On clp-paracompact spaces

By FRANCISCO GALLEGO LUPIÁÑEZ (Madrid)

Abstract. The clp-paracompact spaces were defined and studied by A. Sondore. These spaces are those such that each clopen cover of them has a locally finite clopen refinement. Then, these spaces are related to ultraparacompact and to clp-compact spaces. In this paper, we obtain a theorem showing that every clp-paracompact Hausdorff space is the image of a clp-paracompact zero-dimensional Hausdorff space for a clopen continuous map with clp-compact fibers.

1. Introduction

SONDORE and ŠOSTAK [5] defined clp-compact spaces and related these spaces with compact, connected and zero-dimensional spaces. They also studied some properties of clp-compact spaces (e.g., products, countability). Afterwards, SONDORE [6] defined clp-paracompact spaces, and studied some properties of them (for example, their preservation for preimages of clopen maps with clp-compact fibers).

On the other hand, there exist various early results [1]–[4] on the existence of zero-dimensional paracompact spaces and perfect maps onto certain spaces (metric, paracompact, etc.). These results allow us to reduce the study of these spaces to those of them that are zero-dimensional.

In this paper, we prove that each clp-paracompact Hausdorff space is the image of a clp-paracompact zero-dimensional Hausdorff space for a clopen continuous map with clp-compact fiber.

Mathematics Subject Classification: 54D20, 54F50.
Key words and phrases: paracompactness, compactness, zero-dimensionality, clp-compactness, clp-paracompactness.
First, we list some previous definitions:

Definition 1 ([5]). A topological space is clp-compact if each clopen cover contains a finite subcover.

Definition 2 ([6]). A topological space is clp-paracompact if each clopen cover has a locally finite clopen refinement.

Definition 3. A map \(f \) between two spaces \(X \) and \(Y \) is clopen if the image for \(f \) of each clopen set of \(X \) is a clopen set of \(Y \).

2. Main results

Theorem 1. Let \(X \) be a clp-paracompact Hausdorff space. Then there exists a clp-paracompact Hausdorff topological space \(X^* \) with \(\dim X^* = 0 \) and a clopen continuos map \(f \) from \(X^* \) onto \(X \) such that \(f^{-1}(x) \) is clp-compact for every point \(x \in X \).

Proof. Let \(F_\lambda = \{ F_\alpha \mid \alpha \in A_\lambda \} \) be a locally finite clopen covering of \(X \), and \(\{ F_\lambda \mid \lambda \in \Lambda \} \) be the family of all locally finite clopen coverings of \(X \). Let

\[
X^* = \left\{ \alpha = (\alpha_\lambda)_{\lambda \in \Lambda} \mid \prod_{\lambda \in \Lambda} A_\lambda \text{ discrete topological spaces such that } \cap_{\lambda \in \Lambda} F_{\alpha_\lambda} \neq \emptyset \right\}.
\]

If \(\bigcap_{\lambda \in \Lambda} F_{\alpha_\lambda} \neq \emptyset \), then it is a point.

Let \(f : X^* \to X \) be the map \(f(\alpha) = \bigcap_{\lambda \in \Lambda} F_{\pi_{\alpha}(\alpha)} \), where \(\pi_{\alpha} \) is the projection from \(\prod_{\lambda \in \Lambda} A_\lambda \) onto \(A_\lambda \). Clearly, \(f \) is continuous and onto.

We prove that \(f \) is clopen: Let \(B \) be a non-empty clopen subset of \(X^* \). We have that \(f(B) \) is closed by [2, Th. 2]. For each \(x \in f(B) \), there exits \(\alpha \in B \) such that \(f(\alpha) = x \) and a base member \(\bigcap_{\lambda \in F} \pi^{-1}_{\lambda}(\alpha_\lambda) \subset B \) (with \(F \) finite and contained in \(\Lambda \)) such that \(\alpha \in \bigcap_{\lambda \in F} \pi^{-1}_{\lambda}(\alpha_\lambda) \).

Then \(x \in f \left(\bigcap_{\lambda \in F} \pi^{-1}_{\lambda}(\alpha_\lambda) \right) \subset f(B) \), thus \(x \in f \left(\bigcap_{\lambda \in F} \pi^{-1}_{\lambda}(\alpha_\lambda) \right) \subset \bigcap_{\lambda \in F} F_{\alpha_\lambda} \subset f(B) \). Since \(\bigcap_{\lambda \in F} F_{\alpha_\lambda} \) is an open set, we have that \(f(B) \) is open in \(X \).
Moreover, \(f^{-1}(x) = \prod_{\lambda \in \Lambda} B_\lambda \), with \(B_\lambda \) finite (for every \(\lambda \in \Lambda \)), then \(f^{-1}(x) \) is compact (and clp-compact).

Finally, we will show that \(X^* \) is a clp-paracompact Hausdorff space with \(\dim X^* = 0 \). Let \(\mathcal{U} \) be an arbitrary clopen covering of \(X^* \), then \(\mathcal{U} \) can be refined by a family \(\mathcal{B} \) of clopen sets. Since \(f^{-1}(x) \) is compact for any \(x \in X \), there exists a finite subfamily \(\mathcal{V}_{x,1}, \ldots, \mathcal{V}_{x,n(x)} \in \mathcal{B} \) such that \(f^{-1}(x) \subset \bigcup_{i=1}^{n(x)} \mathcal{V}_{x,i} = \mathcal{W}_x \), which is a clopen set also. If \(D(x) = X \setminus f(X^* \setminus \mathcal{W}_x) \), it is also clopen and there exists a \(\lambda_0 \in \Lambda \) such that \(\mathcal{F}_{\lambda_0} \) refines \(\{D(x) \mid x \in X\} \). Since

(a) \(\{\pi_{\lambda_0}^{-1}(\alpha) \mid \alpha \in A_{\lambda_0}\} \) refines \(\{f^{-1}(D(x)) \mid x \in X\} \);
(b) the order of \(\{\pi_{\lambda_0}^{-1}(\alpha) \mid \alpha \in A_{\lambda_0}\} \) is 1,

we have (by transfinite induction on \(x \in X \)) that there is a clopen covering \(\{U_x/x \in X\} \) of order 1 with \(U_x \subset \mathcal{W}_x \), for every \(x \in X \). Let \(\mathcal{V} = \left\{ U_x \cap \left(\mathcal{V}_{x,i} \setminus \bigcup_{j \leq i} \mathcal{V}_{x,j} \right) \mid i = 2, \ldots, n(x), x \in X \right\} \).

Then \(\mathcal{V} \) is a clopen covering of \(X^* \), of order 1, which refines \(\mathcal{U} \). Thus \(X^* \) is a clp-paracompact Hausdorff space with \(\dim X^* = 0 \).

Proposition 1. Let \((X,T) \) be a topological space. Then \((X,T) \) is clp-paracompact if and only if each clopen covering of \((X,T) \) has a \(\sigma \)-locally finite clopen refinement.

Proof. For each clopen covering \(\mathcal{U} \) of \((X,T) \), there exists a clopen refinement \(\mathcal{V} = \bigcup_{n \in \mathbb{N}} \mathcal{V}_n \) such that \(\mathcal{V}_n \) is locally finite (for each \(n \in \mathbb{N} \)). If we call \(\mathcal{V}_n = \bigcup_{V \in \mathcal{V}_n} V \) and \(\mathcal{W}_n = \mathcal{V}_n \setminus \bigcup_{m \in \mathbb{N}} \mathcal{V}_m \), then \(\mathcal{A} = \{\mathcal{W}_n \cap V \mid n \in \mathbb{N}, V \in \mathcal{V}_n\} \) is a locally finite clopen refinement of \(\mathcal{U} \). \(\square \)

References

FRANCISCO GALLEGO LUPIÁñEZ
DPT. MATHEMATICS
UNIVERSIDAD COMPLUTENSE
MADRID
SPAIN

E-mail: fg_lupianez@mat.ucm.es
URL http://www.mat.ucm.es/~fglupianez/

(Received January 7, 2020; revised February 19, 2020)