On the structure of the homeomorphism and diffeomorphism groups fixing a point

By JACEK LECH (Krakow) and ILONA MICHALIK (Krakow)

Abstract. Let $M$ be a manifold, $p \in M$ and let $\mathcal{H}(M, p)$ be the identity component of the group of all compactly supported homeomorphisms of $M$ fixing $p$. It is shown that $\mathcal{H}(M, p)$ is a perfect group. Next, we prove that the group $\mathcal{H}(\mathbb{R}^n, 0)$ is bounded. In contrast, in the $C^\infty$ category the diffeomorphism group $\mathcal{D}^\infty(\mathbb{R}^n, 0)$, analogous to $\mathcal{H}(\mathbb{R}^n, 0)$, is neither perfect nor bounded. Finally, the boundedness and uniform perfectness of $\mathcal{H}(M, p)$ is studied.

1. Introduction

Let $M$ be a topological metrizable manifold and let $\mathcal{H}(M)$ be the identity component of the group of all compactly supported homeomorphisms of $M$. By $\mathcal{H}(M, p)$, where $p \in M$, we denote the identity component of the group of all $h \in \mathcal{H}(M)$ with $h(p) = p$.

Recall that a group $G$ is called perfect if it is equal to its own commutator subgroup $[G, G]$, that is $H_1(G) = 0$. Moreover we say that a manifold $M$ admits a compact exhaustion if there is a sequence $\{M_i\}_{i=1}^\infty$ of compact submanifolds with boundary such that $M_1 \subset \text{Int} M_2 \subset M_2 \subset \ldots$ and $M = \bigcup_{i=1}^\infty M_i$.

The following basic fact is probably well-known, see e.g., [13].

Mathematics Subject Classification: 22E65, 57R50, 57S05.

Key words and phrases: fixing point group, perfect group, group of homeomorphisms, bounded group, uniform perfectness.

Partially supported by the Polish Ministry of Science and Higher Education and the AGH grant n. 11.420.04.
Theorem 1.1. Assume that either $M$ is compact (possibly with boundary), or $M$ is noncompact boundaryless and admits a compact exhaustion. Then $\mathcal{H}(M)$ is perfect. If $M$ is also connected then $\mathcal{H}(M)$ is simple.

The proof of the perfectness is a consequence of Mather’s paper [16] combined with Edwards and Kirby [5], Corollary 1.3 and Remark 7.2. A special case of Theorem 1.1 was already showed by Fisher [7]. There exist some generalizations of Theorem 1.1 (see, e.g., [10], [22], [20]). The simplicity follows from a theorem of Epstein [6] (see also [20]).

Let $M$ be a smooth manifold of class $C^r$, $r = 1, \ldots, \infty$. The symbol $\mathcal{D}^r(M)$ (resp. $\mathcal{D}^r(M, p)$) will stand for the identity component of the group of all compactly supported $C^r$-diffeomorphisms of $M$ (resp. fixing $p \in M$). Theorem 1.1 is a $C^0$ analogue of Thurston’s theorem which states that the group $\mathcal{D}^\infty(M)$ is perfect and simple (see [26], [3]). Mather in [17] and [18] proved that $\mathcal{D}^r(M)$ is perfect and simple as well for $r \neq \dim M + 1$. The case $r = \dim M + 1$ is unsolved (see [19], [14]). The simplicity theorems on the classical diffeomorphism groups are also known ([2], [3], [11], [23], [26]). The structure of the $C^\infty$-diffeomorphism group of a manifold with boundary has been studied in [24], [15], [21] and [1].

It is easy to see that $\mathcal{D}^r(M, p)$ is not perfect for $r \geq 1$. Moreover, Fukui calculated in [8] that $H_1(\mathcal{D}^\infty(\mathbb{R}^n, 0)) = \mathbb{R}$. In the topological category the situation is different.

Theorem 1.2. (1) The groups $\mathcal{H}(\mathbb{R}^n, 0)$ and $\mathcal{H}(\mathbb{R}^n_+, 0)$ are perfect, where $\mathbb{R}^n_+ = [0, \infty) \times \mathbb{R}^{n-1}$.

(2) If $M$ fulfills the assumption of Theorem 1.1 then the group $\mathcal{H}(M, p)$ is perfect.

A similar result was obtained by Tsuboi in [28]. He proved that $\mathcal{H}([0, 1])$ is perfect by using different argument than that for Theorem 1.2 (in particular, he did not apply [5]). Next he generalized the result for Lipschitz homeomorphisms and for $C^1$-diffeomorphisms (resp. $C^\infty$-diffeomorphisms) tangent (resp. infinitely tangent) to the identity at the endpoints. Observe as well that Theorem 1.2 was proved for $M$ closed by Fukui in [9]. However, our proof is different than that in [9] and it leads to Corollary 3.7 on the uniform perfectness.

Recall that a group is bounded if it is bounded with respect to any bi-invariant metric. Our main result is the following

Theorem 1.3. (1) $\mathcal{H}(\mathbb{R}^n, 0)$ is bounded group.

(2) Under the assumption of Theorem 1.1 the group $\mathcal{H}(M)$ is bounded whenever $\mathcal{H}(M, p)$ is bounded.
Note that this theorem is no longer true in the $C^r$ category for $r \geq 1$. (See Proposition 4.2).

The fact that $D_{\infty}(M)$ is bounded for many types of manifolds is known in view of the recent result by Burago, Ivanov and Polterovich [4] (see also [13]). In the proofs of the above theorems we develop some technical ideas from [13].

We will also show some other properties of the group $H(M, p)$. Namely, in Section 3 we prove that $H(\mathbb{R}^n, 0)$ is uniformly perfect and its commutator length diameter is $\leq 2$. In Section 5 we show that $H(M, p)$ is uniformly perfect provided the fragmentation norm $\text{frag}_d M$ is bounded. In the last section some concluding remarks are given.

2. Deformation properties of the space of isotopies

The proofs of Theorems 1.1, 1.2 and 1.3 depend on the deformation properties for the spaces of isotopies obtained by Edwards and Kirby in [5]. See also Siebenmann [25].

Let $I = [0, 1]$. For an isotopy $\{h_t\}_{t \in I}$ of $M$ we set
\[ \text{supp}(\{h_t\}_{t \in I}) = \bigcup_{t \in I} \text{supp}(h_t). \]
In the sequel we will write $h_t$ instead of $\{h_t\}_{t \in I}$.

By a ball we mean a relatively compact open ball. For $U \subset M$ we denote by $H_U(M)$ the identity component of the group of all homeomorphisms compactly supported in $U$.

We have the following fragmentation property.

**Lemma 2.1** ([5]). Let $M$ be as in Theorem 1.1 and let $h_t : M \to M$, $t \in I$, be a compactly supported isotopy of $M$ with $h_0 = \text{Id}$. Then there exist isotopies $h_i^t : M \to M$, $i = 1, \ldots, k$, such that $h_t = h_1^t \ldots h_k^t$, $h_0^t = \text{Id}$ and $\text{supp}(h_i^t) \subset B_i$, $i = 1, \ldots, k$, where each $B_i$ is a ball or half-ball. Moreover

1. If $\partial M \neq \emptyset$ and $h_t = \text{Id}$ on $\partial M$ for all $t$, then $h_i^t = \text{Id}$ on $\partial M$ for all $i$ and $t$.
2. Let $p \in M$. If $h_t \in H(M, p)$ for all $t$, then $h_i^t \in H(M, p)$ for all $i$ and $t$.

**Proof.** For $M$ compact the first assertion coincides with Corollary 1.3 in [5].

Next, (1) and (2) follow from Remark 7.2 (p. 81–83 in [5]).

Now, assume that $M$ admits a compact exhaustion $\{M_j\}_{j=1}^{\infty}$ and let $h_t$ be an isotopy in $H(M)$. Then $h_t$ is supported in $M_j$ for some $j \in \mathbb{N}$. Hence $h_t = \text{Id}$ on $\partial M_j$. From (1) with $M = M_j$ we get isotopies $h_1^j, \ldots, h_k^j$ in $H(M_j)$ such that $h_t = h_1^j \ldots h_k^j$ and $h_0^j = \text{Id}$ on $\partial M_j$, for $i = 1, \ldots, k$. We extend each $h_i^j$ to $M$ by setting $h_i^j = \text{Id}$ outside $M_j$. \qed
Corollary 2.2. Lemma 2.1 is still valid for elements of $\mathcal{H}(M)$ instead of isotopies.

In the sequel we will need the following version of Isotopy Extension Theorem.

Theorem 2.3 ([5]). Let $M$ be a metrizable topological manifold. Suppose that $f_t$ is an isotopy in $\mathcal{H}(M)$ with $f_0 = \text{Id}$ and that $K \subset M$ is a compact set. Then for any open neighborhood $U$ of the set $\bigcup_{t \in I} f_t(K)$ there exists an isotopy $g_t$ in $\mathcal{H}(M)$ such that $g_t = f_t$ on $K$ and $\text{supp}(g_t) \subset U$ for $t \in I$.

3. Basic lemma and the perfectness of $\mathcal{H}(M, p)$

In this section we will prove Theorem 1.2. We begin with the following fact which plays an important role in studies on homeomorphism groups.

Lemma 3.1 (Basic lemma, [16]). Let $U \subset M$ be an open set and $B \subset M$ be a ball such that $B \subset U$. Then there exist $u \in \mathcal{H}_U(M)$ and a homomorphism $\varphi : \mathcal{H}_B(M) \to \mathcal{H}_U(M)$ such that $h = [\varphi(h), u]$ for all $h \in \mathcal{H}_B(M)$.

Proof. Choose a ball $B'$ such that $B \subset B' \subset \overline{B'} \subset U$. Next, fix $p \in \partial B'$ and set $B_0 = B$. There exists a sequence of balls $\{B_i\}_{i=1}^\infty$ with $B_i \subset B'$, $i \geq 1$, where the family $\{B_i\}_{i=0}^\infty$ is pairwise disjoint, locally finite in $B'$, and $B_i \to p$ as $i \to \infty$.

Since $\mathcal{H}_U(M)$ acts transitively on the family of balls in $B'$ we can find a homeomorphism $u \in \mathcal{H}_U(M)$ such that $u(B_{i-1}) = B_i$ for $i = 1, 2, \ldots$. Then we define a homomorphism $\varphi : \mathcal{H}_B(M) \to \mathcal{H}_U(M)$ by the formula

$$\varphi(h) = \begin{cases} u^i h u^{-i} & \text{on } B_i, \quad i = 0, 1, \ldots \\ \text{Id} & \text{outside } \bigcup_{i=0}^\infty B_i. \end{cases}$$

It is obvious that $h = [\varphi(h), u]$ as required. \hfill $\square$

The above fact appeared in Mather’s paper [16]. Actually, Mather proved also the acyclicity of $\mathcal{H}(\mathbb{R}^n)$. Obviously, [16] and Lemma 3.1 are no longer true for $C^1$-homeomorphisms. However, Tsuboi gave an excellent improvement of this reasoning and adapted it for $C^r$-diffeomorphisms with small $r$ (see [27]).

Let $G$ be a group. For $g \in [G, G]$ the least $k$ such that $g$ is a product of $k$ commutators is called the commutator length of $g$ and is denoted by $\text{cl}_G(g)$.

We will need some results from [4]. A subgroup $H$ of $G$ is called strongly $m$-displaceable if there exists $f \in G$ such that the subgroups $H, fHf^{-1}, \ldots, f^mHf^{-m}$ pairwise commute. Then we say that $f$ $m$-displaces $H$.  


Theorem 3.2 ([4]). Let $G$ be a group and $H$ a subgroup $G$. If some $g \in G$ $m$-displaces $H$ for every $m \geq 1$ then for all $h \in [H, H]$ we get $cl_G(h) \leq 2$.

Another useful result is the following

Proposition 3.3. If $U, V$ are open disjoint subsets of $M$ such that there exists $f \in \mathcal{H}(M)$ with $f(U \cup V) \subset V$ then $f m$-displaces $\mathcal{H}_U(M)$ for all $m \geq 1$.

Proof. Indeed, this follows from the relation $f^m(U) \subset f^{m-1}(V) \setminus f^{m}(V)$ for every $m \geq 1$.

Let $S^{n-1}$ be the unit sphere. We denote $S = S^{n-1} \subset \mathbb{R}^n$ in the case $\mathcal{H}(\mathbb{R}^n, 0)$ and $S = S^{n-1} \cap \mathbb{R}^n_+$ in the case $\mathcal{H}(\mathbb{R}^n_+, 0)$. Moreover let $A(a, b) = S \times (a, b)$ and $\overline{A}(a, b) = S \times [a, b]$ for $0 < a < b < \infty$.

Corollary 3.4. Let $M = \mathbb{R}^n$ and $U = A(h, a)$ for some $a > b > 0$. Then every $h \in \mathcal{H}_U(\mathbb{R}^n)$ is expressed as the product of two commutators of elements of $\mathcal{H}_U(\mathbb{R}^n)$.

Proof. Let $h \in \mathcal{H}_U(\mathbb{R}^n)$. Since $\mathcal{H}_U(\mathbb{R}^n)$ is perfect from Theorem 1.1 then $h \in [\mathcal{H}_U(\mathbb{R}^n), \mathcal{H}_U(\mathbb{R}^n)]$. Let $h|_U = [h_1, h_2] \ldots [h_{2k-1}, h_{2k}]$ for some $k \in \mathbb{N}$ and $h_1, \ldots, h_{2k} \in \mathcal{H}(U)$. Each $h_i$ has compact support in $U$ so we may extend $h_i$ to $\mathbb{R}^n$ by $h_i = \text{Id}$ outside $U$. Moreover there are $a', b'$ such that $a > a' > b' > b$ and $\text{supp}(h_i) \subset V = A(b', a')$ for $i = 1, \ldots, 2k$. Especially $h \in [\mathcal{H}_V(\mathbb{R}^n), \mathcal{H}_V(\mathbb{R}^n)]$.

Choose $c', d'$ with $b' > c' > d' > b$ and denote $W = A(d', c')$. There exists homeomorphism $\tilde{u} : [0, \infty) \rightarrow [0, \infty)$ with support in $(b, a)$ such that $\overline{u(d', a')} \subset (d', c')$. By setting $u = \text{Id}_S \times \tilde{u}$ we get $u \in \mathcal{H}_U(\mathbb{R}^n)$ and $u(V \cup W) \subset W$.

From Proposition 3.3 $u \in \mathcal{H}_U(\mathbb{R}^n)$ $m$-displaces $\mathcal{H}_V(\mathbb{R}^n)$ for every $m \geq 1$. In view of Theorem 3.2 we get $cl_{\mathcal{H}_U(\mathbb{R}^n)}(h) \leq 2$ as required.

Suppose that $\{U_i\}_{i \in \mathbb{N}}$ is a pairwise disjoint, locally finite family of open sets of $M \setminus \{p\}$. Put $U = \bigcup_{i=1}^{\infty} U_i$. By $\mathcal{H}(M, U)$ we denote the group of all homeomorphisms supported in $U$ such that there exists the decomposition $h = h_1 h_2 \ldots$ with $\text{supp}(h_i) \subset U_i$ such that $h_i \in \mathcal{H}_{U_i}(M)$, $i \in \mathbb{N}$.

Corollary 3.5. Let $M = \mathbb{R}^n$ and take a sequence $a_1 > b_1 > a_2 > b_2 > \cdots > 0$

tending to 0. Next, set $U = \bigcup_{i=1}^{\infty} U_i$, where $U_i = A(b_i, a_i)$. Then any element of the group $\mathcal{H}(M, U)$ is expressed as the product of two commutators of elements of $\mathcal{H}(M, U)$.
Indeed, we may use Corollary 3.4 for each $i$ and glue together homeomorphisms obtained in this manner.

**Proposition 3.6.** For every $f \in \mathcal{H}(\mathbb{R}^n, 0)$ with $\text{supp}(f) \subset S \times [0, d_0]$, $d_0 > 1$, there exists a sequence

$$c_0 = d_0 > a_1 > b_1 > c_1 > d_1 > \cdots > a_k > b_k > c_k > d_k > \cdots > 0 \quad (3.1)$$

tending to 0, and $g, h \in \mathcal{H}(\mathbb{R}^n, 0)$ such that $f = gh$,

1. $g = f$ on $\bigcup_{j=1}^{\infty} \mathcal{A}(c_j, b_j)$ and $h$ is defined in $\mathcal{H}(\mathbb{R}^n, 0)$,

2. $\text{supp}(g) \subset \bigcup_{j=1}^{\infty} \mathcal{A}(d_j, a_j)$ and $\text{supp}(h) \subset \bigcup_{j=1}^{\infty} \mathcal{A}(b_j, c_j)$

3. if $g = g_1 g_2 \cdots$ with $\text{supp}(g_j) \subset \mathcal{A}(d_j, a_j)$ then $g_j \in \mathcal{H}(\mathbb{R}^n)$ and analogously for $h = h_1 h_2 \cdots$ with $\text{supp}(h_j) \subset \mathcal{A}(b_j, c_j)$ we have $h_j \in \mathcal{H}(\mathbb{R}^n)$ for $j = 1, 2, \ldots$.

**Proof.** In the proof we apply Theorem 2.3 for $M = \mathbb{R}^n \setminus \{0\}$.

Let $f \in \mathcal{H}(\mathbb{R}^n, 0)$ and let $f_t$ be an isotopy from $\text{Id}$ to $f$. Choose $d_0 > a_1 > b_1 > c_1 > d_1 > 0$ such that $\bigcup_{j \in \mathbb{Z}} f_j(\mathcal{A}(c_1, b_1)) \subset \mathcal{A}(d_1, a_1)$. From Theorem 2.3 there is an isotopy $g^1_t$ in $\mathcal{H}(\mathbb{R}^n)$ such that $g^1_t = f_t$ on $\mathcal{A}(c_1, b_1)$ and $\text{supp}(g^1_t) \subset \mathcal{A}(d_1, a_1)$. Moreover $g^1_t \in \mathcal{H}(\mathbb{R}^n)$ and $g^1_t$ is isotopy supported in $\mathcal{A}(d_1, a_1)$. Here we put $g^1_0(0) = 0$.

Define $h^1_t = (g^1_t)^{-1} f_t$ on $\mathcal{A}(b_1, c_0)$ and $h^1_t = \text{Id}$ otherwise. Then $h^1_t = f_t$ on $\mathcal{A}(a_1, d_0)$, $\text{supp}(h^1_t) \subset \mathcal{A}(b_1, c_0)$ and $h^1_t \in \mathcal{H}(\mathbb{R}^n)$. Let $f^1_t = (g^1_t h^1_t)^{-1} f_t$. Then $\text{supp}(f^1_t) \subset \mathcal{A}(0, c_1)$.

Inductively, suppose we have defined a sequence $d_0 > a_1 > b_1 > c_1 > d_1 > \cdots > a_i > b_i > c_i > d_i$ and isotopy $f^i_t \in \mathcal{H}(\mathbb{R}^n)$. We take $d_i > a_i > b_i > c_i > d_i > \cdots > a_{i+1} > b_{i+1} > c_{i+1} > d_{i+1} > 0$ such that $\bigcup_{j \in \mathbb{Z}} f^i_j(\mathcal{A}(c_{i+1}, b_{i+1})) \subset \mathcal{A}(d_{i+1}, a_{i+1})$. From Theorem 2.3 there exists an isotopy $g^{i+1}_t$ in $\mathcal{H}(\mathbb{R}^n)$ such that $g^{i+1}_t = f^i_j$ on $\mathcal{A}(c_{i+1}, b_{i+1})$ and $g^{i+1}_t \in \mathcal{H}(\mathbb{R}^n)$. We define $h^{i+1}_t \in \mathcal{H}(\mathbb{R}^n)$ by $h^{i+1}_t = (g^{i+1}_t)^{-1} f^i_t$ on $\mathcal{A}(b_{i+1}, c_i)$ and $h^{i+1}_t = \text{Id}$ outside this set. We get $h^{i+1}_t = f^i_t$ on $\mathcal{A}(a_{i+1}, d_i)$ and $h^{i+1}_t \in \mathcal{H}(\mathbb{R}^n)$. Let $f^{i+1}_t = (g^{i+1}_t h^{i+1}_t)^{-1} f^i_t$.

Products $g = \prod_{i=1}^{\infty} g^i_t$ and $h = \prod_{i=1}^{\infty} h^i_t$ have the required properties. □

**Proof of Theorem 1.2 for $\mathcal{H}(\mathbb{R}^n, 0)$.** For $f \in \mathcal{H}(\mathbb{R}^n, 0)$ we take $g, h$ as in above proposition. (The proof of the case $\mathcal{H}(\mathbb{R}^n, 0)$ is contained in the proof of Corollary 3.7 below).

Denote $U_i = \mathcal{A}(d_i, a_i)$ and $U = \bigcup_{i=1}^{\infty} U_i$. In view of Corollary 3.5 with $M = \mathbb{R}^n$ we get $g = [g_1, g_2][g_3, g_4]$ for $g_1, g_2, g_3, g_4 \in \mathcal{H}(M, U)$. It is easily seen that
For \( \nu \) every \( i \) compact support such that \( \tilde{\nu} \) and set \( V \). The results and their proofs depend on the topology for many types of \( G \). The same is true for \( \tilde{\nu} \). Hence \( cld_G := \sup_{g \in G} cld_G(g) \). Next, \( G \) is called uniformly perfect if \( G \) is perfect and \( cld_G < \infty \).

Note that recently Burago, Ivanov and Polterovich in [4] and, independently, Tsuboi in [29] proved that the groups \( \mathcal{D}^\infty(M) \) are uniformly perfect for many types of \( M \) and calculated some estimations on the commutator length diameter of these groups. The results and their proofs depend on the topology of \( M \).

Using the above proof we get immediately that \( cld_{\mathcal{H}(\mathbb{R}^n, 0)} \leq 4 \). But by modification of the construction in Lemma 3.1 we obtain better estimation.

**Corollary 3.7.** The group \( \mathcal{H}(\mathbb{R}^n, 0) \) is uniformly perfect and \( cld_{\mathcal{H}(\mathbb{R}^n, 0)} \leq 2 \). The same is true for \( \mathcal{H}(\mathbb{R}^n_+, 0) \).

**Proof.** For \( f \in \mathcal{H}(\mathbb{R}^n, 0) \) let \( g, h \) and \( U \) be as in the proof of Theorem 1.2. (The case \( \mathcal{H}(\mathbb{R}^n_+, 0) \) is analogous).

For each \( i \geq 1 \) choose \( d_i, a_i \) such that \( d_{i-1} > a_i > d_i > \bar{d}_i > a_{i+1} > a_i+1 \) and set \( V_i = A(d_i, a_i) \). There exists homeomorphism \( \tilde{u} : [0, \infty) \to [0, \infty) \) with compact support such that \( \tilde{u}(d_i, a_i) = (\bar{d}_i, a_{i+1}) \) and \( \tilde{u}(d_i, a_i) \notin (d_i, d_{i+1}) \) for every \( i \geq 1 \).

Take \( u = \text{Id}_S \times \tilde{u} \). Then \( u \in \mathcal{H}(\mathbb{R}^n, 0) \) and \( u(U_i) \subset u(V_i) = V_{i+1} \) for \( i \geq 1 \). Notice also that sets \( u^j(U_i) \) are pairwise disjoint for all \( i \geq 1, j \geq 0 \), and \( u^j(U_i) \to 0 \) as \( j \to \infty \).

We define

\[
\varphi(g) = \begin{cases} 
\text{Id} & \text{outside } \bigcup_{i,j} u^j(U_i), \\
\text{Id} & \text{outside } \bigcup_{i,j} u^j(U_i), \\
\end{cases}
\]

From the fact that \( g \in \mathcal{H}(\mathbb{R}^n, U) \) we obtain \( \varphi(g) \in \mathcal{H}(\mathbb{R}^n, 0) \) and \( \varphi(g) u = [\varphi(g), u] \).

Analogously for \( h \). Hence \( cld_{\mathcal{H}(\mathbb{R}^n, 0)}(g) \leq 2 \).

**4. Conjugation-invariant norms and the boundedness of \( \mathcal{H}(M) \)**

Let \( G \) be a group. A conjugation-invariant norm (or norm for short) on \( G \) is a function \( \nu : G \to [0, \infty) \) for every \( g, h \in G \) we have

1. \( \nu(g) > 0 \) if and only if \( g \neq e \),

2. \( \nu(g^{-1}) = \nu(g) \),

3. \( \nu(g_1 g_2) \leq \nu(g_1) + \nu(g_2) \) for all \( g_1, g_2 \in G \),

4. \( \nu(g^n) = \nu(g)^n \) for all \( g \in G \) and all integers \( n \).

For example, if \( \nu \) is a conjugation-invariant norm on \( G \), then \( \nu \) is called uniformly perfect if \( \nu(G) \leq 1 \).
\[ \nu(g^{-1}) = \nu(g), \]
\[ \nu(gh) \leq \nu(g) + \nu(h), \]
\[ \nu(hg^{-1}) = \nu(g). \]

It is easy to see that \( G \) is bounded if and only if any conjugation-invariant norm on \( G \) is bounded.

Observe that the commutator length \( cl_G \) is a conjugation-invariant norm on \([G, G]\), or on \( G \) if \( G \) is a perfect group.

From Corollary 2.2 for any \( h \in \mathcal{H}(M) \) there is a decomposition \( h = h_1 \ldots h_k \) such that \( h_i \in \mathcal{H}_{B_i}(M) \), where \( B_i \) is a ball or half-ball for \( i = 1, \ldots, k \). Hence we may introduce the following fragmentation norm \( \text{frag}_M \) on \( \mathcal{H}(M) \). Namely, for \( h \in \mathcal{H}(M) \), \( h \neq \text{Id} \), we define \( \text{frag}_M(h) \) to be the least \( k > 0 \) such that \( h = h_1 \ldots h_k \) as above. We take \( \text{fragd}_M := \sup_{h \in \mathcal{H}(M)} \text{frag}_M(h) \) as the diameter of \( \mathcal{H}(M) \) in \( \text{frag}_M \).

Analogously, from Lemma 2.1 (2) we may define another fragmentation norm, \( \text{frag}_{M,p} \), for the group \( \mathcal{H}(M, p) \) instead of \( \mathcal{H}(M) \). However, in view of the proof of Remark 7.2 in [5] we obtain

**Proposition 4.1.** For every \( h \in \mathcal{H}(M, p) \) one has \( \text{frag}_{M,p}(h) = \text{frag}_M(h) \).

**Proposition 4.2.** The groups \( \mathcal{D}^r(M, p) \) for \( r = 1, \ldots, \infty \) are unbounded.

**Proof.** Choose a chart at \( p \). Then there is the epimorphism \( \mathcal{D}^r(M, p) \ni f \mapsto \text{jac}_p f \in \mathbb{R}^+ \), where \( \text{jac}_p f \) is the jacobian of \( f \) at \( p \) in this chart. From Proposition 1.3 in [4] an abelian group is bounded if and only if it is finite. Now Lemma 1.10 in [4] implies that \( \mathcal{D}^r(M, p) \) is unbounded. \( \square \)

In the sequel we need

**Theorem 4.3** ([4]). Let \( G \) be a group with a conjugation-invariant norm \( \nu \) and \( H \) a subgroup \( G \). Suppose that some \( g \in G \) \( m \)-displaces \( H \) for every \( m \geq 1 \). Then \( \nu(h) \leq 14\nu(g) \) for all \( h \in [H, H] \).

5. **Boundedness of \( \mathcal{H}(M, p) \)**

In this section we will prove Theorem 1.3.
On the structure of the homeomorphism and diffeomorphism groups... 443

**Proposition 5.1.** Let $R > 0$. For any sequence

$$R > a_1 > b_1 > a_2 > b_2 > \cdots > 0$$

tending to 0, there exists $h \in \mathcal{H}(\mathbb{R}^n, 0)$ such that for every $i = 1, 2, \ldots$

$$h(\overline{A}(b_{2i-1}, a_{2i-1}) \cup \overline{A}(b_{2i}, a_{2i})) \subset A(b_{2i}, a_{2i}).$$

Moreover, if we have another sequence

$$R > c_1 > d_1 > c_2 > d_2 > \cdots > 0$$

tending to 0, then there is $\varphi \in \mathcal{H}(\mathbb{R}^n, 0)$ of the form $\varphi = \text{Id}_S \times \tilde{\varphi}$ with $\tilde{\varphi}(b_i, a_i) = (d_i, c_i)$ for $i = 1, 2, \ldots$.

**Proof of Theorem 1.3.** First, we show the boundedness of $\mathcal{H}(\mathbb{R}^n, 0)$.

Fix a conjugation-invariant norm $\nu$ on $\mathcal{H}(\mathbb{R}^n, 0)$ and let $f \in \mathcal{H}(\mathbb{R}^n, 0)$ with $\text{supp}(f) \subset S \times [0, d_0], d_0 > 1$. From Proposition 3.6 there exist a sequence $c_0 = d_0 > a_1 > b_1 > c_1 > d_1 > \cdots > 0$

tending to 0, and homeomorphisms $h_1, h_2, h_3, h_4 \in \mathcal{H}(\mathbb{R}^n, 0)$ with $f = h_1 h_2 h_3 h_4$ such that

$$h_1 = f \text{ on } \bigcup_{j=1}^{\infty} \overline{A}(c_{2j-1}, b_{2j-1}), \quad \text{supp}(h_1) \subset U_1 := \bigcup_{j=1}^{\infty} A(d_{2j-1}, a_{2j-1}),$$

$$h_2 = f \text{ on } \bigcup_{j=1}^{\infty} \overline{A}(c_{2j}, b_{2j}), \quad \text{supp}(h_2) \subset U_2 := \bigcup_{j=1}^{\infty} A(d_{2j}, a_{2j}),$$

$$h_3 = f \text{ on } \bigcup_{j=1}^{\infty} \overline{A}(a_{2j-1}, d_{2j-2}), \quad \text{supp}(h_3) \subset U_3 := \bigcup_{j=1}^{\infty} A(b_{2j-1}, c_{2j-2}),$$

$$h_4 = f \text{ on } \bigcup_{j=1}^{\infty} \overline{A}(a_{2j}, d_{2j-1}), \quad \text{supp}(h_4) \subset U_4 := \bigcup_{j=1}^{\infty} A(b_{2j}, c_{2j-1}).$$

Moreover we get $h_i \in \mathcal{H}(M, U_i)$ for $i = 1, 2, 3, 4$.

Next, fix a sequence tending to 0

$$R > a_1 > b_1 > a_2 > b_2 > \cdots > 0.$$ 

From Proposition 5.1 there are $g \in \mathcal{H}(\mathbb{R}^n, 0)$ such that

$$g(\overline{A}(b_{2i-1}, a_{2i-1}) \cup \overline{A}(b_{2i}, a_{2i})) \subset A(b_{2i}, a_{2i}).$$
and \( \varphi_1 \in \mathcal{H}(\mathbb{R}^n, 0) \) such that \( \varphi_1(\overline{A}(b_i, a_i)) = \overline{A}(d_i, a_i) \). Then \( \varphi_1 g \varphi_1^{-1}(U_1 \cup U_2) \subset U_2 \).

From Proposition 3.3 homeomorphism \( \varphi_1 g \varphi_1^{-1} \) \( m \)-displaces \( \mathcal{H}(\mathbb{R}^n, U_1) \) for every \( m \geq 1 \). Since \( h_1 \in [\mathcal{H}(\mathbb{R}^n, U_1), \mathcal{H}(\mathbb{R}^n, U_1)] \) in view of Corollary 3.5, then from Theorem 4.3 we obtain

\[
\nu(h_1) \leq 14 \nu(\varphi_1 g \varphi_1^{-1}) = 14 \nu(g).
\]

Using analogous estimations for \( h_2, h_3, h_4 \) with some \( \varphi_2, \varphi_3, \varphi_4 \in \mathcal{H}(\mathbb{R}^n, 0) \) we get

\[
\nu(f) \leq \nu(h_1) + \nu(h_2) + \nu(h_3) + \nu(h_4) \leq 56 \nu(g)
\]

as required.

Now we prove the second part of Theorem 1.3.

Assume that \( \mathcal{H}(M, p) \) is bounded. Let \( \nu \) be a conjugation-invariant norm on \( \mathcal{H}(M) \) and let \( f \in \mathcal{H}(M) \).

If \( M \) is noncompact we may choose \( \varphi \in \mathcal{H}(M) \) such that \( \varphi f \varphi^{-1} \in \mathcal{H}(M, p) \). Then

\[
\nu(f) = \nu(\varphi f \varphi^{-1}) = \nu_{\mathcal{H}(M, p)}(\varphi f \varphi^{-1})
\]

is bounded.

For \( M \) compact, let \( f_t \) be an isotopy from \( \text{Id} \) to \( f \) such that \( K = \bigcup_{t \in I} f_t(\{p\}) \neq M \). Fix a neighbourhood \( U \) of \( K \) and \( x \notin U \). Then from Theorem 2.3 there is an isotopy \( g_t \) in \( \mathcal{H}(M) \) such that \( g_t = f_t \) on \( K \) and \( \text{supp}(g_t) \subset U \). Note that \( g_t^{-1} f_t(p) = p \) for every \( t \).

Now take \( \varphi \in \mathcal{H}(M) \) such that \( \varphi(x) = p \) and \( \varphi g \varphi^{-1} \in \mathcal{H}(M, p) \) where \( g = g_1 \).

Hence we get

\[
\nu(f) \leq \nu(g) + \nu(g^{-1} f) = \nu_{\mathcal{H}(M, p)}(\varphi g \varphi^{-1}) + \nu_{\mathcal{H}(M, p)}(g^{-1} f)
\]

which is bounded for every conjugation-invariant norm \( \nu \) on \( \mathcal{H}(M) \).

**Corollary 5.2.** If \( \text{fragd}_M \) is bounded then \( \mathcal{H}(M, p) \) is uniformly perfect and \( \text{cl}_d_{\mathcal{H}(M, p)} \leq 2 \cdot \text{fragd}_M \).

**Proof.** Let \( f \in \mathcal{H}(M, p) \). From Corollary 2.2 we may write \( f = f_1 \ldots f_k \) where \( \text{supp}(f_i) \subset B_i \) and \( f_i \in \mathcal{H}(M, p) \) for \( i = 1, \ldots, k \). Here \( B_i \) is a ball or half-ball for each \( i \) and we may assume that \( k \leq \text{fragd}_M \).

Now fix \( i \). If \( p \in \text{supp}(f_i) \) then from Corollary 3.7 we have \( \text{cl}_{\mathcal{H}(M, p)}(f_i) \leq 2 \). If \( p \notin \text{supp}(f_i) \) choose an open set \( U_i \) of \( M \) with \( U_i \cap B_i = \emptyset \) and \( p \notin U_i \). There exists a homeomorphism \( \varphi_i \in \mathcal{H}(M, p) \) such that \( \varphi_i(B_i \cup U_i) \subset U_i \). Then Proposition 3.3 implies that \( \varphi_i \) \( m \)-displaces \( \mathcal{H}_{B_i}(M, p) \) for every \( m \geq 1 \) and from Theorem 3.2 we get \( \text{cl}_{\mathcal{H}(M, p)}(f_i) \leq 2 \). Hence

\[
\text{cl}_{\mathcal{H}(M, p)}(f) \leq \text{cl}_{\mathcal{H}(M, p)}(f_1) + \cdots + \text{cl}_{\mathcal{H}(M, p)}(f_k) \leq 2 \cdot \text{fragd}_M
\]

as required. \( \square \)
6. Final remarks

1. In view of the proofs of Theorems 1.2 and 1.3 we have

**Corollary 6.1.** The group $\mathcal{H}([0,1])$ is perfect and bounded.

Note that $\mathcal{H}([0,1])$ coincides with the group of all orientation-preserving homeomorphisms of $[0,1]$.

2. Let $0 < s \leq r \leq \infty$ and let $\mathcal{D}_s^r(\mathbb{R}^n,0)$ be the subgroup of all elements of $\mathcal{H}(\mathbb{R}^n,0)$ of class $C^r$ that are $s$-tangent to the identity at $0$. It is easily seen that $\mathcal{D}_s^r(\mathbb{R}^n,0)$ is not perfect if $s < r$. Indeed, for any diffeomorphisms $f, g \in \mathcal{D}_s^r(\mathbb{R}^n,0)$ we have

$$D^{s+1}(fg)(0) = D^{s+1}f(0) + D^{s+1}g(0), \quad D^{s+1}f^{-1}(0) = -D^{s+1}f(0).$$

Therefore if we choose $h \in \mathcal{D}_s^r(\mathbb{R}^n,0)$ such that $D^{s+1}h(0) \neq 0$, the above equalities yield that $h$ cannot be in the commutator subgroup.

On the other hand, it is likely that $\mathcal{D}_r^r(\mathbb{R}^n,0)$ is perfect for $r = 1, \ldots, \infty$. See Sergeraert [24], Masson [15] and Tsuboi [28].

3. Haller and Teichmann introduced in [12] the concept of local smooth perfectness of diffeomorphism groups. They proved that essentially the groups $\mathcal{D}_r^\infty(M)$ are locally smoothly perfect for all boundaryless manifolds $M$ different than $\mathbb{R}$. It is an interesting problem whether the group $\mathcal{D}_\infty^\infty(M)$ is locally smoothly perfect.

Acknowledgements. We would like to thank the referee for pointing out some mistake in the previous version of the paper and for indicating the reference [9].

References


