Second order parallel tensors on P-Sasakian manifolds

By U. C. DE (Kalyani)

Dedicated to the memory of Professor K. Yano

Abstract. The object of the present paper is to study the symmetric and skew-symmetric properties of a second order parallel tensor in a P-Sasakian manifold.

Introduction. In 1926 H. Levy ([1]) proved that a second order symmetric parallel non-singular tensor on a space of constant curvature is a constant multiple of the metric tensor. In recent papers ([2]) R. Sharma generalized Levy’s result and also studied a second order parallel tensor on Kähler space of constant holomorphic sectional curvature as well as on contact manifolds ([3]), ([4]).

In this paper it is shown that in a P-Sasakian manifold a second order symmetric parallel tensor is a constant multiple of the associated metric tensor. Further, it is shown that on a P-Sasakian manifold there is no non-zero parallel 2-form.

1. Preliminaries. Let (M, g) be an n-dimensional Riemannian manifold admitting a 1-form η which satisfies the conditions

1. \[(\nabla_X \eta) (Y) - (\nabla_Y \eta) (X) = 0,\]

2. \[(\nabla_X \nabla_Y \eta) (Z) = -g(X, Z)\eta(Y) - g(X, Y)\eta(Z) + 2\eta(X)\eta(Y)\eta(Z),\]
where ∇ denotes the operator of covariant differentiation with respect to the metric tensor g. If moreover (M, g) admits a vector field ξ and a $(1,1)$ tensor field φ such that

\[g(X, \xi) = \eta(X), \]
\[\eta(\xi) = 1, \]
\[\nabla_X \xi = \varphi X, \]

then such a manifold is called a para-Sasakian manifold or briefly a P-Sasakian manifold by T. ADATI and K. MATSUMOTO ([5]) which are considered as special cases of an almost paracontact manifold introduced by I. SATO ([6]).

It is known that in a P-Sasakian manifold the following relations hold ([5], [6]):

\[\varphi^2 X = X - \eta(X)\xi, \]
\[R(\xi, X)Y = \eta(Y)X - g(X, Y)\xi, \]
\[\eta(\varphi X) = 0. \]

The above result will be used in the next section.

Definition. A tensor T of second order is said to be a second order parallel tensor if $\nabla T = 0$ where ∇ denotes the operator of covariant differentiation with respect to the metric tensor g.

2. Let α denotes a $(0, 2)$-symmetric tensor field on a P-Sasakian manifold M such that $\nabla \alpha = 0$. Then it follows that

\[\alpha(R(W, X)Y, Z) + \alpha(Y, R(W, X)Z) = 0 \]

for arbitrary vector fields W, X, Y, Z on M.

Substitution of $W = Y = Z = \xi$ in (2.1) gives us

\[\alpha(\xi, R(\xi, Y)\xi) = 0 \]

(because α is symmetric).

As the manifold is P-Sasakian, using (7) in the above equation we get

\[g(X, \xi)\alpha(\xi, \xi) - \alpha(X, \xi) = 0. \]

Differentiating (2.2) covariantly along Y, we get

\[[g(\nabla_Y X, \xi) + g(X, \nabla_Y \xi)] \alpha(\xi, \xi) + 2g(X, \xi)\alpha(\nabla_Y \xi, \xi) \]
\[- [\alpha(\nabla_Y X, \xi) + \alpha(X, \nabla_Y \xi)] = 0. \]
Putting \(X = \nabla_Y X \) in (2.2), we get
\[
(2.4) \quad g(\nabla_Y X, \xi)\alpha(\xi, \xi) - \alpha(\nabla_Y X, \xi) = 0.
\]
From (2.3) and (2.4) we get
\[
(2.5) \quad g(X, \varphi Y)\alpha(\xi, \xi) + 2g(X, \xi)\alpha(\varphi Y, \xi) - \alpha(X, \varphi Y) = 0.
\]
Replacing \(X \) by \(\varphi Y \) in (2.2) and using (9) gives
\[
(2.6) \quad \alpha(\varphi Y, \xi) = 0.
\]
From (2.5) and (2.6) it follows that
\[
(2.7) \quad g(X, \varphi Y)\alpha(\xi, \xi) - \alpha(X, \varphi Y) = 0.
\]
Replacing \(Y \) by \(\varphi Y \) in (2.7) and using (3), (6) and (2.2) we get
\[
(2.8) \quad \alpha(X, Y) = \alpha(\xi, \xi)g(X, Y).
\]
Differentiating (2.8) covariantly along any vector field on \(M \), it can be easily seen that \(\alpha(\xi, \xi) \) is constant. Hence we can state the following theorem:

Theorem 1. On a \(P \)-Sasakian manifold a second order symmetric parallel tensor is a constant multiple of the associated metric tensor.

As an immediate corollary of Theorem 1, we have the following result:

Corollary. If the Ricci tensor field is parallel in a \(P \)-Sasakian manifold, then it is an Einstein manifold.

The above corollary is proved by T. Adati and T. Miyazawa ([7]) in another way.

Next, let \(M \) be a \(P \)-Sasakian manifold and \(\alpha \) a parallel 2-form. Putting \(Y = W = \xi \) in (2.1) and using (7) and (8), we obtain
\[
(2.9) \quad \alpha(X, Z) = \eta(X)\alpha(\xi, Z) - \eta(Z)\alpha(\xi, X) + g(X, Z)\alpha(\xi, \xi).
\]
Since \(\alpha \) is a 2-form, that is, \(\alpha \) is a \((0,2)\) skew-symmetric tensor therefore \(\alpha(\xi, \xi) = 0 \). Hence (2.9) reduces to
\[
(2.10) \quad \alpha(X, Z) = \eta(X)\alpha(\xi, Z) - \eta(Z)\alpha(\xi, X).
\]
Now, let \(A \) be a \((1,1)\) tensor field which is metrically equivalent to \(\alpha \), i.e., \(\alpha(X, Y) = g(AX, Y) \). Then, from (2.10) we have
\[
g(AX, Z) = \eta(X)g(A\xi, Z) - \eta(Z)g(A\xi, X),
\]
and thus,

\[(2.11) \quad AX = \eta(X)A\xi - g(A\xi, X)\xi. \]

Since \(\alpha \) is parallel, then \(A \) is parallel. Hence, using that \(\nabla_X\xi = \varphi X \), it follows that

\[\nabla_X(A\xi) = A(\nabla_X\xi) = A(\varphi X). \]

Thus

\[(2.12) \quad \nabla_{\varphi X}(A\xi) = A(\varphi^2 X) = AX - \eta(X)A\xi. \]

Therefore, we have from (2.11) and (2.12)

\[(2.13) \quad \nabla_{\varphi X}(A\xi) = -g(A\xi, X)\xi. \]

Now, from (2.11) we get

\[(2.14) \quad g(A\xi, \xi) = 0. \]

From (2.13) and (2.14) it follows that

\[(2.15) \quad g(\nabla_{\varphi X}(A\xi), A\xi) = 0. \]

Replacing \(X \) by \(\varphi X \) in (2.15) and since \(\nabla_{\xi}\xi = 0 \), it follows that

\[(2.16) \quad g(\nabla_X(A\xi), A\xi) = 0, \]

for any \(X \) and thus \(\|A\xi\| = \text{constant on } M \).

From (2.16) we deduce

\[g(A(\nabla_X\xi), A\xi) = -g(\nabla_X\xi, A^2\xi) = 0. \]

Replacing \(X \) by \(\varphi X \) in the above equation, it follows

\[g(\nabla_{\varphi X}\xi, A^2\xi) = g(\varphi^2 X, A^2\xi) = g(X - \eta(X)\xi, A^2\xi) = 0. \]

Thus, \(g(X, A^2\xi) = g(\eta(X)\xi, A^2\xi) \).

Hence

\[(2.17) \quad A^2\xi = -\|A\xi\|^2\xi. \]

Differentiating the above equation covariantly along \(X \), it follows that

\[\nabla_X(A^2\xi) = A^2(\nabla_X\xi) = A^2(\varphi X) = -\|A\xi\|^2(\nabla_X\xi) = -\|A\xi\|^2(\varphi X). \]

Hence \(A^2(\varphi X) = -\|A\xi\|^2(\varphi X) \).
Replacing X by φX, we have (2.17)

$$A^2X = -\|A\xi\|^2X.$$

Now, if $\|A\xi\| \neq 0$, then $J = \frac{1}{\|A\xi\|}A$ is an almost complex structure on M. In fact, (J, g) is a Kähler structure on M. The fundamental 2-form is $g(JX, Y) = \lambda g(AX, Y) = \lambda \alpha(X, Y)$, with $\lambda = 1/\|A\xi\| = \text{constant}$. But, (2.11) means

$$\alpha(X, Z) = \eta(X)\alpha(\xi, Z) - \eta(Z)\alpha(\xi, X),$$

and thus α is degenerate, which is a contradiction. Therefore $\|A\xi\| = 0$ and hence $\alpha = 0$.

Hence we can state the following theorem:

Theorem 2. On a P-Sasakian manifold there is no non-zero parallel 2-form.

References

U. C. DE
DEPARTMENT OF MATHEMATICS
UNIVERSITY OF KALYANI
KALYANI – 741 235
WEST BENGAL, INDIA

(Received October 24, 1994; revised November 20, 1995)