_{\lambda_1}^{\omega_1}(A) \subset u_{\lambda_1}^{\omega_1}(u_{\lambda_1}(A)) = u_{\lambda_1}^{\omega_1}(u_{\lambda_1}(A)) = u_{\lambda_1}^{\omega_1}(A)$.

(b) By (a) and Fact 4.2 we have $O_{\lambda_2} = O_{\lambda_2}$ and, by Fact 3.1(d), $O_{\lambda_1} = O_{\lambda_2}$.

By Fact 4.1(a), the other two equalities hold as well. \square

Thus the topology O_{λ_1}, generated by the convergence λ_1, has the properties given in Fact 4.1(b) and (c).
5. Topological and weakly topological convergences

In this section we investigate the classes of complete Boolean algebras on which the convergence $\bar{\lambda}_1$ (satisfying conditions (L1) and (L2)) is topological or weakly topological. According to [8], a convergence $\lambda : X^\omega \to P(X)$ will be called weakly topological iff it satisfies conditions (L1) and (L2) and its (L3)-closure, λ^*, is a topological convergence. The following general fact can be found in [8].

Fact 5.1. A convergence $\lambda : X^\omega \to P(X)$ satisfying (L1) and (L2) is weakly topological iff $\lambda^* = \lim O\lambda$, that is for each $x \in X^\omega$ and $a \in X$

$$a \in \lim O\lambda(x) \iff \forall y \prec x \exists z \prec y a \in \lambda(z).$$

By [9], for the convergence $\bar{\lambda}_4$ we have

Fact 5.2. Let B be a complete Boolean algebra. Then

(a) $\bar{\lambda}_4$ is a topological convergence iff the algebra B is $(\omega, 2)$-distributive;

(b) If the algebra B satisfies (h), then $\bar{\lambda}_4$ is a weakly topological convergence.

We note that, according to [7], a complete Boolean algebra satisfies condition (h) iff $\forall x \in B^\omega \exists y \prec x \forall z \prec y \lim sup z = \lim sup y$. More about condition (h) (implied by the ccc) can be found in [10].

For the convergence $\bar{\lambda}_1$ we have the following analogue of Fact 5.2(a).

Theorem 5.3. $\bar{\lambda}_1$ is a topological convergence iff the algebra B is $(\omega, 2)$-distributive.

Proof. (\Rightarrow) Let $\bar{\lambda}_1$ be a topological convergence. Then, by Fact 1.1(h), $\lambda_1 = \lim O\lambda_1$. By Fact 3.1(d) and Theorem 4.4(b) we have $O\lambda_1 = O\lambda_1 = O\lambda_2$ thus $\lambda_1 = \lim O\lambda_1 \geq \lambda_2$. Since $\lambda_1 \leq \lambda_2 \leq \lambda_1$, by Fact 3.1(a) we have $\lambda_1 = \lambda_2$ and, by Fact 3.2(b) and Theorem 3.3(b) the algebra B is $(\omega, 2)$-distributive.

(\Leftarrow) follows from Theorem 3.3(b) and Fact 5.2(a).

Now we deal with the question on which algebras the convergence $\bar{\lambda}_1$ is weakly topological. First we describe its (L3)-closure, $\bar{\lambda}_1^*$, in terms of forcing.

Theorem 5.4. Let B be a complete Boolean algebra. Then for $y \in B^\omega$ we have

(a) $\bar{\lambda}_1^*(y) = \cap_{A \in [\omega]^{\omega}} B \in [\omega]^{\omega} \cap \| y \cap B \| \text{ is old } = 1 \| y \cap B \| = \omega \uparrow;$

(b) $\bar{\lambda}_1^*(y) \neq \emptyset$ iff $D_y = \{ B \in [\omega]^{\omega} : \| y \cap B \| \text{ is old } = 1 \}$ is a dense set in the poset $(\langle [\omega]^{\omega}, \subset \rangle).$
(a) By Fact 3.1(b), for \(g \in B^2 \) we prove that
\[
\bigcap_{f \in \omega^1} \bigcup_{g \in \omega^1} \lambda_f(y \circ f \circ g) = \bigcap_{A \in \omega^1} \bigcup_{B \in [A]^\omega \wedge \|\tau_g \cap B\| = \omega^\uparrow} \|\tau_y \cap \bar{B}\| = \omega^\uparrow
\]

(\(\subseteq \)) Suppose that for each \(f \in \omega^1 \) \(f \neq \omega^1 \) there is \(g \in \omega^1 \) such that \(a \in \lambda_f(y \circ f \circ g) \), which, by Theorem 3.3 and Fact 1.3, means that
\[
\|\tau_g \circ f \circ g \| \text{ is old} \quad \text{and} \quad a \in \|\tau_y \cap (f \circ g)[\omega^1]\| \text{ is old}. \quad (10)
\]
Let \(A \in [\omega]^\omega \) and let \(f \in \omega^2 \), where \(A = f[\omega] \). By the assumption, there is \(g \in \omega^1 \) such that (10) holds. Then \(B = f[g[\omega]] \subset A \) and, since \(f \) and \(g \) are injections, \(B \in [A]^\omega \). By (10), \(a \in \|\tau_y \cap \bar{B}\| = \omega^\uparrow \). By Fact 1.3, in each generic extension \(V_\kappa[G] \) we have \((\tau_{g \circ f \circ g})_G = (f \circ g)^{-1}[\tau_g]_G = (f \circ g)^{-1}[\tau_y]_G \cap B \) and, hence, \((\tau_y)_G \cap B = f[g[\tau_{g \circ f \circ g}]_G] \). Thus
\[
\|\tau_{g \circ f \circ g} \| \text{ is old} \quad \Rightarrow \quad \tau_y \cap \bar{B} \text{ is old} \| = 1,
\]
which together with (10) implies \(\|\tau_y \cap \bar{B}\| = 1 \).

(\(\supseteq \)) Suppose that for each \(A \in [\omega]^\omega \) there is \(B \in [A]^\omega \) such that
\[
\|\tau_y \cap \bar{B}\| = 1 \quad \text{and} \quad a \in \|\tau_y \cap (f \circ g)[\omega^1]\| = \omega^\uparrow. \quad (12)
\]
Let \(f \in \omega^1 \) and \(A = f[\omega] \). By the assumption, there is \(B \in [A]^\omega \) such that (12) holds. If \(g \in \omega^1 \) where \(g[\omega] = f^{-1}[B] \), then \(B = (f \circ g)[\omega] \) and, by (12), we have
\[
a \in \|\tau_y \cap (f \circ g)[\omega^1]\| = \omega^\uparrow. \quad \text{By (11), } \|\tau_{g \circ f \circ g} \| = 1 \quad \text{and, thus } a \in \lambda_f(y \circ f \circ g).
\]
(b) \(\Rightarrow \) Let \(a \in \lambda_f(y) \) and \(A \in [\omega]^\omega \). By (a) there is \(B \in [A]^\omega \) such that \(\|\tau_y \cap \bar{B}\| = 1 \) and \(a \geq \|\tau_y \cap \bar{B}\| = \omega^\uparrow \). Thus \(B \subset A \) and \(B \in D_y \).

(\(\Leftarrow \)) Let \(D_y \) be a dense set in \([\omega]^\omega \) and \(a = \|\tau_y\| = \omega^\uparrow \). Since for each \(A \in [\omega]^\omega \) there is \(B \in [A]^\omega \) such that \(\tau_y \cap \bar{B} \) is old \(\| = 1 \) and, clearly, \(a \geq \|\tau_y \cap \bar{B}\| = \omega^\uparrow \), by (a) we have \(a \in \lambda_f(y) \).

\[\Box\]

Theorem 5.5. If there is a sequence \(y \in B \) such that \(\|\tau_y\| \text{ is splitting} | > 0 \), then \(\lambda_f(y) = \emptyset \) and the convergence \(\lambda_1 \) is not weakly topological.

Proof. Let \(\|\tau_y\| \text{ is splitting} \| = b > 0 \) and suppose that \(\lambda_f(y) \neq \emptyset \). Then, by (b), there is \(B \in [\omega]^\omega \) such that \(1 \cap \tau_y \cap \bar{B} \) is old. But then \(b \Rightarrow \text{"} \tau_y \cap \bar{B} \text{ is old and } \tau_y \text{ is splitting"} \), which is impossible. Thus \(\lambda_f(y) = \emptyset \). By Theorem 4.4, \(\lim_{\lambda_1(y)} = \lim_{\lambda_1(y)} \cup \lambda_4(y) \supset \lim_{\sup} y \) and, hence, \(\lambda_f(y) \neq \lim_{\lambda_1(y)} \) so \(\lambda_1 \) is not a weakly topological convergence. \[\Box\]
Concerning the previous theorem we remark that it is possible that the convergence \(\bar{\lambda}_1 \) is not weakly topological, although forcing by \(\mathbb{B} \) does not produce splitting reals (see Example 5.8). In contrast to Fact 5.2(b) we have

Example 5.6. The ccc (and, consequently, condition \((h)\)) does not imply that the convergence \(\bar{\lambda}_1 \) is weakly topological. The Cohen algebra is ccc, produces splitting reals and, by Theorem 5.5, \(\bar{\lambda}_1 \) is not a weakly topological convergence.

Now, inside a wide class of complete Boolean algebras, we characterize the algebras on which the convergence \(\bar{\lambda}_1 \) is weakly topological.

Theorem 5.7. Let \(\mathbb{B} \) be a Boolean algebra such that \(hcc(\mathbb{B}) > \epsilon \) (i.e. below each \(b \in \mathbb{B}^+ \) there is an antichain of size \(\epsilon \)). Then

\[
\bar{\lambda}_1 \text{ is a weakly topological convergence } \iff \mathbb{B} \text{ is } (\omega, 2)-\text{distribution}. \tag{13}
\]

Proof. (\(\Rightarrow \)) This implication follows from Theorem 5.3.

(\(\Leftarrow \)) If \(\mathbb{B} \) is not \((\omega, 2)\)-distributive, then \(b = \| \exists r \subset \bar{\omega} (r \text{ is new}) \| > 0 \) and, by the Maximum Principle, there is a name \(\pi \) such that

\[
b \models \pi \subset \bar{\omega} \land \pi \text{ is new.} \tag{14}
\]

We choose an enumeration \([\omega]^\omega = \{ S_\alpha : \alpha < \epsilon \} \), bijections \(f_\alpha : S_\alpha \to \omega \), \(\alpha < \epsilon \), and a maximal antichain under \(b \), \(\{ b_\alpha : \alpha < \epsilon \} \). Now, for the \(\mathbb{B} \)-name \(\sigma \) defined by \(\sigma = \{ (\bar{n}, \bigvee_{\alpha < \epsilon} (b_\alpha \land \| f_\alpha(n)^- \in \pi \|)) : n \in \omega \} \) it is easy to prove that \(b_\alpha \models \sigma = f^{-1}_\alpha[\pi] \), for \(\alpha < \epsilon \), (see \([7, \text{Th. 4, Cl. 1}]\)) and, clearly, \(1 \models \sigma = \tau_x \), where \(x = (x_n : n \in \omega) \) and \(x_n = \bigvee_{\alpha < \epsilon} b_\alpha \land \| f_\alpha(n)^- \in \pi \|, n \in \omega \). Thus

\[
b_\alpha \models \tau_x = f^{-1}_\alpha[\pi]. \tag{15}
\]

Let us prove

\[
\forall B \in [\omega]^\omega \| \tau_x \cap \bar{B} \text{ is new} \| > 0. \tag{16}
\]

Let \(B \in [\omega]^\omega \) and \(\alpha < \epsilon \), where \(B = S_\alpha \). Let \(G \) be a \(\mathbb{B} \)-generic filter over \(V \) containing \(b_\alpha \). Since \(b_\alpha < b \) we have \(b \in G \) and, by (14), \(\pi_G \notin V \). By (15), \((\tau_x)_G = f^{-1}_\alpha[\pi_G] \subset B \). Now, \(f^{-1}_\alpha[\pi_G] \in V \) would imply \(f_\alpha[f^{-1}_\alpha[\pi_G]] = \pi_G \in V \), which is false. Thus \(f^{-1}_\alpha[\pi_G] = (\tau_x)_G = (\tau_x)_G \land \bar{B} \notin V \) and (16) is proved.

By (16) we have \(D_\alpha = \{ B \in [\omega]^\omega : 1 \models \tau_x \cap \bar{B} \text{ is old} \} = \emptyset \) so, by Theorem 5.4(b), \(\bar{\lambda}_1(x) = \emptyset \). But, by Theorem 4.4, \(\limsup x \in \lim_{\alpha, \omega} (x) = \lim_{\alpha, \omega} (x) \) and, by Fact 5.1, \(\bar{\lambda}_1 \) is not a weakly topological convergence.

Example 5.8. \(\bar{\lambda}_1 \) is not a weakly topological convergence on the Sacks algebra.

Namely, if \(\mathbb{B} \) is the Boolean completion of the Sacks forcing, \(\mathbb{B} \) is homogeneous, has antichains of size \(\epsilon \), adds new reals and we apply Theorem 5.7.
Is the equivalence (13) a theorem of ZFC? In the following theorem, using a result of Veličković [12], we show that under the CH, a possible counterexample can not be nicely definable.

Theorem 5.9. (CH) If \(B = r.o.(P) \), where \(P \) is a Suslin forcing notion, then

\[\bar{\lambda}_1 \text{ is a weakly topological convergence } \Leftrightarrow B \text{ is } (\omega, 2)\text{-distributive.} \]

Proof. (\(\Leftarrow \)) This implication follows from Theorem 5.3.

(\(\Rightarrow \)) If the algebra \(B \) is not \((\omega, 2)\)-distributive, then \(b = \| \exists r \subseteq \check{\omega} \text{ (} r \text{ is new)} \| > 0 \). If there exists an uncountable antichain below \(b \), then, as in the proof of Theorem 5.7, we show that \(\bar{\lambda}_1 \) is not a weakly topological convergence. Otherwise, \(B|b \) is a non-atomic ccc forcing, clearly, \(P \cap b \downarrow \) is a non-atomic ccc Suslin forcing and, by a result of Veličković [12], produces splitting reals. Now, by Theorem 5.5, \(\bar{\lambda}_1 \) is not a weakly topological convergence again.

\[\square \]

6. A diagram

Here we describe the relations between the convergence structures considered in this paper.

Theorem 6.1. Let \(B \) be a complete Boolean algebra. Then

(a) If \(A \subset [\omega]^{\omega} \) is a mad family, \(y \) a sequence in \(B \) and \(1 \Vdash \tau_y \text{ kills } \check{A} \), then \(\bar{\lambda}_1^*(y) = B \) and \(\bar{\lambda}_4(y) = \{1\} \);

(b) If forcing by \(B \) produces a splitting real in each extension, then the convergences \(\bar{\lambda}_1^* \) and \(\bar{\lambda}_4 \) are not comparable;

Proof. (a) Suppose that \(1 \Vdash |\tau_y| = \check{\omega} \wedge \forall A \in \check{A} \ |\tau_y \cap A| < \check{\omega} \). Then \(\| \tau_y \text{ is infinite} \| = 1 \) and, by Facts 1.2 and 3.2(a), we have \(\lambda_4(y) = \{1\} \uparrow = \{1\} \).

Using Theorem 5.4(a) we prove that \(0 \in \bar{\lambda}_1^*(y) \) (which implies \(\bar{\lambda}_1^*(y) = B \)). For \(A \in [\omega]^{\omega} \), by the maximality of \(A \), there is \(A_1 \in A \) such that \(B = A \cap A_1 \in [A]^{\omega} \). Since \(1 \Vdash |\tau_y \cap A_1| < \check{\omega} \), we have \(\| |\tau_y \cap B| < \check{\omega} \| = 1 \) which implies \(\| \tau_y \cap B \text{ is old} \| = 1 \) and \(\| |\tau_y \cap B| = \check{\omega} \| = 0 \).

(b) \(\bar{\lambda}_4 \not\leq \bar{\lambda}_1^* \). By the assumption, there is \(y \in B^{\omega} \) such that \(\| \tau_y \text{ is splitting} \| > 0 \) so, by Theorem 5.5, \(\bar{\lambda}_1^*(y) = \emptyset \) and \(\bar{\lambda}_4(y) \neq \emptyset \).

(\(\bar{\lambda}_1^* \not\leq \lambda_4 \)). It is known (see [7, Lemma 1]) that there is a mad family \(A \subset [\omega]^{\omega} \) which is killed in each generic extension of the ground model containing new reals.

By the assumption, forcing by \(B \) produces new reals in each extension and, hence,
The convergence of the sequences coding the ground model reals

we have $1 \vDash \exists x \subset \omega \ (x \text{ kills } \dot{A})$ and, by the Maximum Principle, there is a \mathbb{B}-name σ such that $1 \vDash \sigma \subset \omega$ and $1 \vDash \sigma \text{ kills } \dot{A}$. If $y_n = \|\bar{n} \in \sigma\|$, $n \in \omega$, then $1 \vDash \tau_y = \sigma$ and $1 \vDash \tau_y \text{ kills } \dot{A}$. By (a) we have $\bar{\lambda}_1^*(y) = \mathbb{B}$ and $\bar{\lambda}_4(y) = \{1\}$.

In the following diagram $\lambda' \leq \lambda''$ denotes that for each c.B.a. \mathbb{B} and each sequence x in \mathbb{B}, $\lambda'(x) \subset \lambda''(x)$.

In the sequel we show that the diagram is correct. By Fact 2.1(a) and Theorem 2.2(b) we have $\lambda_1 \leq \lambda_2 \leq \lambda_3 \leq \lambda_4$ and, by Example 2.4, all the inequalities can be strict. By Fact 3.2(b) we have $\bar{\lambda}_2 = \bar{\lambda}_3 = \bar{\lambda}_4$, which implies $\bar{\lambda}_2^* = \bar{\lambda}_3^* = \bar{\lambda}_4^*$ and $\lim_{\mathcal{O}_{\lambda_2}} = \lim_{\mathcal{O}_{\lambda_3}} = \lim_{\mathcal{O}_{\lambda_4}}$. By Theorem 4.4(b) we have $\lim_{\mathcal{O}_{\lambda_2}} = \lim_{\mathcal{O}_{\lambda_3}} = \lim_{\mathcal{O}_{\lambda_4}}$. By Theorem 5.5. If $y \in \mathbb{B}^{\omega}$, where $\|\tau_y\|$ is splitting > 0, then $\bar{\lambda}_1^*(y) = \emptyset$. For the sequence $z = \langle y_0, 1, y_1, 1, \ldots \rangle$ we have $y \prec z$ and, since $\bar{\lambda}_1^*(y) = \emptyset$. But $1 \vDash \{1, 3, 5, \ldots \} \subset \tau_z$, thus $1 \vDash \text{“} \tau_z \text{ is supported”}$ which, by (2), implies $\lambda_2(z) \neq \emptyset$.

The convergence $\bar{\lambda}_1$ is not comparable with $\lambda_2, \lambda_3, \lambda_4$ and $\bar{\lambda}_4$. The relation $\bar{\lambda}_1^* \not\geq \bar{\lambda}_4$ is proved in (b) of Theorem 6.1. For a proof that $\bar{\lambda}_1^* \not\geq \lambda_2$ we follow Theorem 5.5. If $y \in \mathbb{B}^{\omega}$, where $\|\tau_y\|$ is splitting > 0, then $\bar{\lambda}_1^*(y) = \emptyset$. For the sequence $z = \langle y_0, 1, y_1, 1, \ldots \rangle$ we have $y \prec z$ and, since $\bar{\lambda}_1^*(y) = \emptyset$. But $1 \vDash \{1, 3, 5, \ldots \} \subset \tau_z$, thus $1 \vDash \text{“} \tau_z \text{ is supported”}$ which, by (2), implies $\lambda_2(z) \neq \emptyset$.

The convergence $\bar{\lambda}_1$ is not comparable with λ_2, λ_3, and λ_4. Namely, $\lambda_1(\langle 0 \rangle) = \{0\} \uparrow$ and $\lambda_4(\langle 0 \rangle) = \{0\}$ implies $\bar{\lambda}_1 \not\geq \lambda_4$. The relation $\bar{\lambda}_1 \not\geq \lambda_2$ follows from $\bar{\lambda}_1^* \not\geq \lambda_2$, proved above. □
Remark 6.2. For the ω_1-distributive algebras the diagram collapses to the diagram containing two elements, e.g. λ_1 and $\bar{\lambda}_1$ (see Example 2.4 and Fact 5.2(a)).

References