On several classes of additively non-regular C-semirings

By YIZHI CHEN (Huizhou), XIANZHONG ZHAO (Nanchang) and XIAOJIANG GUO (Nanchang)

Abstract. In this paper, the authors study several classes of additively non-regular C-semirings whose additive idempotents are central, including the generalized C-rpp semirings, C-rpp semirings, generalized C-abundant semirings and C-abundant semirings. After introducing the concept of generalized C-rpp semirings, the authors obtain their equivalent characterizations, and show that a semiring is a generalized C-rpp semiring if and only if it is a strong b-lattice of additively left cancellative halfrings, and if and only if it is a subdirect product of a b-lattice and an additively left cancellative halfring. Also, the authors give the constructions of C-rpp semirings, generalized C-abundant semirings and C-abundant semirings. Consequently, the corresponding results of Clifford semirings and generalized Clifford semirings in [7] and [29] are extended and generalized.

1. Introduction

A semiring is an algebra $(R, +, \cdot)$ with two binary operations $+$ and \cdot such that both $(R, +)$ and (R, \cdot) are semigroups and such that the distributive laws

$$x(y + z) \approx xy + xz \quad \text{and} \quad (x + y)z \approx xz + yz$$

are satisfied.

The additive identity (if it exists) of a semiring R is called zero and denoted by 0. An additively commutative semiring R with a zero satisfying $0x = x0 = 0$
for all $x \in R$, is called a hemiring. A halfring is a hemiring whose additive reduct $(R, +)$ is a cancellative monoid, i.e., for any $a, b, c \in R$, $a + b = a + c$ or $b + a = c + a$ implies $b = c$. A skew-ring $(R, +, \cdot)$ [29] is a semiring whose additive reduct $(R, +)$ is a group, not necessarily an abelian group. An additively cancellative skew-halfring (additively left cancellative skew-halfring, respectively) is a semiring whose additive reduct is an additively cancellative monoid (left cancellative monoid, respectively), not necessarily to be additively commutative.

Also, a semiring $(R, +, \cdot)$ is said to be a b-lattice [29] if its additive reduct $(R, +)$ is a semilattice and its multiplicative reduct (R, \cdot) is a band.

The algebraic theory of semirings have some important applications in automation theory, optimization theory and models of discrete event networks etc. There are a series of papers in the literature considering semirings (for example, see [2], [7]–[10], [16]–[17], [20]–[21], [23]–[32]).

Since semirings are generalizations of distributive lattices, b-lattices, rings, skew-rings, skew-halfrings and left skew-halfrings, it is interesting to use those semirings to establish the constructions of some semirings. In [2], Bandelt and Petrich introduced Bandelt–Petrich Construction in semirings and described the semirings with regular addition which is a subdirect products of a distributive lattice and a ring. In [7], Ghosh established the constructions of strong distributive lattice of semirings which include the Bandelt–Petrich Construction, and characterized all semirings which are subdirect products of a distributive lattice and a ring. In particular, the authors introduced Clifford semirings, and showed that a semiring is a Clifford semiring if and only if it is a strong distributive lattice of rings, and if and only if it is an inverse subdirect product of a distributive lattice and a ring. Later, Sen, Maity and Shum in [29] defined the Clifford semiring which is a completely regular and an additively inverse semiring such that the set of its additive idempotents is a distributive sublattice as well as a k-ideal (without assuming that its additive reduct is commutative) and verified that a semiring is a Clifford semiring if and only if it is a strong distributive lattice of skew-rings. Meanwhile, they introduced generalized Clifford semirings which are completely regular and inverse semirings such that its additive idempotent set is a k-ideal, and obtained that a semiring is a generalized Clifford semiring if and only if it is a strong b-lattice of skew-rings, and if and only if it is an additively inverse semiring and is a subdirect product of a b-lattice and a skew-ring. It is not hard to see that all the semirings studied in [2], [7] and [29] are additively regular.

On the other hand, as we know, in order to generalize regular semigroups, new Green’s relations, namely, the Green’s \ast-relations on a semigroup have been
introduced as follows (see [3], [19], or [22]):

\[
\mathcal{L}^* = \{(a, b) \in S \times S : (\forall x, y \in S^1) ax = ay \iff bx = by\},
\]

\[
\mathcal{R}^* = \{(a, b) \in S \times S : (\forall x, y \in S^1) xa = ya \iff xb = yb\},
\]

\[
\mathcal{H}^* = \mathcal{L}^* \cap \mathcal{R}^*.
\]

\[
\mathcal{D}^* = \mathcal{L}^* \lor \mathcal{R}^*.
\]

It is clear that \(\mathcal{L} \subseteq \mathcal{L}^*\), \(\mathcal{R} \subseteq \mathcal{R}^*\), \(\mathcal{H} \subseteq \mathcal{H}^*\), \(\mathcal{D} \subseteq \mathcal{D}^*\). A semigroup \(S\) is abundant [3] if its each \(\mathcal{L}^*\)-class and each \(\mathcal{R}^*\)-class contains an idempotent, a semigroup \(S\) is an rpp semigroup (a lpp semigroup, respectively) if its each \(\mathcal{L}^*\)-class (\(\mathcal{R}^*\)-class, respectively) contains an idempotent (see [5]). A semigroup \(S\) is a \(C\)-rpp semigroup ([5]) if its every \(\mathcal{L}^*\)-class contains an idempotent and \(E(S)\) is central. Dually, we will get the definition of \(C\)-lpp semigroups. A semigroup \(S\) is said to be a \(C\)-abundant semigroup if it is abundant and \(E(S)\) is central, i.e., it is both a \(C\)-lpp semigroup and a \(C\)-rpp semigroup. In general, abundant semigroups, \(C\)-rpp semigroups, \(C\)-lpp semigroups and \(C\)-abundant semigroups are not regular, so we will call them non-regular semigroups in the following. There are also a series of papers in the literature considering non-regular semigroups (for example, see [1], [3]–[5], [11]–[15], [18] etc.).

In this paper, we will study several classes of additively non-regular \(C\)-semirings whose additive idempotents are central, including the generalized \(C\)-rpp semirings, \(C\)-rpp semirings, generalized \(C\)-abundant semirings and \(C\)-abundant semirings. Our purpose is to extend the results of Clifford semirings and generalized Clifford semirings in [29] and the semirings which are subdirect products of a distributive lattice and a ring in [7] to the non-regular \(C\)-semirings. We will show that a semiring is a generalized \(C\)-rpp semiring (\(C\)-rpp semiring, generalized \(C\)-abundant semiring, \(C\)-abundant semiring, respectively) if and only if it is a strong \(b\)-lattice (strong distributive lattice, strong \(b\)-lattice, strong distributive lattice, respectively) of additively left cancellative (left cancellative, cancellative, respectively) halfrings, and if and only if it is a subdirect product of a \(b\)-lattice (distributive lattice, \(b\)-lattice, distributive lattice, respectively) and an additively left cancellative (left cancellative, cancellative, cancellative, respectively) halfring.

For notations and terminologies not mentioned in this paper, the readers are referred to [3], [8] or [29].
2. Generalized C-rpp semirings and C-rpp semirings

In this section, we will study the classes of generalized C-rpp semirings and C-rpp semirings, and show that a semiring is a generalized C-rpp semiring (C-rpp semiring, respectively) if and only if it is a strong b-lattice (strong distributive lattice, respectively) of additively left cancellative halfrings, and if and only if it is a subdirect product of a b-lattice (distributive lattice, respectively) and an additively left cancellative halfring. Also, we will give some other characterizations of such semirings.

Let $(R, +, \cdot)$ be a semiring. We denote the Green’s relations $\mathcal{L}, \mathcal{R}, \mathcal{H}$ on additive reduct $(R, +)$ by $\mathcal{L}^+, \mathcal{R}^+, \mathcal{H}^+$, respectively. These are also equivalence relations on semiring $(R, +, \cdot)$. Now, we introduce Green’s \ast-relations $\mathcal{L}^\ast, \mathcal{R}^\ast, \mathcal{H}^\ast$ on semiring R which are given by

$\mathcal{L}^\ast = \{(a, b) \in R \times R : (\forall x, y \in R^+) a + x = a + y \iff b + x = b + y\}$,

$\mathcal{R}^\ast = \{(a, b) \in R \times R : (\forall x, y \in R^+) x + a = y + a \iff x + b = y + b\}$,

$\mathcal{H}^\ast = \mathcal{L}^\ast \cap \mathcal{R}^\ast$.

It is clear that $\mathcal{L}^\ast \subseteq \mathcal{L}^+, \mathcal{R}^\ast \subseteq \mathcal{R}^+, \mathcal{H}^\ast \subseteq \mathcal{H}^+$ on $(R, +, \cdot)$. In particular, if R is an additively regular semiring, $\mathcal{L}^\ast = \mathcal{L}^+, \mathcal{R}^\ast = \mathcal{R}^+, \mathcal{H}^\ast = \mathcal{H}^+$ [4]. In general, Green’s equivalence relations $\mathcal{L}^\ast, \mathcal{R}^\ast$ and \mathcal{H}^\ast are not congruences on $(R, +, \cdot)$.

For a semiring R, we denote by $E^+(R)$ the set of all additive idempotents of R. For any $e, f \in E^+(R)$, we write $e \leq_+ f$ if $e + f = f = f + e$. Remark that \leq_+ is a partial order which is compatible with the multiplication.

In the following, we will introduce the concepts of strong b-lattice and strong distributive lattice of semirings.

Definition 1 (Definition 2.3 in [29]). Let T be a b-lattice and $\{R_\alpha : \alpha \in T\}$ be a family of pairwise disjoint semirings which are indexed by the elements of T. For each $\alpha \leq \beta$ in T, we now embed R_α in R_β via a semiring monomorphism $\phi_{\alpha, \beta}$ satisfying the following conditions:

1. $\phi_{\alpha, \alpha} = I_{R_\alpha}$, the identity mapping on R_α;
2. $\phi_{\alpha, \beta} \phi_{\beta, \gamma} = \phi_{\alpha, \gamma}$ if $\alpha \leq \beta \leq \gamma$;
3. $R_\alpha \phi_{\alpha, \beta} R_\beta \phi_{\beta, \gamma} \subseteq R_\alpha \beta \phi_{\alpha, \beta, \gamma}$ if $\alpha + \beta \leq \gamma$, i.e., $\alpha + \beta + \alpha \beta \leq \gamma$.

On several classes of additively non-regular C-semirings

On $R = \cup_{\alpha \in \gamma} R_\alpha$, we define addition $+$ and multiplication \cdot for $a \in R_\alpha$, $b \in R_\beta$, as follows:

(1.4)

$$a + b = a_{\phi,\alpha,\beta} + b_{\phi,\beta,\alpha}$$

and such that

$$c_{\phi,\alpha,\beta} = a_{\phi,\alpha,\beta} + b_{\phi,\beta,\alpha}.$$

Same as the notation of strong semilattice of semigroups, we denote the above system by $R = \langle T, R_\alpha, \phi_{\alpha,\beta} \rangle$ and call it the strong b-lattice T of the semirings $R_\alpha, \alpha \in T$.

In an obvious way, we may replace b-lattice T in the above definition by distributive lattice D, $R = \langle D, R_\alpha, \phi_{\alpha,\beta} \rangle$ and call it strong distributive lattice D of the semirings $R_\alpha, \alpha \in D$.

Lemma 1 (Theorem 2.4 in [29]). The system $R = \langle T, R_\alpha, \phi_{\alpha,\beta} \rangle$ defined above is a semiring.

Lemma 2 ([5]). A semigroup S is a C-rpp semigroup if and only if it is a strong semilattice of left cancellative monoids.

By Lemma 2, we can dually obtain that a semigroup S is a C-lpp semigroup if and only if it is a strong semilattice of right cancellative monoids.

From [5], it is also known that a semigroup $(S,+)$ is called a [right, left, respectively]adequate semigroup if its idempotents commute and every L^*-class and R^*-class $[L^*]$-class, R^*-class, respectively] contain a unique idempotent. For an element a of such a semigroup, the unique idempotent in the L^*-class $[R^*$-class, respectively] containing a is denoted by $a^*[a^+]$. A [right, left, respectively] adequate semigroup S is called [right, left, respectively] type A if $[e + a = a + (e + a), a + e = (a + e)^* + a]$ and $a + e = (a + e)^* + a$ for $a \in S$ and $e \in E^+(S)$.

By the definition of C-rpp semigroups, it is not hard to see that a right type A semigroup is a C-rpp semigroup.

Lemma 3 (Corollary 2.8 in [4]). Let $(S,+)$ be a right type A semigroup with semilattice of idempotents $E = E(S)$ and μ_L the largest congruence contained in L^*. Then the following conditions are equivalent:

(1) $S/\mu_L \cong E$;
Lemma 4 (Proposition 2.9 in [4]). Let \((S, +)\) be an adequate semigroup with semilattice of idempotents \(E = E(S)\) and \(\mu\) the largest congruence contained in \(\mathcal{H}^+\). Then the following conditions are equivalent:

1. \(S/\mu \cong E\);
2. \(\mu = \mathcal{H}^+\);
3. \(E\) is central in \(S\);
4. \(S\) is a strong semilattice of left cancellative monoids.

From Lemma 2, it is known that a semigroup \(S\) is a C-rpp semigroup if and only if it is a strong semilattice of left cancellative monoids. Now, we will similarly give the definition of generalized C-rpp semirings and then investigate some of their equivalent characterizations and constructions.

Definition 2. A semiring \(R\) is said to be a generalized C-rpp semiring if it is a strong b-lattice of additively left cancellative skew-half rings.

In the following, for any \(a \in R\), the unique idempotent in the \(\mathcal{H}^+\)-class containing \(a\) is denoted by \(a^0\).

Theorem 1. Assume that \(R\) is a generalized C-rpp semiring. Then the following conditions hold:

1. \((R, +)\) is a C-rpp semigroup;
2. \(E^+(R)\) is a b-lattice;
3. for any \(a, b \in S\), \((ab)^0 + a^0 b^0 = a^0 b^0\);
4. if \(a^0 = b^0\) and \(a + e = b + e\) for \(a, b \in R\) and some \(e \in E^+(R)\), then \(a = b\).

Proof. Assume that \(R\) is a generalized C-rpp semiring, then it is a strong b-lattice of additively left cancellative skew-half rings, say \(R = (T, R_\alpha, \phi_{\alpha, \beta})\), where \(R_\alpha\) are the additively left cancellative skew-half rings in which the zero of additive reduct is denoted by \(0_\alpha\) and \(T\) is a b-lattice.

i) Since \(R\) is a strong b-lattice of left additively cancellative skew-half rings \(R_\alpha, (R, +)\) is a strong semilattice of left cancellative monoids \((R_\alpha, +)\), by Lemma 2, \((R, +)\) is a C-rpp semigroup, and condition (GCR1) holds.
On several classes of additively non-regular C-semirings

ii) Notice that $E^+(R) = \{0_\alpha \mid \alpha \in T\} \cong T$, where T is a b-lattice, then $(E^+(R), +, \cdot)$ is also a b-lattice, and condition (GCR2) holds.

iii) We will show that $a^0 = 0_\alpha$ for any $a \in R_\alpha$ at first. In fact, notice that $(R, +)$ is a strong semilattice of left cancellative monoids $(R_\alpha, +)$, by Lemma 3, we obtain that $a \overset{L^*}{\to} R_\alpha$ for any $a \in R_\alpha$. And then, $a^0 = 0_\alpha$. Thus, for any $a \in R_\alpha$, $b \in R_\beta$, we have $(ab)^0 = 0_{\alpha\beta} = 0_\alpha 0_\beta = a^0 b_\beta$, $(ab)^0 + a^0 b_\beta = a^0 b_\beta$. The condition (GCR3) holds.

iv) Assume that $a^0 = b^0$ and $a + e = b + e$ for $a, b \in R$ and some $e \in E^+(R)$, then there exist $\alpha, \beta \in T$, s.t., $a, b \in R_\alpha$ and $e \in E(R_\beta)$. Now let $f = a^0 + e$. Then

$$a + f = b + f,$$

i.e.,

$$a \varphi_{\alpha, \alpha + \beta} + f \varphi_{\alpha + \beta, \alpha + \beta} = b \varphi_{\alpha, \alpha + \beta} + f \varphi_{\alpha + \beta, \alpha + \beta}.$$

Since $\varphi_{\alpha + \beta, \alpha + \beta}$ is a monomorphism, we have

$$f \varphi_{\alpha + \beta, \alpha + \beta} = f,$$

where f is the additive identity of $S_{\alpha + \beta}$. And then, we have

$$a \varphi_{\alpha, \alpha + \beta} = b \varphi_{\alpha, \alpha + \beta}.$$

Also, notice that $\varphi_{\alpha, \alpha + \beta}$ is a monomorphism, we immediately get $a = b$. The condition (GCR4) holds.

Actually, the converse of the above theorem also holds. To show this, we need the following proposition.

Proposition 1. If R satisfies the conditions (GCR1)–(GCR3), then the following conclusions hold:

1. L^* is a semiring congruence;
2. $R/L^* \cong E^+(R)$.

Proof. (1) Assume that R satisfies the conditions (GCR1)–(GCR3), we will show that L^* is a semiring congruence.

Firstly, since (GCR1) holds, by Lemma 3, $(R, +)$ is a strong semilattice Y of left cancellative monoids $(R_\alpha, +)$, where $Y \cong (E^+(R), +)$. By Lemma 3 again, $(R, +)/L^* \cong (E^+(R), +)$, we obtain that L^* is a semilattice congruence on $(R, +)$. To show that L^* is a semiring congruence, we only need to prove that L^* is a multiplicative congruence on (R, \cdot), i.e., for any $a, b \in R$,

$$(ab)^0 = a^0 b = ab^0 = a^0 b^0.$$
In fact, for any \(a, b \in R \), since \(a^0b, ab^0, a^0b^0 \in E^+(R) \), by condition (GCR2), we have
\[
(ab)^0 = [(a + a^0)(b + b^0)]^0 = (ab + a^0b + ab^0 + a^0b^0)^0 = (ab)^0 + a^0b + ab^0 + a^0b^0.
\]
And then
\[
(ab)^0 + a^0b^0 = (ab)^0.
\]
Together with (GCR3), we have
\[
(ab)^0 = a^0b^0.
\]
Notice that \((ab)^0 + a^0b = (ab)^0\) and \((ab)^0 + ab^0 = (ab)^0\) also hold, we immediately get
\[
(ab)^0 = a^0b = ab^0 = a^0b^0.
\]

(2) Define a mapping
\[
\phi : S/L^* \to E^+(S), \quad aL^* \mapsto a^0.
\]
It is a routine way to check that \(\phi\) is bijective, and
\[
(aL^* + bL^*)\phi = [(a + b)L^*]\phi = (a + b)^0 = a^0 + b^0,
\]
\[
[(aL^*)(bL^*)]\phi = [(ab)L^*]\phi = (ab)^0 = a^0b^0.
\]
Thus, \(S/L^* \cong E^+(S)\). \(\square\)

Now, we have the following theorem.

Theorem 2. A semiring \(R \) is a generalized C-rpp semiring if and only if it satisfies the conditions (GCR1)–(GCR4).

Proof. We only need to show the sufficiency. By Proposition 1, it is known that if \(S \) satisfies the conditions (GCR1)–(GCR4), then \(L^* \) is a semiring congruence on \((R, +, \cdot)\), and \(R/L^* \cong E^+(R) \) is a b-lattice. Also, for any \(a \in R \), notice that \((L^*_a, +)\) is an additively left cancellative monoid, we obtain that \(R \) is a b-lattice of additively left cancellative skew-halfrings.

For any \(e, f \in E^+(R) \) with \(e \leq f \), define a mapping
\[
\phi_{e,f} : L^*_e \to L^*_f, \quad a \mapsto a + f.
\]
In the following, we will show that \(R = (E^+(R), L^*_e, \phi_{e,f}) \) is a strong b-lattice of the additively left cancellative skew-halfrings \(L^*_e, e \in E^+(R) \). That is, we will show that \(\phi_{e,f} \) satisfies the conditions of strong b-lattice.
For any \(a, b \in L^*_e \),
\[
(a + b) \phi_{e,f} = a + b + f = a + (f + b + f) = (a + f) + (b + f) = a \phi_{e,f} + b \phi_{e,f}.
\]
Also, since \(af \in L^*_e \cap E^+(R) \), we have \(af = ef \). And then,
\[
(ab) \phi_{e,f} = ab + f = ab + e + f = ab + (e + f)^2 = ab + e + ef + fe + f
= ab + af + fb + f = (a + f)(b + f) = a \phi_{e,f} b \phi_{e,f}.
\]
Hence, \(\phi_{e,f} \) is a semiring morphism.

For any \(a, b \in L^*_e \), if \(a \phi_{e,f} = b \phi_{e,f} \), we have \(a + f = b + f \). Notice that \((L^*_e, +)\) is an additively left cancellative monoid, we will get \(a^0 = b^0 = e \). It follows from (GCR4) that \(a = b \). Thus, \(\phi_{e,f} \) is a semiring monomorphism.

Moreover, we can check that the monomorphism \(\phi_{e,f} \) satisfies the conditions (1.1)–(1.4) of Definition 1.

(i) \(\phi_{e,e} \) is clearly an identity morphism.

(ii) For any \(e, f, g \in E^+(R) \) with \(e \leq f \leq g \), we have
\[
a \phi_{e,f} \phi_{f,g} = a + f + g = a + g = a \phi_{e,g}.
\]
Hence, \(\phi_{e,f} \phi_{f,g} = \phi_{e,g} \).

(iii) For any \(e, f, g \in E^+(R) \), if \(e + f \leq g \), then for any \(a \in L^*_e, b \in L^*_f \),
\[
a \phi_{e,g} b \phi_{f,g} = (a + g)(b + g) = ab + ag + gb + g = ab + eg + gf + g
= ab + g = (ab) \phi_{e,f,g}.
\]

(iv) For any \(e, f \in E^+(R), a \in L^*_e, b \in L^*_f \), we have
\[
a \phi_{e,e+f} + b \phi_{f,e+f} = (a + e + f) + (b + e + f) = a + f + b + e
= a + b + e + f = a + b;
\]
\[
a \phi_{e,e+f} b \phi_{f,e+f} = (a + e + f)(b + e + f) = ab + a(e + f) + (e + f)b + (e + f)
= ab + (e + f) = (ab) \phi_{e,f,e+f}.
\]

Thus, we have shown that \(R \) is a strong b-lattice of additively left cancellative skew-halfrings. And then it is a generalized C-rpp semiring. \(\square \)

Example 1. Let \((A, +)\) and \((B, +)\) be the infinite cyclic monoids generated by \(a \) and \(b \) respectively. Let \(M = A \cup B \cup \{0\} \) with additive identity \(0 \) and addition \(+ \) defined by
\[
ma + nb = (m + n)b, nb + ma = (n + m)a
\]
for any \(m, n \in \mathbb{N}^+ \). Also, we define the multiplication \(\cdot \) of \(M \) as follows: \(s_1 \cdot s_2 = 0 \) for any \(s_1, s_2 \in M \), it is a routine way to check that \((M, +, \cdot) \) is an additively left cancellative skew-halfring.

On the other hand, let \(D = \{ e, f \} \) such that \(e + e = e \cdot e = e, f + f = e + f = f \cdot f = e \cdot f = f \cdot e = f \). Then \((D, +, \cdot) \) is a b-lattice.

Now, construct the direct product of \(D \) and \(M \), and denote it by \(R \), i.e., \(R = D \times M \). Then, we can check that \(E^+(R) = D \times \{ e_M \} \), where \(e_M \) is the identity element of \((M, +) \). It is also not hard to check that \((R, +, \cdot) \) is a semiring which satisfies the following conditions:

(i) \((R, +) \) is a \(C \)-rpp semigroup;
(ii) \((E^+(R), +, \cdot) \) is a b-lattice;
(iii) for any \(a, b \in R \), \((ab)^0 + a^0 b^0 = a^0 b^0 \);
(iv) if \(a^0 = b^0 \) and \(a + e = b + e \) for \(a, b \in R \) and some \(e \in E^+(R) \), then \(a = b \).

By Theorem 2, \((R, +, \cdot) \) is just a generalized \(C \)-rpp semiring.

Next, we will give another construction of generalized \(C \)-rpp semirings. Recall that a subdirect product algebra \(T \) is a subalgebra of a direct product of algebras such that the projection mapping from the algebra \(T \) to each of its components is surjective.

Theorem 3. A semiring \(R \) is a generalized \(C \)-rpp semiring if and only if it is a subdirect product of a b-lattice and an additively left cancellative skew-halfring.

Proof. (\(\Rightarrow \)) Suppose that \(R \) is a subdirect product of a b-lattice \(T \) and an additively left cancellative skew-halfring \(M \). Consider \(R \subseteq T \times M \). For each \(\alpha \in T \), let \(R_\alpha = (\{ \alpha \} \times M) \cap R \). Then \(R_\alpha \) is an additively left cancellative skew-halfring for each \(\alpha \in T \) and \(R = \cup_{\alpha \in T} R_\alpha \). Now for each pair \(\alpha, \beta \in T \) with \(\alpha \leq_+ \beta \), define a mapping

\[
\phi_{\alpha, \beta} : R_\alpha \rightarrow R_\beta, (\alpha, r) \phi_{\alpha, \beta} = (\beta, r).
\]

Then \(\phi_{\alpha, \beta} \) is clearly a monomorphism satisfying the conditions \(\phi_{\alpha, \alpha} = I_{R_\alpha} \) and \(\phi_{\alpha, \beta} \phi_{\beta, \gamma} = \phi_{\alpha, \gamma} \) if \(\alpha \leq_+ \beta \leq_+ \gamma \) for \(\alpha, \beta, \gamma \in T \).

Let \(\alpha, \beta, \gamma \in T \) be such that \(\alpha + \beta \leq_+ \gamma \). Denote \(a = (\alpha, r) \in R_\alpha \), \(b = (\beta, r') \in R_\beta \). And then

\[
a + b = (\alpha, r) + (\beta, r') = (\alpha + \beta, r + r') \in R_{\alpha + \beta}
\]

and

\[
ab = (\alpha, r)(\beta, r') = (\alpha \beta, rr') \in R_{\alpha \beta}.
\]
Now, we have
\[(a\phi_{\alpha,\gamma})(b\phi_{\beta,\gamma}) = (\alpha\beta, rr')\phi_{\alpha,\gamma} = (ab)\phi_{\alpha,\gamma}.\]
Also, since
\[a + b = (\alpha, r) + (\beta, r') = (\alpha + \beta, r + r') = (\alpha + \beta, r) + (\alpha + \beta, r') = a\phi_{\alpha,\beta} + b\phi_{\beta,\alpha + \beta}\]
and
\[(a\phi_{\alpha,\alpha + \beta})(b\phi_{\beta,\alpha + \beta}) = (\alpha + \beta, r)(\alpha + \beta, r') = (\alpha + \beta, rr')\]
\[= (\alpha\beta, rr')\phi_{\alpha,\beta} \alpha + \beta = (ab)\phi_{\alpha,\beta} \alpha + \beta.\]

\(R\) is a strong b-lattice of additively left cancellative shew-halfrings. Hence, \(R\) is a generalized C-rpp semiring.

(\(\Rightarrow\)) Assume that \(R\) is a generalized C-rpp semiring. We will show that it is a subdirect product of a b-lattice and an additively left cancellative shew-halfring by the following steps.

Firstly, from Proposition 1, \(L^*\) is a semilattice congruence on \((R, +)\) and a semiring congruence on \(R\). Also, since \(R\) is a generalized C-rpp semiring, we have \(aa^0 = a\) for any \(a \in R\) and then \(a = aa^0 L^* a^2\). Hence, \(R/L^*\) is an idempotent semiring with the semilattice additive reduct and band multiplicative reduct, i.e., \(R/L^*\) is a b-lattice.

Secondly, define a binary relation
\[\theta = \{(a, b) \mid (\exists e \in E^+(R)) a + e = b + e\}.\]
It can be easily seen that \(\theta\) is an equivalence relation on \(R\). Moreover, \(\theta\) is the minimum additively left cancellative shew-halfring congruence on \((R, +, .)\). In fact, by the Proposition 1.7 in [18], \(\theta\) is a minimum left cancellative monoid congruence on the additive reduct \((R, +)\). Also, if \(a\theta b\) for some \(a, b \in R\), there exists \(e \in E^+(R)\) such that \(a + e = b + e\). Now, for any \(c \in R\), we have
\[ac + ec = bc + ec, ca + ec = cb + ec.\]
Notice that \(ce, ec \in E^+(R)\). We immediately obtain that
\[acebdc, caeacb.\]
Thus, we have shown that \(\theta\) is the minimum additively left cancellative shew-halfring congruence on \((R, +, .)\). This also shows that \(R/\theta\) is an additively left cancellative shew-halfring.
Finally, define a mapping
\[\Phi : R \to R/\theta \times R/L^*, \quad a \mapsto (a\theta, aL^*) \]
It is a routine way to check that \(R \) can be embedded into \(R/\theta \times R/L^* \), and the projection mapping from \(R \) into each of its components is surjective. Consequently, \(R \) is a subdirect product of a b-lattice and an additively left cancellative skew-halfring.

So we have obtained some constructions and characterizations of generalized C-rpp semirings. In the following, we will investigate another class of additive non-regular C-semirings, called C-rpp semirings.

Definition 3. A semiring \(R \) is said to be a C-rpp semiring if it is a strong distributive lattice of additively left cancellative skew-halfrings.

Theorem 4. Assume that \(R \) is a C-rpp semiring. Then the following conditions hold:

\begin{enumerate}
 \item[(CR1)] \((R, +)\) is a C-rpp semigroup;
 \item[(CR2)] \((E^+(R), +, \cdot)\) is a distributive lattice;
 \item[(CR3)] for any \(a, b \in R \), \((ab)^0 + a^0b^0 = a^0b^0\);
 \item[(CR4)] if \(a^0 = b^0 \) and \(a + e = b + e \) for \(a, b \in R \) and some \(e \in E^+(R) \), then \(a = b \).
\end{enumerate}

Conversely, if a semiring \(R \) satisfies the conditions (CR1)–(CR4), then it is a C-rpp semiring.

Proof. \((\Rightarrow)\) From Definition 2 and Definition 3, it is known that a C-rpp semiring is a generalized C-rpp semiring. Thus, by Theorem 2, (CR1), (CR3), (CR4) hold. We only need to prove that (CR2) holds.

Assume that \(S \) is a C-rpp semiring. Then it is a strong distributive lattice of additively left cancellative skew-halfrings, say \(R = \langle D, R_\alpha, \phi_{\alpha, \beta} \rangle \), where each \(R_\alpha \) is an additively left cancellative skew-halfring in which the additive identity is denoted by \(0_\alpha \) and \(T \) is a distributive lattice. Notice that \(E^+(R) = \{ 0_\alpha \mid \alpha \in T \} \cong T \), we immediately obtain that \((E^+(R), +, \cdot)\) is also a distributive lattice. Hence, (GC2) holds.

\((\Leftarrow)\) Assume that the semiring \(R \) satisfies the conditions (CR1)–(CR4), then by Theorem 2, it is clearly a generalized C-rpp semiring. Also, note that (CR2) holds. By analogy with the discussions of Theorem 1, \(R \) is a C-rpp semiring.

Example 2. Let \((M = A \cup B \cup \{ 0 \}, +, \cdot)\) be an additively left cancellative skew-halfring as defined in Example 1. Let \(D = \{ e, f \} \) be such that \(e + e = e \cdot e = \)}
On several classes of additively non-regular C-semirings

\[e + f = f + e = e, f + f = f \cdot f = e \cdot f = f \cdot e = f. \]
Then \((D, +, \cdot)\) is a distributive lattice.

Now, construct the direct product of \(D\) and \(M\) and denote it by \(R\), i.e., \(R = D \times M\). Clearly, \(E^+(R) = D \times \{e_M\}\), where \(e_M\) is the identity element of \((M, +)\). It is also not hard to check that \((R, +, \cdot)\) is a semiring which satisfies the following conditions:

(i) \((R, +)\) is a C-rpp semigroup;
(ii) \((E^+(R), +, \cdot)\) is a distributive lattice;
(iii) for any \(a, b \in R\), \((ab)^0 + a^0b^0 = a^0b^0;
(iv) if \(a^0 = b^0\) and \(a + e = b + e\) for \(a, b \in R\) and some \(e \in E^+(R)\), then \(a = b\).

Thus, by Theorem 4, \((R, +, \cdot)\) is a C-rpp semiring.

Further, by analogy with the discussions of the subdirect decompositions of generalized C-rpp semirings, we have the following theorem.

Theorem 5. A semiring \(R\) is a C-rpp semiring if and only if it is a subdirect product of a distributive lattice and an additively left cancellative skew-halfring.

3. Generalized C-abundant semirings and C-abundant semirings

In this section, we will study generalized C-abundant semirings and C-abundant semirings, and will show that a semiring is a generalized C-abundant semiring (C-abundant semiring, respectively) if and only if it is a strong b-lattice (strong distributive lattice, respectively) of additively cancellative skew-halfrings, and if and only if it is a subdirect product of a b-lattice (distributive lattice, respectively) and an additively cancellative skew-halfring. Also, we will give some characterizations of such semirings.

Firstly, by Lemma 2 and its dual, we immediately have

Lemma 5. A semigroup \(S\) is a C-a(or C-abundant) semigroup if and only if it is a strong semilattice of cancellative monoids.

Definition 4. A semiring \(R\) is said to be a generalized C-abundant semiring if it is a strong b-lattice of additively cancellative skew-halfrings.

Theorem 6. Assume that \(R\) is a generalized C-abundant semiring, then the following conditions hold:

(GCA1) \((R, +)\) is a C-abundant semigroup;
(GCA2) \((E^+(R), +, \cdot)\) is a b-lattice;
for any \(a, b \in R \), \((ab)^0 + a^0b^0 = a^0b^0;\)

(GCA4) if \(a^0 = b^0 \) and \(a + e = b + e \) for \(a, b \in S \) and some \(e \in E^+(R) \), then \(a = b \).

Proof. From Definition 2 and Definition 4, it is known that, a generalized \(C \)-abundant semiring is a generalized \(C \)-rpp semiring, then the conditions (GCA2)–(GCA4) hold. We only need to show that condition (GCA1) holds.

Actually, if \(R \) is a generalized \(C \)-abundant semiring, then it is a strong \(b \)-lattice of additively cancellative skew-halfrings, say \(R = \langle T, R_\alpha, \phi_\alpha, \beta \rangle \), where each \(R_\alpha \) is an additively cancellative skew-halfring and \(T \) is a \(b \)-lattice. It follows that \((R, +)\) is strong semilattice of cancellative monoids \((R_\alpha, +)\), i.e., \((R, +)\) is a \(C \)-abundant semigroup. Thus, the condition (GCA1) holds.

Proposition 2. Assume that a semiring \(R \) satisfies the conditions (GCA1)–(GCA3). Then the following conclusions hold:

(1) \(\mathcal{H}^* \) is a semiring congruence;

(2) \(R/\mathcal{H}^* \cong E^+(R) \).

Proof. (1) Assume that semiring \(R \) satisfies the conditions (GCA1)–(GCA3). We will show that \(\mathcal{H}^* \) is a semiring congruence.

Firstly, since condition (GCA1) holds, by Lemma 4 or Lemma 5, \((R, +)\) is a strong semilattice \(Y \) of cancellative monoids \(R_\alpha \), where \(Y \cong (E^+(R), +) \). By Lemma 4 again, we obtain that \(\mathcal{H}^* = \mathcal{L}^* = R^* \) is a semilattice congruence on \((R, +)\). And then, by analogy with with the discussions of Proposition 1, we can get \(\mathcal{H}^* = \mathcal{L}^* = R^* \) is a semiring congruence.

(2) Define a mapping

\[\phi : R/\mathcal{H}^* \rightarrow E^+(R), a\mathcal{H}^* \mapsto a^0. \]

It is not hard to check that \(\phi \) is bijective, and

\[(a\mathcal{H}^* + b\mathcal{H}^*)\phi = [(a + b)\mathcal{H}^*] \phi = (a + b)^0 = a^0 + b^0, \]

\[[(a\mathcal{H}^*)(b\mathcal{H}^*)] \phi = [(ab)\mathcal{H}^*] \phi = (ab)^0 = a^0b^0. \]

Thus, \(R/\mathcal{H}^* \cong E^+(R) \).

Theorem 7. A semiring \(R \) is a generalized \(C \)-abundant semiring if and only if it satisfies the conditions (GCA1)–(GCA4).
Proof. We only need to show the sufficiency. By Proposition 2, it is known that if \(S \) satisfies the conditions (GCA1)–(GCA4), then \(\mathcal{H}^* \) is a semiring congruence on \((R, +, \cdot) \), and \(R/\mathcal{H}^* \cong E^+(R) \) is a b-lattice. Also, notice that \((\mathcal{H}^*_e, +) \) is an additively cancellative monoid, we obtain that \(R \) is a b-lattice of additively cancellative skew-halfrings.

For any \(e, f \in E^+(R) \) with \(e \leq_+ f \), define mapping
\[
\phi_{e,f} : H^*_e \to H^*_f, \quad a \mapsto a + f.
\]
In the following, we begin to show that \(R = \langle E^+(R), R_e, \phi_{e,f} \rangle \) is a strong b-lattice of the semirings \(R_e, e \in E^+(R) \).

For any \(a, b \in H^*_e \),
\[
(a + b)\phi_{e,f} = a + b + f = a + (f + b + f) = (a + f) + (b + f) = a\phi_{e,f} + b\phi_{e,f}.
\]
Also, since \(af \in H^*_e \cap E^+(R) \), we have \(af = ef \). And then,
\[
(ab)\phi_{e,f} = ab + f = ab + e + f = ab + (e + f) = ab + e + ef + fe + f
\]
*
\[
= ab + af + fb + f = (a + f)(b + f) = a\phi_{e,f}b\phi_{e,f}.
\]
Hence, \(\phi_{e,f} \) is a semiring morphism.

For any \(a, b \in H^*_e \), if \(a\phi_{e,f} = b\phi_{e,f} \), we have \(a + f = b + f \). Notice that \((\mathcal{H}^*_e, +) \) is an additively cancellative monoid, we have \(a^0 = b^0 = e \). By condition (GCA4), we have \(a = b \). Thus, \(\phi_{e,f} \) is a semiring monomorphism.

Moreover, we can check that the monomorphism \(\phi_{e,f} \) satisfies the conditions (1.1)–(1.4) of Definition 1.

(i) \(\phi_{e,e} \) is clearly an identity morphism.

(ii) For any \(e, f, g \in E^+(R) \) with \(e \leq_+ f \leq_+ g \), we have
\[
a\phi_{e,f} \phi_{f,g} = a + f + g = a + g = a\phi_{e,g}.
\]
Hence, \(\phi_{e,f} \phi_{f,g} = \phi_{e,g} \).

(iii) For any \(e, f, g \in E^+(S) \), if \(e + f \leq_+ g \), then for any \(a \in H^*_e, b \in H^*_f \),
\[
a\phi_{e,g} b\phi_{f,g} = (a + g)(b + g) = ab + ag + gb + g = ab + eg + gf + g = (ab)\phi_{e,f,g},
\]
\i.e.,
\[
\phi_{e,g} b\phi_{f,g} = \phi_{ef,g}.
\]
(iv) For any $e, f \in E^+(R)$, $a \in H^*_e$, $b \in H^*_f$, we have
\[
\begin{align*}
a \phi_{e,e+f} + b \phi_{f,e+f} &= (a + e + f) + (b + e + f) = a + f + b + e \\
&= a + b + (e + f) = a + b; \\
abla \phi_{e,e+f} b \phi_{f,e+f} &= (a + e + f)(b + e + f) = ab + a(e + f) + (e + f)b + (e + f) \\
&= ab + (e + f) = (ab) \phi_{e,e+f}.
\end{align*}
\]
Thus, we have shown that R is a strong b-lattice of additively cancellative skew-halfrings, and then it is a generalized C-abundant semiring.

Example 3. Let T be a b-lattice and M an additively cancellative skew-halfring. Construct the direct product of T and R, and denote it by $M_T \times R$. Then, we can check that $E^+(R) = T \times \{e_M\}$, where e_M is the identity element of $(M, +)$. We can also check that $(R, +, \cdot)$ is a semiring which satisfies the conditions (GCA1)-(GCA4). Thus, by Theorem 7, $(R, +, \cdot)$ is really a generalized C-abundant semiring.

Theorem 8. A semiring R is a generalized C-abundant semiring if and only if it is a subdirect product of a b-lattice and an additively cancellative skew-halfring.

Proof. (⇒) By Theorem 3 and its dual, the sufficiency is clear.

(⇒) Assume that R is a generalized C-rpp semiring, we will show that it is a subdirect product of a b-lattice and an additively cancellative skew-halfring by the following steps.

Firstly, from Proposition 2, H^* is a semilattice congruence on $(R, +)$ and a semiring congruence on R. Also, since R is a generalized C-a semiring, we have $a \theta a = a$ for any $a \in R$, and then $a = a \theta a$. Hence, R/H^* is an idempotent semiring with the semilattice additive reduct and band multiplicative reduct, i.e., R/H^* is a b-lattice.

Secondly, define a binary relation
\[
\theta = \{(a, b) \mid (\exists e \in E^+(R))a + e = b + e\}.
\]
It can be easily seen that θ is an equivalence relation on $(R, +, \cdot)$. Moreover, θ is the minimum additively cancellative skew-halfring congruence on $(R, +, \cdot)$. In fact, by the Proposition 1.7 in [18] and its dual, θ is a minimum cancellative monoid congruence on the additive reduct $(R, +)$. Also, if $a \theta b$ for some $a, b \in R$, there exists $e \in E^+(R)$ such that $a + e = b + e$. Now, for any $c \in R$, we have
\[
a c + e c = b c + e c, c a + e c = c b + e c.
\]
Notice that $ce, ec \in E^+(R)$, we immediately obtain that

$$ac\theta bc, ca\theta cb.$$

Thus, we have shown that θ is the minimum additively cancellative skew-halfring congruence on $(R, +, \cdot)$. This also shows that R/θ is an additively cancellative skew-halfring.

Finally, define a mapping

$$\Phi : R \rightarrow R/\theta \times R/\mathcal{H}^*, \quad a \mapsto (a\theta, a\mathcal{H}^*).$$

It is a routine way to check that R can be embed into $R/\theta \times R/\mathcal{H}^*$, and the projection mapping from R into each of its components is surjective. Consequently, R is a subdirect product of a b-lattice and an additively cancellative skew-halfring. \(\square\)

Remark 1. From Theorem 8, we can see that the class of generalized C-abundant semirings is actually a general extension of the class of generalized Clifford semirings studied in [29].

At the end of this section, we will study C-abundant semirings.

Definition 5. A semiring R is said to be a C-abundant semiring if it is a strong distributive lattice of additively cancellative skew-halfrings.

Some characterizations of such semirings are also given below.

Theorem 9. If R is a C-abundant semiring, then the following conditions hold:

(CA1) $(R, +)$ is a C-abundant semigroup;
(CA2) $(E^+(R), +, \cdot)$ is a distributive lattice;
(CA3) for any $a, b \in R, (ab)^0 + a^0b^0 = a^0b^0$;
(CA4) if $a^0 = b^0$ and $a + e = b + e$ for $a, b \in S$ and some $e \in E^+(R)$, then $a = b$.

Conversely, if a semiring R satisfies the conditions (CA1)–(CA4), then it is a C-abundant semiring.

Proof. (\Rightarrow) By Definition 4 and Definition 5, a C-a semiring is clearly a generalized C-abundant semiring. Thus, by Theorem 6, condition (CA1), (CA3), (CA4) hold. We only need to prove that condition (CA2) holds.

Assume that R is a C-abundant semiring. Then it is a strong distributive lattice of additively cancellative skew-halfrings, say $R = \langle D, R_\alpha, \phi_{\alpha, \beta} \rangle$, where each R_α is an additively cancellative skew-halfring in which the additive identity is denoted by 0_α and D is a distributive lattice. Notice that $E^+(R) = \{0_\alpha \mid \alpha \in \ldots$
\[D \cong D \], we immediately obtain that \((E^+(R), +, \cdot) \) is also a distributive lattice. (CA2) holds.

(\(\Leftarrow \)) Assume that the semiring \(R \) satisfies the conditions (CA1)–(CA4), then by Theorem 7, it is clearly a generalized \(C \)-abundant semiring. Also, note that (CA2) holds, by analogy with the discussions of Theorem 1, together with Definition 5, \(R \) is a \(C \)-abundant semiring.

\[\square \]

Example 4. Let \(D \) be a distributive lattice and \(M \) an additively cancellative skew-halfring. Construct the direct product of \(D \) and \(M \), and denote it by \(R \), i.e., \(R = D \times M \). Then, \(E^+(R) = D \times \{ e_M \} \), where \(e_M \) is the identity element of \((M, +) \). We can also check that \((R, +, \cdot) \) is a semiring which satisfies the conditions (CA1)–(CA2). Thus, by Theorem 9, \((R, +, \cdot) \) is a \(C \)-abundant semiring.

By analogy with the discussions of the subdirect decompositions of the generalized \(C \)-a semirings, we will have the following theorem.

Theorem 10. A semiring \(R \) is a \(C \)-abundant semiring if and only if it is a subdirect product of a distributive lattice and an additively cancellative skew-halfring.

Remark 2. From Theorem 10, we can see that the class of \(C \)-abundant semirings is actually a general extension of the one of Clifford semirings studied in [7] and [29].

References

On several classes of additively non-regular C-semirings

