A Frobenius-type theorem for supersolvable groups

By WANG CAIYUN (Shanxi) and GUO XIUYUN (Shanxi)

Abstract. Frobenius’ Theorem for p-nilpotent groups is one of the most fundamental theorems in finite group theory. In this paper a Frobenius-type Theorem for supersolvable groups is given by applying strictly p-closed groups, and some applications are obtained.

Throughout, all groups mentioned are assumed to be finite groups. The terminology and notations employed agree with standard usage.

Let p be a prime. A group G is said to be strictly p-closed whenever G_p, a Sylow p-subgroup of G, is normal in G with G/G_p Abelian of exponent dividing $p - 1$.

Let P be a Sylow p-subgroup of a group G; Frobenius’ Theorem [1, Theorem 10.3.2] states that: a group G is p-nilpotent, if and only if $N_G(P_1)/C_G(P_1)$ is a p-group for every subgroup P_1 of P. If the condition that $N_G(P_1)/C_G(P_1)$ is a p-group is replaced by the weaker condition that $N_G(P_1)/C_G(P_1)$ is a strictly p-closed group, we can obtain a generalization of Frobenius’ Theorem for supersolvable groups.

First we prove the following

Theorem 1. Let G be a p-solvable group, N a normal subgroup of G such that G/N is a p-supersolvable group. If $N_G(P)/C_G(P)$ is strictly p-closed for every p-subgroup P of N, then G is p-supersolvable.

Proof. Let K be a minimal normal subgroup of G contained in N. Then K is an elementary Abelian p-group or a p'-group since G is a p-solvable group. Set $\overline{G} = G/K$, and $\overline{N} = N/K$. If K is an elementary Abelian p-group, then, for every p-subgroup $\overline{P} = P/K$ of \overline{N}, P is a p-subgroup of N, and so $N_G(P)/C_G(P)$ is strictly p-closed. Since the quotient group of a strictly p-closed group is also a strictly p-closed
group, \((N_G(P)/K)/(C_G(P)K/K)\) is a strictly \(p\)-closed group. It follows from \(N_G(P)/K = N_{G/K}(P/K)\) and \(C_{G/K}(P/K) \geq C_G(P)K/K\) that \(N_{\overline{\Gamma}}(\overline{P})/C_{\overline{\Gamma}}(\overline{P})\) is a strictly \(p\)-closed group. If \(K\) is a \(p\)'-group, then, for every \(p\)-subgroup \(\overline{P} = H/K\) of \(N\), \(H = PK\), where \(P \in \text{Syl}_p H\). By the condition \(N_G(P)/C_G(P)\) is strictly \(p\)-closed, and so \(N_G(P)K/C_G(P)K\) is also strictly \(p\)-closed. It is clear that \(C_{\overline{\Gamma}}(\overline{P}) \geq C_G(P)K/K\). Using \([3, \text{Theorem 3.16}]\) \(N_{\overline{\Gamma}}(\overline{P}) = N_G(P)K/K\) we have that \(N_{\overline{\Gamma}}(\overline{P})/C_{\overline{\Gamma}}(\overline{P})\) is strictly \(p\)-closed. Hence we conclude by induction that \(G/K\) is \(p\)-supersolvable.

If \(K\) is a \(p\)'-group, then \(G\) is \(p\)-supersolvable. If \(K\) is an elementary Abelian \(p\)-group, set \(C = C_G(K)\). By the condition \(G/C\) is strictly \(p\)-closed. Let \(A/C \in \text{Syl}_p(G/C)\), then \(A/C \triangleleft G/C\), and the semidirect product \(A/C \rtimes K\) is a \(p\)-group. Hence \(Z(A/C \rtimes K) \cap K \neq 1\). Since \(G/C\) can act on \(Z(A/C \rtimes K) \cap K\), by conjugation and since the action of \(G/C\) on \(K\) is irreducible we have \(Z(A/C \rtimes K) \cap K = K\). Hence the action of \(A/C\) on \(K\) is trivial and \(A/C = 1\). Therefore \(G/C\) is Abelian of exponent dividing \(p - 1\). By \([2, \text{Theorem I.1.4}]\) \(|K| = p\), and \(G\) is \(p\)-supersolvable. The proof of Theorem 1 is complete.

Theorem 2. Let \(N\) be a normal subgroup of a group \(G\), and \(G/N\) be a supersolvable group. Then \(G\) is a supersolvable group if and only if for every prime \(p \mid |N|, N_G(P)/C_G(P)\) is a strictly \(p\)-closed group for every \(p\)-subgroup \(P\) of \(N\).

The proof of Theorem 2 needs the following

Lemma 1. Let \(P\) be a \(p\)-subgroup of a group \(G\), and \(N_G(P)/C_G(P)\) a strictly \(p\)-closed group. If \(H\) is a subgroup of \(G\), and \(P \leq H\), then \(N_H(P)/C_H(P)\) is a strictly \(p\)-closed group too.

Proof. Since \(N_H(P) = H \cap N_G(P)\) and \(C_H(P) = H \cap C_G(P)\), we have

\[
N_H(P)/C_H(P) = H \cap N_G(P)/H \cap C_G(P) \simeq [H \cap N_G(P)]C_G(P)/C_G(P).
\]

Noticing that subgroups of a strictly \(p\)-closed group are strictly \(p\)-closed groups, \(N_H(P)/C_H(P)\) is strictly \(p\)-closed.

Proof of Theorem 2. Assume first that \(G\) is a supersolvable group. Let \(p\) be a prime, \(P\) a \(p\)-subgroup of \(N\), \(H = N_G(P)\). Since \(P \triangleleft H\), we have a chief series of \(H\) passing through \(P\):

\[
1 = P_0 < P_1 < \cdots < P_S = P \leq \cdots \leq H.
\]
As a subgroup of the supersolvable group G, H itself is supersolvable, and so $|P_j/P_{j-1}| = p$ $(j = 1, 2, \ldots, s)$. By [2, Theorem I.1.4]

$$\text{Aut}_H(P_j/P_{j-1}) \simeq H/C_H(P_j/P_{j-1})$$

is Abelian of exponent dividing $p - 1$. Set $L = \bigcap_{j=1}^s C_H(P_j/P_{j-1})$ and $C = C_G(P)$, then $L \triangleleft H$ and H/L is also Abelian of exponent dividing $p - 1$, and moreover, $L \geq C$. We claim that L/C is a p-group. Suppose to the contrary that some $Cx \in L/C$ has order n relatively prime to p. Let $\alpha \in \text{Aut}(P)$ be the automorphism induced by x, i.e., $\alpha(g) = x^{-1}gx$ $(g \in P)$, then the order of α in $\text{Aut}(P)$ divides n, hence it is also relatively prime to p. Also note that $x \in L$ implies $[P_j, \alpha] \leq P_{j-1}$ for $1 \leq j \leq s$, so that [2, Lemma I.1.11] applies to show α is trivial. Hence so is Cx too, proving the claim. It follows that $N_G(P)/C_G(P)$ is strictly p-closed with Sylow p-subgroup L/C.

Suppose now that for every prime $p \mid |N|$, $N_G(P)/C_G(P)$ is a strictly p-closed group for every p-subgroup P of N. Let K be a minimal normal subgroup of G contained in N. Then K is a p-group for some prime p. In fact, assume that p is the smallest prime dividing $|K|$; by Lemma 1 and $(p - 1, |K|) = 1$, $N_K(P)/C_K(P)$ is a p-group for every p-subgroup P of K. Using Frobenius’ Theorem [1, Theorem 10.3.2], K has a normal p-complement, say L. Noticing that $L \triangleleft G$, $L \triangleleft K$ and that K is a minimal normal subgroup of G, we have $L = 1$, and hence K is an elementary Abelian p-group.

Set $\overline{G} = G/K$ and $\overline{N} = N/K$. Similarly to the proof of Theorem 1 we have that for every prime $q \mid |\overline{N}|$, $N_{\overline{G}}(\overline{R})/C_{\overline{G}}(\overline{R})$ is strictly q-closed for every q-subgroup \overline{Q} of \overline{N}. Hence we conclude by induction that G/K is supersolvable. By the condition and Theorem 1 G is p-supersolvable. Noticing that K is a minimal normal p-subgroup of G, we have that K is a cyclic group of order p. It follows that G is supersolvable. The proof of Theorem 2 is complete.

Corollary 1. A group G is supersolvable if and only if, for every prime $p \mid |G|$, $N_G(P)/C_G(P)$ is strictly p-closed for every p-subgroup P of G.

Theorem 3. Let N be a normal subgroup of a group G, and G/N a supersolvable group. Then G is supersolvable if and only if, for every prime $p \mid |N|$, $[N_G(P)/C_G(P)]'$ and $[N_G(P)/C_G(P)]^{p-1}$ are p-groups for every p-subgroup P of N.

From Theorem 2 and the following Lemma 2 Theorem 3 is immediate.
Lemma 2. A group G is strictly p-closed if and only if G' and G^{p-1} are p-groups.

Proof. If G is strictly p-closed, then G/G_p is Abelian, where $G_p \in \text{Syl}_p G$. Hence $G' \leq G_p$ and G' is a p-group. It follows from the exponent of G/G_p dividing $p-1$ that $g^{p-1} \in G_p$ for every $g \in G$, therefore G^{p-1} is also a p-group.

Suppose now that G' and G^{p-1} are p-groups. Let $G_p \in \text{Syl}_p G$. Since $G' \lhd G$, we have $G' \leq G_p$ and so $G_p \lhd G$ and G/G_p is Abelian. By using that G^{p-1} is a p-group we have $G^{p-1} \leq G_p$. Hence G/G_p is Abelian of exponent dividing $p-1$.

Corollary 2. A group G is supersolvable if and only if, for every prime $p \mid |G|$, $[N_G(P)/C_G(P)]'$ and $[N_G(P)/C_G(P)]^{p-1}$ are p-groups for every p-subgroup P of G.

As an application of Theorem 2, we prove the following

Theorem 4. Let N be a normal subgroup of a group G, and G/N be a supersolvable group. If every minimal subgroup of N is pronormal in G, and either the Sylow 2-subgroups of N are Abelian or every cyclic subgroup of N of order 4 is pronormal in G, then G is supersolvable.

The proof of Theorem 4 needs the following

Lemma 3. Let $A_1, A_2, \ldots, A_s; \ B_1, B_2, \ldots, B_s$ be subgroups of the group G, and $B_i \lhd A_i, (i = 1, 2, \ldots, s)$. If A_i/B_i is Abelian of exponent dividing m, then $(A_1 \cap A_2 \cap \cdots \cap A_s)/(B_1 \cap B_2 \cap \cdots \cap B_s)$ is also Abelian of exponent dividing m.

Proof. We only prove Lemma 3 when $s = 2$. Clearly $B_1 \cap B_2 \lhd A_1 \cap A_2$. For any $g_1, g_2 \in A_1 \cap A_2$, since A_1/B_1 and A_2/B_2 are Abelian and $g_1(B_1 \cap B_2) = g_1B_1 \cap g_1B_2$, we have $g_1g_2(B_1 \cap B_2) = g_2g_1(B_1 \cap B_2)$, i.e., $A_1 \cap A_2/B_1 \cap B_2$ is Abelian. From $g_1^m \in B_1, g_2^m \in B_2$ we have $g_1^m \in B_1 \cap B_2$. Hence the exponent of $A_1 \cap A_2/B_1 \cap B_2$ divides m.

Proof of Theorem 4. For any prime $p \mid |N|$, if P is a subgroup of N of order p, then $N_G(P)/C_G(P)$ is Abelian of exponent dividing $p-1$ since $N_G(P)/C_G(P)$ is isomorphic to a subgroup of $\text{Aut}(P)$. Hence $N_G(P)/C_G(P)$ is strictly p-closed. If P is a cyclic subgroup of N of order 4, it follows from $|\text{Aut}(P)|=2$ that $N_G(P)/C_G(P)$ is Abelian of exponent dividing 2. Hence $N_G(P)/C_G(P)$ is strictly 2-closed.

Let A be any p-subgroup of N, and x be an element of A of order p. Then $\langle x \rangle$ is subnormal in $N_G(A)$. Using [1, exercise 10.3.3] $\langle x \rangle \triangleleft N_G(A)$.

A Frobenius-type theorem for supersolvable groups

Since $\Omega_1(A) \triangleleft N_G(A) = H$, $C_H(\Omega_1(A)) \triangleleft H$, it is clear that $C = C_G(A) \leq C_H(\Omega_1(A))$. We claim that $C_H(\Omega_1(A))/C$ is a p-subgroup of H/C if $p \neq 2$, or $p = 2$ and A is Abelian. In fact, let $gC \in C_H(\Omega_1(A))/C$ and the order of gC be a p'-number. Noticing that $\langle gC \rangle$ can act on A by conjugation, and that the action of $\langle gC \rangle$ on $\Omega_1(A)$ is trivial, the action of $\langle gC \rangle$ on A is trivial by [3, Theorem 7.26] if $p \neq 2$ or by [4, Theorem 5.2.4] if $p = 2$ and A is Abelian. Hence $gC = C$, i.e., $C_H(\Omega_1(A))/C$ is a p-group.

Noticing that $C_H(\Omega_1(A)) = \bigcap_{x \in \Omega_1(A)} (C_H(\langle x \rangle))$, $H \subseteq \bigcap_{x \in \Omega_1(A)} N_H(\langle x \rangle)$ and that $N_H(\langle x \rangle)/C_H(\langle x \rangle)$ is Abelian of exponent dividing $p − 1$ (when x has order p), $H/C_H(\Omega_1(A))$ is Abelian of exponent dividing $p − 1$ by Lemma 3. Hence $H/C = N_G(A)/C_G(A)$ is strictly p-closed if $p \neq 2$ or $p = 2$ and A is Abelian.

If A is a 2-subgroup of N and A is not Abelian, by considering the subgroup $\Omega_2(A)$ and using [3, Theorem 7.26], similar to the above proof we have that $C_H(\Omega_2(A))/C_G(A)$ is a 2-group, and that $H/C_H(\Omega_2(A))$ is Abelian of exponent dividing 2. Hence $H/C = N_G(A)/C_G(A)$ is a 2-group, and so strictly 2-closed. By Theorem 1 G is supersolvable. The proof of Theorem 4 is complete.

Remark. The statement of Theorem 4 for the case when N has odd order has been proved by M. Asaad in [5].

Acknowledgement. The authors wish to thank the referee for his helpful suggestions.

References

WANG CAIYUN
DEPARTMENT OF MATHEMATICS
SHANXI UNIVERSITY
TAIYUAN, SHANXI 030006
PEOPLE’S REPUBLIC OF CHINA

GUO XIUYUN
DEPARTMENT OF MATHEMATICS
SHANXI UNIVERSITY
TAIYUAN, SHANXI 030006
PEOPLE’S REPUBLIC OF CHINA

(Received October 19, 1995; revised April 3, 1996)