Commutativity of torsion and normal Jacobi operators on real hypersurfaces in the complex quadric

By JUAN DE DIOS PÉREZ (Granada)

Abstract. On a real hypersurface in the complex quadric we can consider the Levi-Civita connection and, for any non-zero real constant k, the k-th generalized Tanaka–Webster connection. Associated to this connection we can define a differential operator whose difference with the Lie derivative is the torsion operator of the k-th generalized Tanaka–Webster connection. We prove the non-existence of real hypersurfaces in the complex quadric for which the torsion operators commute with the normal Jacobi operator of the real hypersurface.

1. Introduction

The complex quadric $Q^m = SO_{m+2}/SO_mSO_2$ is a compact Hermitian symmetric space of rank 2. It is also a complex hypersurface in the complex projective space \mathbb{CP}^{m+1} (see [5], [6], [8]). The space Q^m is equipped with two geometric structures: a Kaehler structure J and a parallel circle subbundle \mathfrak{A} of the endomorphism bundle $\text{End}(TQ^m)$, which consists of all the real structures on the tangent space of Q^m. For any $A \in \mathfrak{A}$ the following relations hold: $A^2 = I$ and $AJ = -JA$. A nonzero tangent vector W at a point of Q^m is called singular if it is tangent to more than one maximal flat in Q^m. There are two types of singular tangent vectors for Q^m: \mathfrak{A}-principal or \mathfrak{A}-isotropic vectors.

Real hypersurfaces M are immersed submanifolds of real co-dimension 1 in a Hermitian manifold. Since Q^m is a compact Hermitian symmetric space with
rank 2, it is interesting to study real hypersurfaces M in Q^m. The Kaehler structure J of Q^m induces on M an almost contact metric structure (ϕ, ξ, η, g), where ϕ is the structure tensor field, ξ is the Reeb vector field, η is a 1-form and g is the induced Riemannian metric of Q^m.

The study of real hypersurfaces M in Q^m is initiated by Berndt and Suh in [1]. In this paper the geometric properties of real hypersurfaces M in complex quadric Q^m, which are tubes of radius r, $0 < r < \pi/2$, around the totally geodesic CP^k in Q^m, when $m = 2k$ or tubes of radius r, $0 < r < \pi/2\sqrt{2}$, around the totally geodesic Q^{m-1} in Q^m, are presented. The condition of isometric Reeb flow is equivalent to the commuting condition of the shape operator S with the structure tensor ϕ of M. The classification of such real hypersurfaces in Q^m is obtained in [2].

Given a Riemannian manifold (\tilde{M}, \tilde{g}), Jacobi fields along geodesics satisfy a differential equation which results in the notion of Jacobi operator. That is, if \tilde{R} is the Riemannian curvature tensor of \tilde{M}, and X is a tangent vector field on \tilde{M}, then the Jacobi operator with respect to X at a point $p \in \tilde{M}$ is given by

$$(\tilde{R}_X Y)(p) = (\tilde{R}(Y,Y)X)(p),$$

and becomes a self adjoint endomorphism of the tangent bundle $T\tilde{M}$ of \tilde{M}, i.e., $\tilde{R}_X \in \text{End}(T_p\tilde{M})$. In the case of real hypersurfaces M in Q^m, we can consider the normal Jacobi operator \tilde{R}_N, where \tilde{R} is the Riemannian curvature tensor of Q^m and N is the unit normal vector field on the real hypersurface M.

As M has an almost contact metric structure, for any non-zero real constant k, we can define the so called k-th generalized Tanaka–Webster connection $\tilde{\nabla}^{(k)}$ on M by

$$\tilde{\nabla}^{(k)}_XY = \nabla_X Y + g(\phi SY, Y)\xi - \eta(Y)\phi SY - k\eta(X)\phi Y$$

for any X, Y tangent to M, where ∇ is the Levi-Civita connection on M, and S denotes the shape operator on M associated to N (see [3]). Let us call $F^{(k)}_X Y = g(\phi SY, Y)\xi - \eta(Y)\phi SY - k\eta(X)\phi Y$, for any X, Y tangent to M. $F^{(k)}_X$ is called the k-th Cho operator on M associated to X. Notice that if $X \in \mathcal{C}$, the maximal holomorphic distribution on M, given by all the vector fields orthogonal to ξ, the associated Cho operator does not depend on k and we will denote it simply by F_X. Then, given a symmetric tensor field L of type $(1,1)$ on M, $\nabla_X L = \tilde{\nabla}^{(k)}_X L$ for a tangent vector field X on M if and only if $F^{(k)}_X L = LF^{(k)}_X$, that is, the eigenspaces of L are preserved by $F^{(k)}_X$. If $L = \tilde{R}_N$, in [4] we proved

Theorem 1.1. There do not exist real hypersurfaces M in Q^m, $m \geq 3$, such that $\nabla\tilde{R}_N = \tilde{\nabla}^{(k)}\tilde{R}_N$, for any non-zero real constant k.
Commutativity of torsion and normal Jacobi operators.

The torsion of the \(k \)-th generalized Tanaka–Webster connection is given by
\[
T^{(k)}(X,Y) = F_X^{(k)}Y - F_Y^{(k)}X
\]
for any \(X,Y \) tangent to \(M \). For any \(X \) tangent to \(M \), we define the torsion operator associated to \(X \) by \(T^X_{(k)}Y = T^{(k)}(X,Y) \) for any \(Y \) tangent to \(M \).

Let \(\mathcal{L} \) denote the Lie derivative on \(M \). Associated to the \(k \)-th generalized Tanaka–Webster connection, we can define the differential operator of first order \(\mathcal{L}^{(k)} \) by
\[
\mathcal{L}^{(k)}X Y = \nabla^{(k)}_X Y - \nabla^{(k)}_Y X = \mathcal{L}_X Y + T^X_{(k)}Y
\]
for any \(X,Y \) tangent to \(M \).

Then for a symmetric tensor of type (1,1) on \(M \),
\[
\mathcal{L}^{(k)}X Y = \frac{1}{2} [\mathcal{L} \bar{R}_N X Y] \quad \text{for any tangent vector field } X \text{ on } M
\]
if and only if \(T^X_{(k)} = \mathcal{L}_X \bar{R}_N \).

In this paper we study real hypersurfaces \(M \) in \(Q^m \) such that the Lie derivative and the differential operator \(\mathcal{L}^{(k)} \) associated to the \(k \)-th generalized Tanaka–Webster connection coincide when we apply them to the normal Jacobi operator \(\bar{R}_N \), that is
\[
\mathcal{L} \bar{R}_N = \mathcal{L}^{(k)} \bar{R}_N
\]
for some non-zero real constant \(k \). We will prove the following

Theorem 1.2. There do not exist real hypersurfaces \(M \) in \(Q^m \), \(m \geq 3 \), such that \(\mathcal{L} \bar{R}_N = \mathcal{L}^{(k)} \bar{R}_N \), for any non-zero real constant \(k \).

2. The space \(Q^m \)

The complex projective space \(\mathbb{C}P^{m+1} \) is considered as the Hermitian symmetric space of the special unitary group \(SU_{m+2} \), namely
\[
\mathbb{C}P^{m+1} = SU_{m+2}/SU(m+1U_1).
\]
The symbol \(o = [0,...,0,1] \) in \(\mathbb{C}P^{m+1} \) is the fixed point of the action of the stabilizer \(SU_{m+1}U_1 \). The action of the special orthogonal group \(SO_{m+2} \subset SU_{m+2} \) on \(CP^{m+1} \) is of cohomogeneity one. A totally geodesic real projective space \(\mathbb{R}P^{m+1} \subset \mathbb{C}P^{m+1} \) is an orbit containing point \(o \). The second singular orbit of this action is the complex quadric \(Q^m = SO_{m+2}/SO_mSO_2 \). It is a homogeneous model, which interprets geometrically the complex quadric \(Q^m \) as the Grassmann manifold \(G^2_2(\mathbb{R}^{m+2}) \) of oriented 2-planes in \(\mathbb{R}^{m+2} \). Thus, the complex quadric \(Q^m \) is considered as a Hermitian space of rank 2. For \(m = 1 \), the complex quadric \(Q^2 \) is isometric to a sphere \(S^2 \) of constant curvature. For \(m = 2 \), the complex quadric \(Q^2 \) is isometric to the Riemannian product of two 2-spheres with constant curvature. Therefore, we assume the dimension of complex quadric \(Q^m \) to be greater than or equal to 3.
Moreover, the complex quadric Q^m is the complex hypersurface in $\mathbb{C}P^{m+1}$ defined by the homogeneous quadric equation $z_1^2 + \cdots + z_{m+2}^2 = 0$, where z_i, $i = 1, \ldots, m+2$, are homogeneous coordinates on $\mathbb{C}P^{m+1}$. The Kähler structure of complex projective space $\mathbb{C}P^{m+1}$ induces canonically a Kähler structure (J,g) on Q^m, where g is a Riemannian metric with maximal holomorphic sectional curvature 4 induced by the Fubini Study metric of $\mathbb{C}P^{m+1}$.

Consider the Riemannian fibration $\pi : S^{2m+3} \subset \mathbb{C}^{m+2} \to \mathbb{C}P^{m+1}$, $z \to [z]$. Then $\mathbb{C}^{m+2} \subset [z]$ is the horizontal space of π at $z \in S^{2m+3}$. Then at each $[z]$ in Q^m the tangent space $T_{[z]}Q^m$ can be identified canonically with the orthogonal complement of $\mathbb{C}^{m+2} \subset ([z] \oplus [\bar{z}])$ of $[z] \oplus [\bar{z}]$ in \mathbb{C}^{m+2}. Thus $\pi_*|_z \bar{z}$ is a unit normal vector of Q^m in $\mathbb{C}P^{m+1}$ at the point $[z]$.

The shape operator A_z of Q^m with respect to the unit normal vector \bar{z} is given by
\[A_z \pi_*|_z w = \pi_*|_z \bar{w}, \]
for all $w \in T_{[z]}Q^m$. The shape operator A_z is a complex conjugation restricted to $T_{[z]}Q^m$. The complex vector space $T_{[z]}Q^m$ is decomposed into
\[T_{[z]}Q^m = V(A_z) \oplus JV(A_z), \]
where $V(A_z) = \mathbb{R}^{m+2} \cap T_{[z]}Q^m$ is the $(+1)$-eigenspace of A_z, i.e., $A_z X = X$, and $JV(A_z) = i\mathbb{R}^{m+2} \cap T_{[z]}Q^m$ is the (-1)-eigenspace of A_z, i.e., $A_z JX = -JX$ for any $X \in V(A_z)$. Geometrically, it means that A_z defines a real structure on the complex vector space $T_{[z]}Q^m$, which is an antilinear involution. The set of all such shape operators A_z defines a parallel circle subbundle \mathfrak{Q} of the endomorphism bundle $\text{End}(TQ^m)$, which consists of all the real structures on the tangent space of Q^m. For any $A \in \mathfrak{Q}$ the following relations hold:
\[A^2 = I \quad \text{and} \quad AJ = -JA. \]

The Gauss equation for $Q^m \subset \mathbb{C}P^{m+1}$ yields that the Riemannian curvature tensor R of Q^m is given by
\[
\hat{R}(X,Y)Z = g(Y,Z)X - g(X,Z)Y + g(JY,Z)JX - g(JX,Z)JY - 2g(JX,Y)JZ + g(AY,Z)AX - g(AX,Z)AY + g(JAY,Z)JAX - g(JAX,Z)JAY,
\]
where J is the complex structure, g is the Riemannian metric and A is a real structure in \mathfrak{Q}.

A nonzero tangent vector $W \in T_{[z]}Q^m$ is called singular if it is tangent to more than one maximal flat in Q^m. There are two types of singular tangent vectors for Q^m:
Commutativity of torsion and normal Jacobi operators...

1. **A-principal.** In this case, there exists a real structure $A \in \mathfrak{A}$ such that $W \in V(A)$.

2. **A-isotropic.** In this case, there exists a real structure $A \in \mathfrak{A}$ and orthonormal vectors $X, Y \in V(A)$ such that $W/||W|| = (X + JY)/\sqrt{2}$.

For every unit vector field W tangent to Q^n, there is a complex conjugation $A \in \mathfrak{A}$ and orthonormal vectors $X, Y \in V(A)$ such that

$$ W = \cos(t)X + \sin(t)JY, $$

for some $t \in [0, \pi/4]$. The singular vectors correspond to the values $t = 0$ and $t = \pi/4$.

3. **Real hypersurfaces in Q^n**

Let M be a real hypersurface in Q^n and N a unit normal vector field of M. Any vector field X tangent to M satisfies the relation

$$ JX = \phi X + \eta(X)N. $$

The tangential component of the above relation defines on M a skew-symmetric tensor field of type (1,1) ϕ, named the structure tensor. The structure vector field ξ is defined by $\xi = -NJ$ and is called the Reeb vector field. The 1-form η is given by $\eta(X) = g(X, \xi)$ for any vector field X tangent to M. So, on M an almost contact metric structure (ϕ, ξ, η, g) is defined. The elements of the almost contact structure satisfy the following relations:

$$ \phi^2 X = -X + \eta(X)\xi, \quad \eta(\xi) = 1, \quad g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y) $$

for all tangent vectors X, Y to M. Relation (3.2) implies

$$ \phi \xi = 0. $$

The tangent bundle TM of M splits orthogonally into

$$ TM = \mathcal{C} \oplus \mathcal{F}, $$

where $\mathcal{C} = \ker(\eta)$ is the maximal complex subbundle of TM and $\mathcal{F} = \mathbb{R}\xi$. The structure tensor field ϕ restricted to \mathcal{C} coincides with the complex structure J.

The shape operator of a real hypersurface M in Q^m is denoted by S. The real hypersurface is called Hopf hypersurface if the Reeb vector field is an eigenvector of the shape operator, i.e.,
\[S\xi = \alpha \xi, \tag{3.3} \]
where $\alpha = g(S\xi, \xi)$ is the Reeb function.

At each point $[z] \in M$, we choose a real structure $A \in \mathfrak{A}[z]$ such that
\[N[z] = \cos(t)Z_1 + \sin(t)JZ_2, \quad AN[z] = \cos(t)Z_1 - \sin(t)JZ_2, \tag{3.4} \]
where Z_1, Z_2 are orthonormal vectors in $V(A)$ and $0 \leq t \leq \frac{\pi}{4}$. Moreover, the above relations due to $\xi = -JN$ imply
\[\xi[z] = -\cos(t)JZ_1 + \sin(t)Z_2, \quad A\xi[z] = \cos(t)JZ_1 + \sin(t)Z_2. \tag{3.5} \]

So, we have $g(AN[z], \xi[z]) = 0$.

The Codazzi equation of M is given by
\[g((\nabla X S)Y - (\nabla Y S)X, Z) = \eta(X)g(\phi Y, Z) - \eta(Y)g(\phi X, Z) - 2\eta(Z)g(\phi X, Y) \\
+ g(X, AN)g(AY, Z) - g(Y, AN)g(AX, Z) \\
+ g(X, A\xi)g(JAY, Z) - g(Y, A\xi)g(JAX, Z) \tag{3.6} \]
for any X, Y, Z tangent to M.

The normal Jacobi operator of a real hypersurface in Q^m is calculated by the Gauss equation for $Y = Z = N$ and, because of (3.4), is given by
\[\bar{R}_N(X) = X + 3\eta(X)\xi + \cos(2t)AX - g(AX, N)AN - g(AX, \xi)A\xi, \tag{3.7} \]
for any $X \in TM$, where $g(AN, N) = \cos(2t) = -g(A\xi, \xi)$. Let us suppose that
\[(\mathcal{L}_X \bar{R}_N)Y = (\mathcal{L}_X^{(k)} \bar{R}_N)Y \text{ for any } X, Y \text{ tangent to } M. \]
This yields $F_X^{(k)} \bar{R}_N Y - F_Y^{(k)} X = 0$, for any X, Y tangent to M. That is
\[g(\phi SX, \bar{R}_N Y)\xi - \eta(\bar{R}_N Y)\phi SX \tag{-\eta(\bar{R}_N Y)\phi SX} - k\eta(X)\phi \bar{R}_N Y - g(\phi S\bar{R}_N Y, X)\xi \\
+ \eta(X)\phi S\bar{R}_N Y + k\eta(\bar{R}_N Y)\phi X - g(\phi SX, Y)\bar{R}_N \xi + \eta(Y)\bar{R}_N \phi SX \\
+ k\eta(X)\bar{R}_N \phi Y + g(\phi SY, X)\bar{R}_N \xi - \eta(X)\bar{R}_N \phi SY - k\eta(Y)\bar{R}_N \phi Y = 0. \tag{3.8} \]
If we take $X = \xi$ in (3.8), we obtain
\[
g(\phi S\xi, \bar{R}_N Y)\xi - \eta(\bar{R}_N Y)\phi S\xi - k\phi \bar{R}_N Y + \phi S \bar{R}_N Y
- g(\phi S\xi, Y)\bar{R}_N \xi + \eta(Y)\bar{R}_N \phi S\xi + k\bar{R}_N \phi Y - \bar{R}_N \phi SY = 0 \tag{3.9}
\]
for any Y tangent to M. Taking $X \in \mathcal{C}$ in (3.8), we get
\[
g((\phi S + S\phi)X, \bar{R}_N Y)\xi - \eta(\bar{R}_N Y)\phi SX + k\eta(\bar{R}_N Y)\phi X
- g((\phi S + S\phi)X, Y)\bar{R}_N \xi + \eta(Y)\bar{R}_N \phi SX - k\eta(Y)\bar{R}_N \phi X = 0 \tag{3.10}
\]
for any $X \in \mathcal{C}$, Y tangent to M.

We finish this section with the following Proposition, which concerns Hopf hypersurfaces in Q^m whose shape operator commutes with the structure tensor, see [2].

Proposition 3.1. The following statements hold for a tube M of radius r, $0 < r < \pi/2$ around the totally geodesic $\mathbb{C}P^k$ in Q^m, $m = 2k$:

1. M is a Hopf hypersurface.
2. The normal bundle of M consists of \mathfrak{A}-isotropic singular tangent vectors of Q^m.
3. M has four distinct principal curvatures, unless $m = 2$, in which case M has two distinct principal curvatures.
4. The shape operator commutes with the structure tensor field ϕ, i.e., $S\phi = \phi S$.
5. M is a homogeneous hypersurface.

And see also [7]:

Proposition 3.2. Let M be a Hopf hypersurface in Q^m such that the normal vector field N is \mathfrak{A}-principal everywhere. Then $\alpha = g(S\xi, \xi)$ is constant, and if $X \in \mathcal{C}$ is a principal curvature vector of M with principal curvature λ, then $2\lambda \neq \alpha$, and ϕX is a principal curvature vector of M with principal curvature $\frac{\alpha + \lambda}{2\alpha}$.

4. **Proof of Theorem 1.2. The case of Hopf real hypersurfaces**

All the following calculations take place at an arbitrary point $[z] \in M$, but we can omit the subscript $[z]$ from the vector fields and other objects for the sake of brevity.

Let us suppose that M is Hopf at $[z]$, i.e., that $S\xi = \alpha \xi$ holds. We will first prove the following:
Lemma 4.1. Let M be a Hopf real hypersurface in Q^m, $m \geq 3$. If $\mathcal{L} \bar{R}_N = \mathcal{L}^{(k)} \bar{R}_N$ for some non-zero real constant k, then N is either \mathfrak{A}-isotropic or \mathfrak{A}-principal.

Proof. As M is Hopf, (3.9) becomes

$$-k\phi \bar{R}_N Y + \phi S \bar{R}_N Y + k\bar{R}_N \phi Y - \bar{R}_N \phi SY = 0 \quad (4.1)$$

for any Y tangent to M. If, in particular, $Y = \xi$, we get

$$-k\phi \bar{R}_N \xi + \phi S \bar{R}_N \xi = 0. \quad (4.2)$$

If in (3.10) we take $Y = \xi$, we have

$$g((\phi S + S\phi)X, \bar{R}_N \xi) - \eta(\bar{R}_N \xi) \phi S X + k\eta(\bar{R}_N \xi) \phi X + \bar{R}_N \phi S X - k\bar{R}_N \phi X = 0 \quad (4.3)$$

for any $X \in \mathfrak{C}$.

Taking the scalar product of both sides of (4.3) by ξ gives $2g(\phi SX, \bar{R}_N \xi) + g(S\phi X, \bar{R}_N \xi) - k\eta(\phi X, \bar{R}_N \xi) = 0$ for any $X \in \mathfrak{C}$. From (4.2) we obtain

$$g(\bar{R}_N \xi, \phi SX) = 0, \text{ for any } X \in \mathfrak{C}. \text{ As } \bar{R}_N \xi = 4\xi + 2\cos(2t)A\xi, \text{ it follows that}$$

$$2\cos(2t)g(A\xi, \phi SX) = 0 \quad (4.4)$$

for any $X \in \mathfrak{C}$. From (4.4), if $\cos(2t) = 0$, N is \mathfrak{A}-isotropic. If $\cos(2t) \neq 0$, $g(A\xi, \phi SX) = 0$ for any $X \in \mathfrak{C}$. In this case, from (3.10), if $X \in \mathfrak{C}$ satisfies $SX = \lambda X$, where $\lambda \neq k$, then $g(A\xi, X) = 0$.

Therefore, if in \mathfrak{C} k does not appear as an eigenvalue of S or k is the unique eigenvalue of S, $g(A\xi, X) = 0$ for any $X \in \mathfrak{C}$ and N is \mathfrak{A}-principal. If the unique eigenvalue of S in \mathfrak{C} is k, $\phi S = S\phi$ and N should be \mathfrak{A}-isotropic, which is a contradiction. Therefore, if in \mathfrak{C} k does not appear as an eigenvalue of S, N must be \mathfrak{A}-principal.

Thus we must suppose there exists $X \in \mathfrak{C}$ such that $SX = kX$, and therefore $g(AN, X) = 0$, and there exists $Z \in \mathfrak{C}$ such that $SZ = \lambda Z$, $\lambda \neq k$, and then $g(A\xi, Z) = 0$. Moreover, we must suppose there exists $W \in \mathfrak{C}$ such that $\eta(\bar{R}_N W) = g(A\xi, W) \neq 0$. If not, N should be \mathfrak{A}-principal.

Let $X \in \mathfrak{C}$ such that $SX = kX$. From (3.10) we have $g((\phi S + S\phi)X, \bar{R}_N Y)\xi - g((\phi S + S\phi)X, Y)\bar{R}_N \xi = 0$ for any Y tangent to M. Its scalar product with W gives $g((\phi S + S\phi)X, Y) = 0$ for any Y tangent to M, that is, $\phi SX = -S\phi X = k\phi X$. Therefore $S\phi X = -k\phi X$. Again from (3.10) we have $g((\phi S + S\phi)X, \bar{R}_N Y)\xi - \eta(\bar{R}_N Y)\phi S \phi X - k\eta(\bar{R}_N Y)X - g((\phi S + S\phi)X, Y)\bar{R}_N \xi + \eta(Y)\bar{R}_N \phi S \phi X + k\eta(Y)\bar{R}_N X = 0$. But $\phi S \phi X + S\phi^2 X = 0$. Therefore, it follows that $-2k\eta(\bar{R}_N Y)X + 2k\eta(Y)\bar{R}_N X = 0$. If $Y = \xi$, we have $-\eta(\bar{R}_N \xi)X + \bar{R}_N X = 0$. Its scalar product with ξ implies $\eta(\bar{R}_N X) = 0$. As for any $Z \in \mathfrak{C}$ such that $SZ = \lambda Z$, $\lambda \neq k$, we have $g(A\xi, Z) = 0$, we arrive to a contradiction and we have finished the proof.
Lemma 4.2. There do not exist Hopf real hypersurfaces in Q^m, $m \geq 3$, such that $\mathcal{L}\bar{R}_N = \mathcal{L}^{(k)}\bar{R}_N$ for a non-zero real constant k if N is \mathfrak{A}-isotropic.

Proof. If N is \mathfrak{A}-isotropic, $\bar{R}_N\xi = 4\xi$. Let $X \in \mathfrak{c}$ be a unit vector field such that $SX = \lambda X$. Introducing it in (4.3), we have $-4\lambda \phi X + 4\phi X + \lambda \bar{R}_N\phi X = 0$. That is, $(k - \lambda)\bar{R}_N\phi X = 4(k - \lambda)\phi X$. There are two possibilities, either $\lambda = k$ or if $\lambda \neq k$, $\bar{R}_N\phi X = 4\phi X$.

In the second case, $4\phi X = \phi X - ((\phi X, AN)AN - g(\phi X, A\xi)A\xi$. Its scalar product with ϕX gives $3 = -g(\phi X, AN)^2 - g(\phi X, A\xi)^2$, which is impossible.

Therefore $SX = kX$ for any $X \in \mathfrak{c}$. Take $X, Y \in \mathfrak{c}$ in (3.10). This yields $g((\phi S + S\phi)X, \bar{R}_N Y)\xi - 4g((\phi S + S\phi)X, Y)\xi = 0$. That is, $2k g(\phi X, \bar{R}_N Y)\xi - 8k g(\phi X, Y)\xi = 0$ for any $X, Y \in \mathfrak{c}$. Therefore $g(\phi X, \bar{R}_N Y) = 4g(\phi X, Y)$. Taking $Y = \phi X$, we arrive to the same contradiction, finishing the proof.

Lemma 4.3. There do not exist Hopf real hypersurfaces in Q^m, $m \geq 3$, such that $\mathcal{L}\bar{R}_N = \mathcal{L}^{(k)}\bar{R}_N$ for some non-zero real constant k if N is \mathfrak{A}-principal.

Proof. As we suppose N is \mathfrak{A}-principal, we can write $AN = N$, $A\xi = -\xi$ and $\bar{R}_N\xi = 2\xi$. We also know that α is constant, and that if $X \in \mathfrak{c}$ satisfies $SX = \lambda X$, then $S\phi X = \mu \phi X$, with $\mu = \frac{\alpha \lambda^2 + 2}{2}$.

Let $\{E_1, ..., E_{2m-2}\}$ be an orthonormal basis of eigenvectors of S in \mathfrak{c} such that $SE_i = \lambda_i E_i$, $i = 1, ..., 2m - 2$. For any $X \in \mathfrak{c}$, $\bar{R}_N X = X + \lambda X$. As there exists $Y \in \mathfrak{c}$ such that $AY = -Y$, for such a vector field, $\bar{R}_N Y = 0$. For such a Y and $X \in \mathfrak{c}$, (3.10) yields $g((\phi S + S\phi)X, Y) = 0$. Therefore $(\lambda_i + \mu_i)g(\phi E_i, Y) = 0$, for any $i = 1, ..., 2m - 2$. As $\{\phi E_1, ..., \phi E_{2m-2}\}$ is also an orthonormal basis of \mathfrak{c}, there exists $j \in \{1, ..., 2m - 2\}$ such that $g(\phi E_j, Y) \neq 0$. Therefore $\lambda_j + \mu_j = 0$.

From the Codazzi equation,
\[
g((\nabla_{E_i} S)\phi E_j - (\nabla_{\phi E_j} S)E_i, \xi) = -2g(\phi E_j, \phi E_i) = -2
\]
\[
= g(\nabla_{E_j}(-\lambda_j \phi E_i) - S\nabla_{E_j} \phi E_i - \nabla_{\phi E_j} (\lambda_j E_i) + S\nabla_{\phi E_j} E_i, \xi)
\]
\[
\lambda_j g(\phi E_j, \phi SE_i) + \alpha g(E_j, \phi SE_i) + \lambda_j g(E_j, \phi SE_i) - \alpha g(E_j, \phi SE_i)
\]
\[
= \lambda_j^2 + \alpha \lambda_j + \lambda_j^2 - \alpha \lambda_j = 2\lambda_j^2,
\]
which is impossible and finishes the proof.

The proof of Theorem 1.2 for Hopf real hypersurfaces follows from the Lemmas above.
5. Proof of Theorem 1.2. The case of non-Hopf real hypersurfaces

If M is not Hopf at z, we write $S\xi = \alpha \xi + \beta U$, where U is a unit vector in \mathcal{C}, and β is a nonzero number. Let us call $\mathcal{C}_U = \{X \in \mathcal{C} | g(X, U) = g(X, \phi U) = 0\}$.

We will prove the following:

Lemma 5.1. Let M be a non-Hopf real hypersurface in Q^m, $m \geq 3$, such that $\mathcal{L} \bar{R}_N = \mathcal{L}^{(k)} \bar{R}_N$, for some non-zero real constant k. Then N is either \mathfrak{A}-isotropic or \mathfrak{A}-principal.

Proof. As M is non-Hopf, (3.9) becomes

\[
\beta g(\phi U, \bar{R}_N Y)\xi - \beta \eta(\bar{R}_N Y)\phi U - k\phi \bar{R}_N Y + \phi S \bar{R}_N Y - \beta g(\phi U, Y)\bar{R}_N \xi + \beta \eta(Y)\bar{R}_N \phi U + k\bar{R}_N \phi Y - \bar{R}_N \phi SY = 0
\]

(5.1)

for any Y tangent to M. Taking $Y = \xi$ in (5.1), we get $\beta g(\phi U, \bar{R}_N \xi)\xi - \beta \eta(\bar{R}_N \xi)\phi U - k\phi \bar{R}_N \xi + \phi S \bar{R}_N \xi = 0$. Its scalar product with ξ gives

\[
g(\phi U, \bar{R}_N \xi) = 0,
\]

(5.2)

that is, $2 \cos(2t) g(A \phi U, \xi) = 0$. Therefore, if $\cos(2t) = 0$, N is \mathfrak{A}-isotropic. Thus we suppose $\cos(2t) \neq 0$, and then

\[
g(A \phi U, \xi) = 0.
\]

(5.3)

From (5.2) the above expression becomes

\[
-\beta \eta(\bar{R}_N \xi)\phi U - k\phi \bar{R}_N \xi + \phi S \bar{R}_N \xi = 0.
\]

(5.4)

Its scalar product with ξ, bearing in mind (5.2), yields

\[
g(\bar{R}_N \xi, S \phi U) = 0,
\]

(5.5)

and its scalar product with $X \in \mathcal{C}_U$ implies

\[
kg(\bar{R}_N \xi, \phi X) - g(\bar{R}_N \xi, S \phi X) = 0
\]

(5.6)

for any $X \in \mathcal{C}_U$.

The scalar product of (3.10) and ϕU yields

\[
- \eta(\bar{R}_N Y)g(SX, U) + k\eta(\bar{R}_N Y)g(X, U) + \eta(Y)g(\bar{R}_N \phi SX, \phi U) - k\eta(Y)g(\bar{R}_N \phi X, \phi U) = 0
\]
for any $X \in \mathcal{C}$, Y tangent to M. If also $Y \in \mathcal{C}$, we get $-\eta(\bar{R}_N Y)(g(SX, U) - kg(SX, U)) = 0$ for any $X, Y \in \mathcal{C}$. Therefore, if for any $Y \in \mathcal{C}$, $g(Y, \bar{R}_N \xi) = 0 = 2 \cos(2t)g(Y, A\xi)$, as $\cos(2t) \neq 0$, we obtain $g(Y, A\xi) = 0$ for any $Y \in \mathcal{C}$, and therefore N is A-principal. Let us suppose now that there exists $Z \in \mathcal{C}$ such that $\eta(\bar{R}_N Z) \neq 0$, and that for any $X \in \mathcal{C}$, $g(SU, X) = kg(U, X)$. That is,

$$SU = g(SU, \xi)\xi + g(SU, U) = \beta \xi + kU. \quad (5.7)$$

Taking $X = U$ in (3.10), we get $g((\phi S + S\phi)U, \bar{R}_N Y)\xi - g((\phi S + S\phi)U, Y)\bar{R}_N \xi = 0$, for any Y tangent to M. Its scalar product with Z yields $g((\phi S + S\phi)U, Y) = 0$ for any Y tangent to M. Therefore $S\phi U = -\phi SU$, that is,

$$S\phi U = -k\phi U. \quad (5.8)$$

Take $X = \phi U$ in (3.10). Then $-2k\eta(\bar{R}_N Y) - g((\phi S + S\phi)\phi U, Y)\eta(\bar{R}_N U) = 0$, that is,

$$-2k\eta(\bar{R}_N Y) - g(\phi S\phi U, Y)\eta(\bar{R}_N U) + g(SU, Y)\eta(\bar{R}_N U) = 0$$

for any $Y \in \mathcal{C}$. This implies $-2k\eta(\bar{R}_N Y) = 0$ for any $Y \in \mathcal{C}$, which contradicts the existence of Z and finishes the proof. \(\square\)

From Lemma 5.1, N is either A-isotropic or A-principal. Suppose first that N is A-isotropic. Then $\bar{R}_N \xi = 4\xi$. Moreover, $\bar{R}_N \phi U = \phi U - g(A\phi U, N)AN - g(A\phi U, \xi)A\xi$. If (5.1) is satisfied, we have $\beta g(\phi U, \bar{R}_N \phi U)\xi - k\phi \bar{R}_N \phi U + \phi S\bar{R}_N \phi U - \beta \bar{R}_N \xi - k\bar{R}_N U - \bar{R}_N \phi SU = 0$. Its scalar product with ξ yields $\beta g(\phi U, \bar{R}_N \phi U) - 4\beta = 0$. That is, $4 = g(\bar{R}_N \phi U, \phi U) = 1 - g(A\phi U, N)^2 - g(A\phi U, \xi)^2$, which is impossible.

Let us suppose now N is A-principal. In this case, $AN = N$, $A\xi = -\xi$, $\bar{R}_N \xi = 2\xi$, and for any $X \in \mathcal{C}$, $\bar{R}_N X = X + AX$.

Take $Y = \phi U$ in (5.1). We obtain

$$\beta g(\phi U, \bar{R}_N \phi U)\xi - k\phi \bar{R}_N \phi U + \phi S\bar{R}_N \phi U - \beta \bar{R}_N \xi - k\bar{R}_N U - \bar{R}_N \phi SU = 0. \quad (5.9)$$

Its scalar product with ξ gives $g(\phi U, \bar{R}_N \phi U) = 2 = 1 + g(A\phi U, \phi U)$. This yields $g(A\phi U, \phi U) = 0$, which implies $A\phi U = \phi U$. Therefore $\bar{R}_N \phi U = 2\phi U$. As $A\phi U = \phi U$, we have $AJU = JU = -JAU$. This gives $AU = -U$ and $\bar{R}_N U = 0$. Thus (5.9) becomes $2kU + 2\phi SU - \bar{R}_N \phi SU = 0$. Its scalar product with U implies $2k - 2g(S\phi U, \phi U) = 0$. That is,

$$g(S\phi U, \phi U) = k. \quad (5.10)$$
Taking $Y = U$ in (5.1), we have $k\bar{R}_N\phi U - \bar{R}_N\phi SU = 0$. Its scalar product with ϕU gives $2k - 2g(\phi SU, \phi U) = 0 = 2k - 2g(SU, U)$. Then
\begin{equation}
 g(SU, U) = k. \tag{5.11}
\end{equation}

Taking $Y = U$ in (3.10), we have $-g((\phi S + S\phi)X, U)\bar{R}_N\xi = 0$, that is, $-2g((\phi S + S\phi)X, U)\xi = 0$ for any $X \in \mathcal{C}$. If $X = \phi U$, we obtain $g(\phi S\phi U, U) + g(S\phi^2 U, U) = 0 = -g(S\phi U, \phi U) - g(SU, U) = -2k$, which is impossible, finishing the proof of Theorem 1.2.

\textbf{References}

