On the exponential Diophantine equation \((a^n - 1)(b^n - 1) = x^2\)

By KATSUMASA ISHII (Tokyo)

Abstract. Let \(a\) and \(b\) be two distinct fixed positive integers such that \(\min(a, b) > 1\). We give a necessary and sufficient condition for Diophantine equation \((a^n - 1)(b^n - 1) = x^2\) with \(a \equiv 5 \pmod{6}\) and \(b \equiv 0 \pmod{3}\) to have positive integer solutions.

Let \(\mathbb{N}^+\) be the set of all positive integers. Let \(a\) and \(b\) be two distinct fixed positive integers such that \(\min(a, b) > 1\) and consider the exponential Diophantine equation
\[
(a^n - 1)(b^n - 1) = x^2, \quad x, n \in \mathbb{N}^+.
\] (1)

There are many results concerned with (1) (for example, see [2], [3], [4], [5] and [6]). SZALAY [6] considered the case where \((a, b) = (2, 3), (2, 5)\) and \((2, 2^k)\), and HAJDU and SZALAY [3] considered the case where \((a, b) = (2, 6)\) and \((a, a^k)\). LE [5] treated the more general case, that is where \(a = 2\) and \(b \equiv 0 \pmod{3}\), and showed that in this case (1) has no solution.

Recently LAN and SZALAY [4] showed that (1) has no solution if \(a \equiv 2 \pmod{6}\) and \(b \equiv 0 \pmod{3}\). In this note we consider the case where \(a \equiv 5 \pmod{6}\) and \(b \equiv 0 \pmod{3}\).

Let \(d\) be a positive integer which is not a square. Then the Pell equation
\[
u^2 - dv^2 = 1, \quad u, v \in \mathbb{N}^+
\]
has infinitely many solutions \((u, v)\). If \((u_1, v_1)\) denotes the smallest non-trivial positive solution, then every positive solution \((u_k, v_k)\) can be generated by
\[
u_k + v_k\sqrt{d} = (u_1 + v_1\sqrt{d})^k.
\]

Our main result is the following.

Mathematics Subject Classification: Primary: 11D41, 11D61.

Key words and phrases: exponential Diophantine equation, Pell equation.
Theorem. Suppose that \(a \equiv 5 \pmod{6} \) and \(b \equiv 0 \pmod{3} \). Then the equation \((a^n - 1)(b^n - 1) = x^2\) has positive integer solution \((x, n)\) if and only if \((a, b) = (u_r, v_s)\) with non-square \(d \equiv 2 \pmod{3} \) satisfying \(u_1 \equiv 0 \pmod{3} \), \(r \equiv 2 \pmod{4} \) and \(s \) is odd. In this case a solution is \((x, n) = (dv_r, v_s, 2)\).

In order to prove this, we need some lemmata. The first lemma is concerned with the sequence \(u_k \), and is due to LAN and SZALAY [4].

Lemma 1. Let \(d \) be a positive integer which is not a square.

1. If \(k \) is even, then each prime factor \(p \) of \(u_k \) satisfies \(p \equiv \pm 1 \pmod{8} \).
2. If \(k \) is odd, then \(u_1 | u_k \).
3. If \(q \in \{2, 3, 5\} \), then \(q | u_k \) implies \(q | u_1 \).

Proof. See Lemma 1 in [4].

Furthermore, we need two results on Diophantine equations.

Lemma 2. Let \(p \) be an odd prime with \(p > 3 \). Then the equation \(X^p + 1 = 2Y^2 \), \(X, Y \in \mathbb{N}^+ \) has only the solution \((X, Y) = (1, 1)\).

Proof. By Theorem 1 in [1] the equation \(x^p + y^p = 2z^2 \) has no solution in nonzero pairwise coprime integers with \(x > y \) except \((x, y, z) = (3, -1, \pm 11)\) when \(p = 5 \). Therefore, the lemma follows.

Lemma 3. The equation \(X^3 + 1 = 2Y^2 \), \(X, Y \in \mathbb{N}^+ \) has only the solutions \((X, Y) = (1, 1)\) and \((23, 78)\).

Proof. This is one of the results of [7].

Proof of the Theorem. Put \(d = \gcd(a^n - 1, b^n - 1) \). Then

\[
a^n - 1 = dy^2, \quad b^n - 1 = dz^2
\]

for some \(y \) and \(z \). Since \(b \equiv 0 \pmod{3} \) we have \(z \not\equiv 0 \pmod{3} \), which yields that \(z^2 \equiv 1 \pmod{3} \). Therefore, \(d \equiv b^n - 1 \equiv 2 \pmod{3} \).
On the exponential Diophantine equation \((a^n - 1)(b^n - 1) = x^2\)

Furthermore, if \(y \neq 0 \pmod{3}\), then \(y^2 \equiv 1 \pmod{3}\) and hence \(a^n = dy^2 + 1 \equiv 0 \pmod{3}\), which contradicts that \(a \equiv 2 \pmod{3}\). Therefore, we have \(y \equiv 0 \pmod{3}\) and hence \(2^n \equiv a^n = dy^2 + 1 \equiv 1 \pmod{3}\). This implies that \(n\) is even.

Now put \(n = 2m\). Then \(u^2 - dv^2 = 1\) has two solutions \((a^m, y)\) and \((b^m, z)\) and hence \((a^n, y) = (ur, vr)\) and \((b^n, z) = (us, vs)\) for some \(r\) and \(s\). If \(s\) is even, then each prime factor \(p\) of \(b\) satisfies \(p \equiv \pm 1 \pmod{8}\) by Lemma 1(1), which is impossible since \(b \equiv 0 \pmod{3}\). Therefore, \(s\) must be odd. This implies that \(u_1 \equiv 0 \pmod{3}\) by Lemma 1(3). Furthermore, if \(r\) is odd, then we have \(a \equiv 0 \pmod{3}\) by Lemma 1(2) and \(u_1 \equiv 0 \pmod{3}\), a contradiction. Therefore, \(r\) is even. Put \(r = 2t\). Then \(ut + vr\sqrt{d} = (u_t + v_r\sqrt{d})^2\) and hence \(a^m = u_t^2 + dv_t^2\).

Since \(u_t^2 - dv_t^2 = 1\) we have \(a^m + 1 = 2u_t^2\).

Now notice that \(m\) is odd by Result 2 of [2]. By Lemma 2, \(m\) must be 1 or a power of 3. Suppose that \(m = 3^e\) and \(a_0 = a^{3e-1}\). By Lemma 3, we have \(a_0 = 23\) and \(u_t = 78\) (and hence \(e\) must be 1, that is, \(a = 23\)). Furthermore, since \(78^2 - dv_t^2 = 1\) we have \(dv_t^2 = 6083 = 7 \cdot 11 \cdot 79\), which yields that \(d = 6083\) and \(v_t = 1\). Therefore, \(\gcd(23^6 - 1, b^6 - 1) = 6083\), which implies that \(b\) must be even. Then \(b^6 - 1 \neq 6083z^2 \pmod{8}\), a contradiction. Therefore, we have \(m = 1\).

Now suppose that \(r \equiv 0 \pmod{4}\). Then \(t\) is even and hence \(u_t \equiv 0 \pmod{3}\) by Lemma 1(1). Then \(ut + vr\sqrt{d} = (u_t + v_r\sqrt{d})^2\) and hence \(a^m = u_t^2 + dv_t^2\), which contradicts that \(a \equiv 5 \pmod{6}\).

Conversely, suppose that \((a, b) = (u_r, u_s)\) with \(d \equiv 2 \pmod{3}\), \(u_1 \equiv 0 \pmod{3}\), \(r \equiv 2 \pmod{4}\) and \(s\) is odd. Then \((a^n - 1)(b^n - 1) = x^2\) has solution \((x, n) = (dv_t, us, 2)\). Note that \(b \equiv u_r \equiv 0 \pmod{3}\) by Lemma 1(2) and hence \(a = 2u_t^2 - 1 \equiv 5 \pmod{6}\). This completes the proof.

Remark. Actually there exists \(d \equiv 2 \pmod{3}\) with \(u_1 \equiv 0 \pmod{3}\). For example, \(u_1 = 6\) for \(d = 35\). Therefore, there exist infinitely many pairs \((a, b)\) such that (1) has the solution. In the case of \(d = 35\) the first few pairs \((a, b)\) are \((u_2, u_3) = (71, 846), (u_2, u_5) = (71, 120126), (u_6, u_5) = (1431431, 120126)\) and so on.

References

256 K. Ishii : On the exponential Diophantine equation...

[7] W. Robert and van der Waall, On the diophantine equation \(x^2 + x + 1 = 3y^2\), \(x^3 - 1 = 2y^2\) and \(x^3 + 1 = 2y^2\), Simon Stevin 46 (1972), 39–51.

KATSUMASA ISHII
6-3-201, MIYASAKA 2-CHOME
SETAGAYA-KU
TOKYO, 156-0051
JAPAN
E-mail: 9652kok@jcom.zaq.ne.jp

(Received August 19, 2015; revised January 22, 2016)