The properties of T^*-groups

By PIROSKA CSÖRGŐ (Budapest)

Abstract. This paper is a continuation of [1]. The aim of this work is the generalization of Zacher's theorem [2] for the solvable T^*-groups, a characterization of these groups by the normalizers of p-subgroups and the study of subnormal p-subgroups and of the Sylow subgroups of a solvable T^*-group.

Throughout this paper G will denote a finite group. A T-group is a group G whose subnormal subgroups are normal in G. In [1] M. ASAAD introduced the concept of T^*-group. A group G is called T^*-group if every subnormal subgroup of G is quasinormal in G. A subgroup of G is quasinormal in G if it permutes with every Sylow subgroup of G. In [1] we proved theorems concerning T-groups for T^*-groups. Now we are continuing the study of solvable T^*-groups. The notation used in this paper is standard.

First we generalize a theorem of ZACHER [2] for solvable T^*-groups.

Theorem 1. Let G be a solvable group, the prime divisors of its order $p_1 > p_2 > \cdots > p_k$, and let P_1, \ldots, P_k be a Sylow system with $P_i \in \text{Syl}_{p_i}(G)$. G is a T^*-group if and only if it satisfies the following conditions:

(i) If $1 \leq i < j \leq k$, then $P_j \leq N_G(P_i)$.

(ii) For all $1 \leq i < j \leq k$, if $x \in P_i$, $y \in P_j$ then there exists a natural number n such that $x^y = x^n$.

Proof. 1. Suppose G is a solvable T^*-group. Then by Lemma 1 of [1] G is supersolvable whence it has a Sylow tower. So G satisfies (i). As every subgroup of a solvable T^*-group is again a T^*-group by Theorem 1.

This research was supported by Hungarian National Foundation for Scientific Research grant no T16432.
of [1], it follows that \(N_G(P_i) \) is a solvable \(T^* \)-group. We have that \(\langle x \rangle \) is subnormal in \(N_G(P_i) \), and using Lemma 2 of [1] \(P_j < N_G(\langle x \rangle) \) is true. Thus \(G \) satisfies (ii).

2. Conversely, assume \(G \) satisfies (i) and (ii). We show that every subgroup of \(P_i \) is quasinormal in \(N_G(P_i) \). Let \(B \) be an arbitrary subgroup of \(P_i \). By the conditions \(P_j < N_G(B) \) for all \(j > i \). As \(P_j^y < N_G(B^y) \) for every \(y \in N_G(P_i) \), clearly any Sylow \(p_j \)-subgroup of \(N_G(P_i) \) normalizes any subgroup of \(P_i \). Let \(\ell < i \) and let \(D \) be an arbitrary Sylow \(p_\ell \)-subgroup of \(N_G(P_i) \). By Hall’s theorems \((P_i^zD)^{\ell} \leq P_i^z \) for some \(z \in G \). As \((P_i^z)^{\ell} = P_i^{\ell z}D^{\ell} \), \(D^{\ell} \leq P_i \) and \(P_i < N_G(P_\ell) \) clearly \(P_i^{\ell z} < N_G(D^{\ell}) \) follows, furthermore \(D^{\ell} \leq N_G(P_i^{\ell}) \), whence \(D \) centralizes \(P_i \).

Thus every subgroup of \(P_i \) is quasinormal in \(N_G(P_i) \). Using Lemma 4 of [1] it follows that either \(P_i \leq G' \) or each Sylow \(q \)-subgroup \((q \neq p_i) \) of \(N_G(P_i) \) centralizes \(P_i \). So we can repeat the first part of the proof of Theorem 2 in [1]. Consequently \(G = HK \), where \(H \) is a nilpotent normal Hall subgroup of \(G \), \(K \) is a nilpotent Hall subgroup of \(G \), \(H \cap K = 1 \), furthermore for arbitrary \(x \in H \), \(y \in K \) there exists a natural number \(i \) such that \(x^y = x^i \). Then \(G \) is a solvable \(T^* \)-group by Theorem 2 of [1].

We need the following

Lemma. Let \(U \) be a \(p \)-subgroup of \(G \), \(a \in N_G(U) \) such that \((|a|, |U|) = 1 \) furthermore \(a \) normalizes every subgroup of \(U \). If there is an element \(b \neq 1 \) of \(U \) such that \(ab = ba \), then \(a \in C_G(U) \) follows.

Proof. Clearly \(C_U(a) \neq 1 \). Assume \(C_U(a) \neq U \).

(a) \(Z(\Omega_1(U)) \neq C_U(a) \).

Denote \(W = Z(\Omega_1(U))C_U(a) \). Clearly \(\langle a \rangle \) normalizes every subgroup of \(W \) and each element of \(\langle a \rangle \) induces the identity on \(W/Z(\Omega_1(U)) \) by conjugation. Applying Lemma 3 of [1] \(\langle a \rangle \leq C_G(W) \) follows, a contradiction.

(b) \(Z(\Omega_1(U)) > C_U(a) \).

Clearly there exists a subgroup \(T \neq 1 \) such that \(Z(\Omega_1(U)) = C_U(a) \times T \).

Let \(b \in T \), \(b \neq 1 \) and \(u \in C_U(a) \), \(u \neq 1 \). Clearly \(a \) normalizes \(b \) and \(\langle bu \rangle \), consequently \((bu)^a = (bu)^m \) where \(2 \leq m \leq p-1 \). As \((bu)^a = b^au = b^m u^m \), \(u^{m-1} = (b^m)^{-1} b^a \) follows. We have \(b^a = b^n \) where \(2 \leq n \leq p-1 \) so \(u^{m-1} = b^{n-m} \) is true, but \(\langle u \rangle \cap \langle b \rangle = 1 \) thus \(u^{m-1} = 1 \), a contradiction.

So \(Z(\Omega_1(U)) = C_U(a) \).

(c) \(Z(\Omega_1(U)) < \Omega_1(U) \).

Similarly to case (b) we can show that this case is impossible too.

Thus \(C_U(a) = Z(\Omega_1(U)) = \Omega_1(U) \). Let \(\ell \in U \setminus \Omega_1(U) \). By the conditions \(a \) normalizes \(\langle \ell \rangle \). As \(a \) centralizes \(\Omega_1(\langle \ell \rangle) \) consequently \(a \) centralizes \(\langle \ell \rangle \). A contradiction.
The properties of T^*-groups

Theorem 2. G is a solvable T^*-group if and only if every p-subgroup A (for all prime divisors p of the order of G) is quasinormal in $N_G(P_0)$ where P_0 is a p-subgroup containing the subgroup A.

Proof. Assume G is a solvable T^*-group. Then by Theorem 1 of [1] $N_G(P_0)$ is a solvable T^*-group too. Clearly A is subnormal in $N_G(P_0)$, whence A is quasinormal in $N_G(P_0)$.

Conversely, let p_1 be the smallest prime divisor of the order of G. We show that G has a normal p_1-complement. Let P_1 be a Sylow p_1-subgroup of G and let H be an arbitrary subgroup of P_1. We prove that $N_G(H)/C_G(H)$ is a p_1-group. Assume there is an element b of $N_G(H) \setminus C_G(H)$ of order q with $q \neq p_1$. Let a be an element of H of order p_1. By the conditions, $\langle a \rangle$ is quasinormal in $N_G(H)$. It is easy to see $b \in N_H(\langle a \rangle)$. As $q > p_1$, $b \in C_G(a)$ follows. Clearly every subgroup of H is quasinormal in $N_G(H)$ by the conditions, whence b normalizes every subgroup of H. Using our Lemma $b \in C_G(H)$ is true, a contradiction. Thus $N_G(H)/C_G(H)$ is a p_1-group, consequently G has a normal p_1-complement. So $G = P_1K$, $K \triangleleft G$ and $P_1 \cap K = 1$. Consider the smallest prime divisor p_2 of the order of K. Similarly we can prove that K has a normal p_2-complement.

Thus G has a tower such that the prime divisors of the order of G are $p_1 < p_2 < \cdots < p_k$ and for arbitrary $1 \leq i \leq k$ there is a Sylow p_i-subgroup such that $P_i < N_G(P_j)$ for all $1 \leq i < j \leq k$. If i and j are such as above and $x \in P_j$, $y \in P_i$, then $\langle x \rangle$ is quasinormal in $N_G(P_j)$ by the conditions, whence it is easy to see that $y \in N_G(\langle x \rangle)$, consequently $x^y = x^n$ for some natural number n. Applying Theorem 1 G is a solvable T^*-group.

Theorem 3. Let G be a solvable T^*-group. Then an arbitrary subnormal p-subgroup of G (for all prime divisors p of the order of G) is either normal or it is centralized by all Sylow q-subgroups of G with $q \neq p$.

Proof. Let A be a subnormal p-subgroup of G. By Theorem 7 of [1] $G = MN$ where M is a nilpotent normal Hall subgroup of G, N is a nilpotent Hall subgroup of G, $M \cap N = 1$ furthermore every subgroup of prime power order of M is normal in G

(a) $A \leq M$. By the above A is normal in G

(b) $A \leq N^y$ for some $y \in G$.

Let Q be a Sylow q-subgroup of M with $q \neq p$. By the subnormality of A there is a chain $A < A_1 < \cdots < A_\ell < A_{\ell+1} < \cdots < A_m = G$.

\[\text{The properties of } T^*\text{-groups} \]

\[\text{Theorem 2. } G \text{ is a solvable } T^*\text{-group if and only if every } p\text{-subgroup } A \text{ (for all prime divisors } p \text{ of the order of } G \text{) is quasinormal in } N_G(P_0) \text{ where } P_0 \text{ is a } p\text{-subgroup containing the subgroup } A. \]

\[\text{Proof. } \text{Assume } G \text{ is a solvable } T^*\text{-group. Then by Theorem 1 of [1] } N_G(P_0) \text{ is a solvable } T^*\text{-group too. Clearly } A \text{ is subnormal in } N_G(P_0), \text{ whence } A \text{ is quasinormal in } N_G(P_0). \]

\[\text{Conversely, let } p_1 \text{ be the smallest prime divisor of the order of } G. \text{ We show that } G \text{ has a normal } p_1\text{-complement. Let } P_1 \text{ be a Sylow } p_1\text{-subgroup of } G \text{ and let } H \text{ be an arbitrary subgroup of } P_1. \text{ We prove that } N_G(H)/C_G(H) \text{ is a } p_1\text{-group. Assume there is an element } b \text{ of } N_G(H) \setminus C_G(H) \text{ of order } q \text{ with } q \neq p_1. \text{ Let } a \text{ be an element of } H \text{ of order } p_1. \text{ By the conditions, } \langle a \rangle \text{ is quasinormal in } N_G(H). \text{ It is easy to see } b \in N_H(\langle a \rangle). \text{ As } q > p_1, b \in C_G(a) \text{ follows. Clearly every subgroup of } H \text{ is quasinormal in } N_G(H) \text{ by the conditions, whence } b \text{ normalizes every subgroup of } H. \text{ Using our Lemma } b \in C_G(H) \text{ is true, a contradiction. Thus } N_G(H)/C_G(H) \text{ is a } p_1\text{-group, consequently } G \text{ has a normal } p_1\text{-complement. So } G = P_1K, K \triangleleft G \text{ and } P_1 \cap K = 1. \text{ Consider the smallest prime divisor } p_2 \text{ of the order of } K. \text{ Similarly we can prove that } K \text{ has a normal } p_2\text{-complement.} \]

\[\text{Thus } G \text{ has a tower such that the prime divisors of the order of } G \text{ are } p_1 < p_2 < \cdots < p_k \text{ and for arbitrary } 1 \leq i \leq k \text{ there is a Sylow } p_i\text{-subgroup such that } P_i < N_G(P_j) \text{ for all } 1 \leq i < j \leq k. \text{ If } i \text{ and } j \text{ are such as above and } x \in P_j, y \in P_i, \text{ then } \langle x \rangle \text{ is quasinormal in } N_G(P_j) \text{ by the conditions, whence it is easy to see that } y \in N_G(\langle x \rangle), \text{ consequently } x^y = x^n \text{ for some natural number } n. \text{ Applying Theorem 1 } G \text{ is a solvable } T^*\text{-group.} \]

\[\text{Theorem 3. Let } G \text{ be a solvable } T^*\text{-group. Then an arbitrary subnormal } p\text{-subgroup of } G \text{ (for all prime divisors } p \text{ of the order of } G \text{) is either normal or it is centralized by all Sylow } q\text{-subgroups of } G \text{ with } q \neq p. \]

\[\text{Proof. } \text{Let } A \text{ be a subnormal } p\text{-subgroup of } G. \text{ By Theorem 7 of [1] } G = MN \text{ where } M \text{ is a nilpotent normal Hall subgroup of } G, N \text{ is a nilpotent Hall subgroup of } G, M \cap N = 1 \text{ furthermore every subgroup of prime power order of } M \text{ is normal in } G\]

(a) $A \leq M$. By the above A is normal in G

(b) $A \leq N^y$ for some $y \in G$.

\[\text{Let } Q \text{ be a Sylow } q\text{-subgroup of } M \text{ with } q \neq p. \text{ By the subnormality of } A \text{ there is a chain } A < A_1 < \cdots < A_\ell < A_{\ell+1} < \cdots < A_m = G. \]
Let A_{ℓ} be such that $Q \leq A_{\ell}$ but $Q \nless A_{\ell-1}$. A normalizes every subgroup of Q. Since $A_{\ell-1} \triangleleft A_{\ell}$, $Q \triangleleft A_{\ell}$ and $A \leq A_{\ell-1}$ it follows that each element of A induces the identity on $Q/Q \cap A_{\ell-1}$ by conjugation. Using Lemma 3 of [1] $A \leq C_G(Q)$ follows. As Q is an arbitrary Sylow subgroup of M, $A \leq C_G(M)$ is true. We have $G = M \cdot N^y$, N^y is a nilpotent Hall subgroup of G and $N^y = P \times T$ where P is a Sylow p-subgroup of G, whence $C_G(M) \geq M \cdot T$. As $MT \lhd G$ it is easy to see that A is centralized by an arbitrary Sylow q-subgroup of G with $q \neq p$.

Theorem 4. G is a solvable T^*-group if and only if every Sylow subgroup P satisfies one of the following conditions:

(a) every subgroup of P is normal in G

(b) every Sylow subgroup of $N_G(P)$ different from P centralizes P.

Proof. Assume G is a solvable T^*-group. By the Theorem 7 of [1] $G = MN$ where M is a nilpotent normal Hall subgroup of G, N is a nilpotent Hall subgroup of G, $M \cap N = 1$ and every subgroup of prime power order of M is normal in G. Let R be an arbitrary Sylow subgroup of G.

Assume $R \leq M$. By the above every subgroup of R is normal in G.

Assume $R \leq N^y$ for some $y \in G$. Clearly $N_G(R) = N^y \cdot (N_G(R) \cap M)$. The structure of G yields $B = N_G(R) \cap M \leq C_G(R)$ and $N^y = R \times L$ where L is a nilpotent Hall subgroup of G, consequently $N_G(R) = R \times (L \cdot B)$ so R satisfies (b).

Conversely, let G be a counterexample of smallest order. Let M_0 be the product of every Sylow subgroup of G each subgroup of which is normal in G. Clearly M_0 is a nilpotent normal Hall subgroup of G. By the Theorem of Zassenhaus there is a subgroup N_0 such that $M_0 \cdot N_0 = G$ and $M_0 \cap N_0 = 1$. Clearly N_0 is a Hall subgroup in G and it satisfies the conditions of our theorem. By the minimality of G N_0 is a solvable T^*-group. Using Theorem 2 of [1] $N_0 = A \cdot B$ where A is a nilpotent normal Hall subgroup of G, B is a nilpotent Hall subgroup of G and $A \cap B = 1$ furthermore for arbitrary $a \in A$, $b \in B$ there is a natural number i such that $a^b = a^i$. Assume $A \neq 1$. Let P be a Sylow subgroup of A. Using $N_{N_0}(P) = N_0$, $B \leq C_G(P)$ follows by the conditions whence $B \leq C_G(A)$. Thus $N_0 = A \times B$ and N_0 is a nilpotent normal Hall subgroup of G. Using Theorem 2 of [1] it follows that G is a solvable T^*-group.
References

PIROSKA CSÖRGŐ
EÖTVÓS UNIVERSITY
DEPARTMENT OF ALGEBRA
MÜZEUM KRT. 6–8., 1088 BUDAPEST
HUNGARY

(Received July 24, 1995)