On Riemannian manifolds endowed with a \mathcal{T}-parallel almost contact 4-structure

By FERNANDO ETAYO (Santander) and RADU ROSCA (Paris)

Abstract. \mathcal{T}-parallel almost contact 4-structures on a Riemannian manifold are studied. It is proved that such a manifold is a local Riemannian product of two totally geodesic submanifolds, one of them being a space form. Additional results are obtained when the manifold is endowed with a framed f-structure.

1. Introduction

In the last two decades, contact, almost contact, paracontact and almost cosymplectic manifolds carrying \mathcal{r} ($\mathcal{r} > 1$) Reeb vector fields $\xi_\mathcal{r}$ have been studied by a certain number of authors, as for instance: M. Kobayashi [11], A. Bucki [4], S. Tachibana and W. N. Yu [22], K. Yano and M. Kon [25], V. V. Goldberg and R. Rosca [8] and some others.

In the present paper we consider a $(2m + 4)$ dimensional Riemannian manifold carrying 4 structure vector fields ξ_r ($r, s \in \{2m + 1, \ldots, 2m + 4\}$) and with a distinguished vector field \mathcal{T}, such that the vertical connection forms define a \mathcal{T}-parallel connection and the Reeb vector fields are \mathcal{T}-parallel (this structure is called a \mathcal{T}-parallel almost contact 4-structure and it will be defined in Definition 3.1). Then we shall prove that such a manifold is a local Riemannian product of two totally geodesic submanifolds, $M = M^\top \times M^\perp$, where M^\perp is a space form tangent to the distribution generated by the Reeb vector fields, and that the vector field \mathcal{T} is closed torse forming (Theorem 3.3).

In section 4 we shall study conformal-type structures induced by a \mathcal{T}-parallel almost contact 4-structure. Finally, in section 5 we assume that the manifold under consideration is endowed with a framed f-structure, proving that M^\top is a Kählerian submanifold (Theorem 5.2).

Mathematics Subject Classification: 53C15, 53B20, 53C55.
2. Preliminaries

Let \((M, g)\) be a Riemannian \(C^\infty\)-manifold and let \(\nabla\) be the covariant differential operator defined by the metric tensor \(g\). We assume that \(M\) is oriented and \(\nabla\) is the Levi-Civita connection. Let \(\Gamma TM\) be the set of sections of the tangent bundle \(TM\) and \(\flat : TM \to T^* M, X \to X^\flat\), the musical isomorphism defined by \(g\). Next, following a standard notation, we set: \(A^q(M, TM) = \text{Hom}(\Lambda^q TM, TM)\) and notice that elements of \(A^q(M, TM)\) are vector valued \(q\)-forms \((q \leq \dim M)\). Denote by \(d\nabla : A^q(M, TM) \to A^{q+1}(M, TM)\) the exterior covariant derivative operator with respect to \(\nabla\) (it should be noticed that generally \(d\nabla^2 = d\nabla \circ d\nabla \neq 0\), unlike \(d^2 = d \circ d = 0\)). The identity tensor field \(I\) of type \((1,1)\) can be considered as a vector valued 1-form \(I \in A^1(M, TM)\) (and it is also called the soldering form [7]).

We shall remember the following

Definition 2.1. (1) (see [10]) The operator \(d\omega = d + e(\omega)\) acting on \(\Lambda M\) is called the cohomology operator, where \(e(\omega)\) means the exterior product by the closed 1-form \(\omega \in \Lambda^1 M\), i.e., \(d\omega u = du + \omega \wedge u\) for any \(u \in \Lambda M\). One has \(d \circ d\omega = 0\), and if \(d\omega u = 0\), \(u\) is said to be \(d\omega\)-closed. If \(\omega\) is exact, then \(u\) is said to be \(d\omega\)-exact.

(2) (see [18], [16]) Any vector field \(X \in \Gamma TM\) such that: \(d\nabla(\nabla X) = \nabla^2 X = \pi \wedge I \in A^2(M; TM)\) for some 1-form \(\pi\), is called an exterior concurrent vector field and the 1-form \(\pi\), which is called the concurrence form, given by \(\pi = fX^\flat, f \in C^\infty(M)\).

(3) (see [23], [16]) A vector field \(T\) whose covariant differential satisfies \(\nabla T = rI + \alpha \otimes T\); \(r \in C^\infty(M)\) where \(\omega = T^\flat\) is a closed form, is called a closed torse forming.

If \(\Re\) denotes the Ricci tensor of \(\nabla\) and \(X\) an exterior concurrent vector field, one has \(\Re(X, Z) = -(n-1)fg(X, Z), Z \in \Gamma TM, n = \dim M\).

Let \(C\) be any conformal vector field on \(M\) (i.e., the conformal version of Killing’s equations). As is well known, \(C\) satisfies

\[(2.1) \quad L_C g(C, Z) = \rho g(C, Z) \text{ or } g(\nabla_Z C, Z') + g(\nabla_{Z'} C, Z) = \rho g(Z, Z')\]

\((Z, Z' \in \Gamma TM)\) where the conformal scalar \(\rho\) is defined by \(\rho = \frac{2}{n}(\text{div} C)\).

We recall the following basic formulas (see [3])
On Riemannian manifolds endowed with a T-parallel \ldots
horizontal component of Z (resp. the vertical component of Z). We recall that setting $A, B \in \{1, 2, \ldots, 2m\}$ the connection forms ϑ^A_B, ϑ^r_B and ϑ^s_r are called the horizontal, the transversal and the vertical connection forms respectively (see also [21]).

With the above notation, one has the following

Definition 3.1 ([17], [9]). Let $M(\xi_r, \eta^r, g)$ be a $(2m+4)$-dimensional oriented Riemannian manifold carrying 4 Reeb vector fields ξ_r such that the vertical connection forms verifies $\vartheta^r_s = \langle T, \xi_s \wedge \xi_r \rangle$, where T is a certain vertical vector field. Then, we say that vertical connection forms ϑ^r_s define on D^\perp a T-parallel connection and T is called the generator of the considered $(T.P.)$-connection. Moreover, if the Reeb vector fields are T-parallel, i.e., $\nabla_T \xi_r = 0$, then the manifold $M(\xi_r, \eta^r, g)$ is said to be endowed with a T-parallel almost contact 4-structure (abr. $T.P.A.C.$ 4-structure).

In the present paper we shall deal with these manifolds.

Remark 3.2. If we set $T = \sum t_r \xi_r$; $t_r \in C^\infty(M)$ then the vertical connection forms are expressed by $\vartheta^r_s = t_s \eta^r - t_r \eta^s$. Since the vertical connection forms satisfy $\vartheta^r_s(T) = 0$, then by reference to [13] we may say that ϑ^r_s are relations of integral invariance for the vector field T.

Similarly one may decompose in an unique fashion the soldering form I of M as $I = I^\top + I^\perp$ where $I^\top = \omega^A \otimes e_A$ and $I^\perp = \eta^r \otimes \xi_r$ mean the line element of D^\top and the line element of D^\perp respectively.

We can state

Theorem 3.3. Let $M(\xi_r, \eta^r, g)$ be a $(2m+4)$-dimensional Riemannian manifold endowed with a T-parallel almost contact 4-structure and let T be the generator vector field of this structure.

For such a manifold the structure covectors $\eta^r (r \in \{2m+1, \ldots, 2m+4\})$ are of class 2 and cohomologically exact, i.e., $d^\omega \eta^r = 0$, where ω is the dual form of the generator T which enjoys the property to be a closed torse forming and to define a relative infinitesimal conformal transformation of the almost contact structure of M.

Any manifold M which carries a $(T.P.A.C.)$ 4-structure may be viewed as the local Riemannian product $M = M^\top \times M^\perp$ such that:

(i) M^\perp is a totally geodesic submanifold of M, tangent to the vertical distribution $D^\perp = \{\xi_r\}$ which enjoys the property to be a space form of curvature $-2a$ ($a = \text{const}$).
(ii) M^\top is a totally geodesic submanifold of M, tangent to the horizontal distribution $D^\top = \{\xi_r\}^\perp$ of M.

Proof. Making use of the structure equations of Remark 2.4(2) and taking account of Remark 3.2 one derives:

\[(3.1) \quad \nabla \xi_r = t_r I^\perp - \eta^r \otimes T.\]

Hence if $Z^\perp_1, Z^\perp_2 \in D^\perp_p$ are any vertical vector fields, it quickly follows from (3.1) $\nabla Z^\perp_1 Z^\perp_2 \in D^\perp_p$. This, as is known, proves that D^\perp_p is an autoparallel foliation and that the leaves M^\perp of D^\perp_p are totally geodesic submanifolds of M (in our case, $\dim M^\perp = 4$). Next making use of the structure equations of Remark 2.4(3) one finds

\[(3.2) \quad d\eta^r = \omega \wedge \eta^r\]

where $\omega = T^\flat$ denotes the dual form of the generator vector field T.

By reference to [7], equations (3.2) show that all the Reeb covectors η^r are exterior recurrent and by a simple argument it follows that the recurrence form ω is necessarily closed, i.e., $d\omega = 0$. With the help of (3.1) and (3.2) one also derives from $I^\perp = \eta^r \otimes \xi_r$ that I^\perp is exterior covariant closed, i.e., $d\nabla(I^\perp) = 0$ and this is matching the fact that I^\perp is the soldering form of the leaf M^\perp. By reference to Proposition 2.5 it is seen by (3.2) that the structure covectors η^r are of class 2.

Let now denote by $\varphi = \eta^{2m+1} \wedge \ldots \wedge \eta^{2m+4}$ the simple form which corresponds to D^\top_p (or equivalently the volume element of M^\perp). By (3.2) one has at once $d\varphi = 0$ and therefore since one may write $D^\top_p \subset \ker(\varphi) \cap \ker(d\varphi)$ we conclude that the horizontal distribution D^\top_p is also involutive. Then setting M^\top for the $2m$ leaf of D^\top_p, it is seen that ξ_r are geodesic normal section for the immersion $\kappa : M^\top \to M$, which is totally geodesic. It follows from the above discussion that the manifold M under consideration is the local product $M = M^\top \times M^\perp$, where M^\top and M^\perp are totally geodesic submanifolds of M, tangent to the horizontal distribution D^\top and the vertical distribution D^\perp of M respectively.

Further since the dual form ω of T is expressed by $\omega = t_r \eta^r$ then by virtue of (3.2) one may set

\[(3.3) \quad dt_r = \lambda \eta^r \quad \Rightarrow \quad d\lambda - \lambda \omega = 0\]

which shows that ω is an exact form. In consequence of this fact, equations (3.2) may be expressed, using the notation introduced in Definition 2.1(1),
as $d^{-\omega} \eta^r = 0$, thus proving that the structure covectors of $M(\xi^r, \eta^r, g)$ are cohomologically exact.

Taking now the covariant differential of the generator vector field T, one derives on behalf of (3.1) and (3.3)

\[(3.4)\] \[\nabla T = (\lambda + 2t) \mathfrak{I}^\perp - \nu \otimes T; \quad 2t = \|T\|^2\]

which shows the significative fact that T is a closed torse forming (def. 2.1(3)). Since this quality implies that T is a gradient vector field, this fact is in accordance with equation (3.3). We also derive from (3.4)

\[(3.5)\] \[dt = \lambda \omega \implies t + \lambda = a = \text{const.}\]

Next operating on (3.1) by the exterior covariant derivative operator $d\nabla$ one quickly derives by (3.2) and (3.4) that one has $d\nabla (\nabla \xi^r) = \nabla^2 \xi^r = 2a \eta^r \wedge \mathfrak{I}^\perp$. The above equations reveal the important fact that all the vectors $\{\xi^r\}$ on M^\perp are exterior concurrent vector fields (see [20]). Then since the conformal scalar $2a$ is constant, we conclude by reference to [16] that the vertical submanifold M^\perp is a space form of curvature $-2a$.

Next by (3.2), (3.3) and (3.5) one derives succesively $\mathcal{L}_T \eta^r = (a + t) \eta^r - t_r \omega$ and $d(\mathcal{L}_T \eta^r) = (2a + \lambda) \omega \wedge \eta^r$. In consequence of the last equation and by reference to [14] we agree to say that the generator vector T defines a relative infinitesimal conformal transformation of the considered almost contact 4-structure, thus finishing the proof.

4. Conformal-type structures induced by a $(T.P.A.C.)$ 4-structure

In the present section we consider on M^\perp the 2-form ψ of rank 2 (if $\Omega \in \Lambda^2 M$, rank r is the smallest integer such that $\Omega^{r+1} = 0$), defined by $\psi = \eta^{2m+1} \wedge \eta^{2m+2} + \eta^{2m+3} \wedge \eta^{2m+4}$. On behalf of (3.2) one quickly derives by exterior differentiation of ψ that $d\psi = 2\omega \wedge \psi \Leftrightarrow d^{-2\omega} \psi = 0$ (the last equality obtained on behalf of Definition 2.1(1)). Therefore following a known definition it is seen that ψ is a conformal symplectic form on M^\perp having ω (resp. T) as covector of Lee (resp. vector field of Lee). In addition in the case under discussion one may say that ψ is a $d^{-2\omega}$-exact form.

It should be noticed that this property is in accordance with the general properties of T-parallel connections (see also [14]). If $Y \in \Gamma TM^\perp$ is any vertical vector field, then by reference to [12] we set $^bY = -i_Y \psi$. Do not confuse with the the musical isomorphism $b : \Gamma TM \rightarrow \Gamma TM^*$, which is denoted by $X \rightarrow X^b$. For instance, $\omega = T^\flat$.

In the case under discussion and in order to simplify we write
\[
\beta = -bT = t_{2m+1}^2t_{3m+2} + t_{2m+3}^2t_{3m+4} - t_{2m+2}^2t_{3m+1} - t_{2m+4}t_{3m+3}\]
and by (3.3) and (3.2) one gets \(d\beta = 2\lambda \psi + \omega \wedge \beta\) by which after a standard calculation one derives \(\mathcal{L}_T \psi = 2(a + t)\psi - \omega \wedge \beta\). Since \(\omega\) is an exact form, then following [1] the above equation shows that \(T\) defines a weak infinitesimal conformal transformation of \(\psi\). Then we obtain \(d(\mathcal{L}_T \psi) = 8a \omega \wedge \psi\). Therefore we may also say that \(T\) defines a relative infinitesimal conformal transformation of \(\psi\).

Consider now the vertical vector field \(C = C^r \xi_r\) and set \(\varrho = bC\).

Then in order that \(C\) be an infinitesimal conformal transformation of \(\psi\), one finds making use of (3.2)

\[
dC^r = C^r \omega. \tag{4.1}\]

This implies \(d\varrho = 2\omega \wedge \varrho \iff d^{-2}\varrho = 0\) and setting \(s = g(C, T)\) one may write \(\mathcal{L}_T \psi = 2s \psi\). In the light of this problem, and making use of (3.1) and (4.1) one derives

\[
\nabla C = sI^\perp + C \wedge T \tag{4.2}\]

which reveals the important fact that \(C\) is a structure conformal vector field having \(2s = \rho\) as conformal scalar (see Definition 2.3). Setting \(\alpha = C^\flat\) one finds by (3.4) and (4.2)

\[
ds = \lambda \alpha + s \omega \tag{4.3}\]

and on the other hand by (3.2) one has

\[
d\alpha = 2\omega \wedge \alpha \iff d^{-2}\omega \alpha = 0. \tag{4.4}\]

Hence one may say that as \(\psi\) the dual form \(\alpha\) of \(C\) is \(d^{-2}\omega\)-exact. It should be noticed that equation (4.4) is in accordance with the general properties of structure conformal vector fields [19] (see also [14], [15]).

By (3.3), (4.3) and (4.4) it is seen that the existence of the structure conformal vector field \(C\) is determined by the exterior differential system \(\Sigma_e\) whose characteristic numbers are \(r = 3, s_0 = 2, s_1 = 1\). Since \(r = s_0 + s_1\) it follows by E. Cartan’s test [5] that \(\Sigma_e\) is involutive and \(C\) is determined by 1 arbitrary function of 2 arguments.

Next since \(\rho = 2s\), it follows at once from (4.3), by duality: grad \(\rho = 2\lambda C + \rho T\). But as it is known div \(Z = tr[\nabla Z]\), \(Z \in \Gamma TM\), and so one gets from (3.4) div \(T = 4a + 2t\) and \(C\) being a conformal vector field one has
\[\text{div } C = 4 \rho. \] Therefore by the general formulas \(\Delta f = -\text{div}(\text{grad } f), \ f \in C^\infty M, \) a short calculation gives

\[
\Delta \rho = -8a \rho
\]

which shows that \(\rho \) is an \textit{eigenfunction} of \(\Delta \) and has \(-8a \) associated \textit{eigenvalue}. Following a known theorem, it follows that if \(M^\perp \) is compact, then necessarily \(a = -\mu^2 \) (\(\mu = \text{const.} \)), that is, \(M^\perp \) is an elliptic submanifold of \(M \).

On the other hand taking the covariant differential of \(\text{grad } \rho \), then by a standard calculation one infers

\[
\nabla \text{grad } \rho = 4a \rho I^\perp
\]

which reveals that \(\text{grad } \rho \) is \textit{concurrent} vector field on \(M^\perp \) [6] (we recall that concurrency is of conformal nature). Accordingly on behalf of the definition given in [14], we may say in the case under consideration \(C \) has the \textit{divergence conformal property}. It is worth to point out that if \(M^\perp \) is an elliptic submanifold of \(M \) (i.e., \(a = -\mu^2 \)), then following Obata’s theorem [24], \(M^\perp \) is \textit{isometric} to a sphere of radius \(\frac{1}{2} \mu \).

Further since \(M^\perp \) is a space form, then we recall [16] that any vector field on \(M^\perp \) is E.C., with the same conformal scalar \(2a \). Consequently, if \(\mathcal{R} \) denotes the Ricci tensor of \(\nabla \), one has

\[
\mathcal{R}(C, Z) = -6a g(C, Z), \ Z \in \Gamma TM^\perp.
\]

Then by (4.5), (4.6), (4.7) and making use of Proposition 2.2(3) and carrying out the calculations one derives \(\mathcal{L}_C g(C, Z) = \frac{4}{3} \rho g(C, Z) \). Therefore one may state that the (S.C)-vector field \(C \) defines an infinitesimal conformal transformation of all the functions \(g(C, Z) \) where \(Z \in \Gamma TM^\perp \). It should be noticed that this situation is similar to that of [14]. In addition by (3.1) and (4.2) one finds

\[
[C, \xi_r] = -\frac{\rho}{2} \xi_r
\]

which shows that the structure vector fields \(\xi_r \) admit \textit{infinitesimal transformations} of generator \(C \). Next making use of Orsted’s lemma (Proposition 2.2(1)) it follows

\[
\mathcal{L}_C \eta^r = \rho \eta^r.
\]

Hence making use of a known terminology, it follows that \(C \) defines an \textit{almost contact transformation} of the structure covectors \(\eta^r \).
Finally we denote by $\mathcal{P} = \xi_{2m+1} \wedge \xi_{2m+2} + \xi_{2m+3} \wedge \xi_{2m+4}$ the Poisson bivector \cite{12} associated with the conformal symplectic form ψ. Since \mathcal{P} may be expressed as

$$
\mathcal{P} = \eta^{2m+2} \otimes \xi_{2m+1} - \eta^{2m+1} \otimes \xi_{2m+2} \\
+ \eta^{2m+4} \otimes \xi_{2m+3} - \eta^{2m+3} \otimes \xi_{2m+4}
$$

then since the Lie derivative is additive, one gets by (4.8) and (4.9) that $\mathcal{L}_C \mathcal{P} = 0$ which shows that C defines an infinitesimal automorphism of \mathcal{P}.

Next operating on the vector valued 1-form \mathcal{P} by the operator $d \nabla$ one derives after two successive computations $d \nabla \mathcal{P} = \omega \wedge \mathcal{P} - 2 \psi \otimes \mathcal{I} - \beta \wedge \mathcal{I} \perp \in \Lambda^2(M, TM)$ ($\beta = -b \mathcal{T}$) and $d \nabla^2 \mathcal{P} = 4a \psi \wedge \mathcal{I} \perp$. Therefore (see Proposition 2.5) the last equality shows that \mathcal{P} is a 2-exterior vector valued 1-form. Moreover, taking into account $\mathcal{L}_T \psi = 2s \psi$ a short calculation gives $\mathcal{L}_C (d \nabla^2 \mathcal{P}) = \frac{4}{3} d \nabla^2 \mathcal{P}$ that is C defines an infinitesimal conformal transformation of $d \nabla^2 \mathcal{P}$.

Then one has the

Theorem 4.1. Let $M(\xi_\tau, \eta_\tau, g)$ be a $(2m+4)$-dimensional Riemannian manifold endowed with a (T,P,A,C) 4-structure discussed in Section 2 and having T as generator vector field. Let M^\perp be the space form submanifold of M, tangent to the vertical distribution $D^\perp = \{\xi_\tau\}$ of M. One has the following properties:

1. M^\perp is equipped with a conformal symplectic structure $\text{CSp}(4, \mathbb{R})$ defined by the form $\psi \in \Lambda^2 M^\perp$ (of rank 2) and such that the covector of Lee corresponding to $\text{CSp}(4, \mathbb{R})$ is the dual form ω of T, that is, $d \psi = 2 \omega \wedge \psi$ and T defines a relative infinitesimal conformal transformation of ψ, that is, $d(\mathcal{L}_T \psi) = 8a \omega \wedge \psi$, $(a = \text{const.})$

2. Any vector field C which defines an infinitesimal conformal transformation of ψ is a structure conformal vector field, i.e., $\nabla C = g(T, C) \mathcal{I}^\perp + C \wedge T$ and one has $\mathcal{L}_C \psi = \rho \psi$; $\rho = 2g(T, C)$ and $\mathcal{L}_C g(C, Z) = \frac{4}{3} \rho g(C, Z)$, $Z \in \Gamma TM^\perp$.

3. The conformal scalar ρ ($\mathcal{L}_C g = \rho g$) is an eigenfunction of Δ and if M^\perp is compact, then $a = -\mu^2$ and M^\perp is isometric to a sphere of radius $\frac{1}{2} \mu$.

4. The Poisson bivector \mathcal{P} associated with ψ is a 2-exterior vector valued 1-form, i.e., $d \nabla^2 \mathcal{P} = 4a \psi \wedge \mathcal{I} \perp$ and C defines an infinitesimal automorphism of \mathcal{P}.
5. Framed f-structures

In the present section we assume that the manifold $M(\xi^r, \eta^r, g)$ under consideration is endowed with a framed f-structure ϕ [27], that is ϕ is a tensor field of type $(1,1)$ and rank $2m$ which satisfies:

1. $\phi^3 + \phi = 0$
2. $\phi^2 = -I + \sum \eta^r \otimes \xi^r; \phi \xi^r = 0; \eta^r \circ \phi = 0$
3. $g(Z, Z') = g(\phi Z, \phi Z') + \sum \eta^r(Z) \eta^r(Z'); Z, Z' \in \Gamma TM$ and the fundamental 2-form Ω associated with the f-structure satisfies:
 (4) $\Omega(Z, Z') = g(\phi Z, Z'); \Omega^m \wedge \varphi \neq 0,$ φ being the volume element of $M^\perp,$ i.e., $\varphi = \eta^2m+1 \wedge \eta^2m+2 \wedge \eta^2m+3 \wedge \eta^2m+4.$

Such a manifold $M(\phi, \Omega, \xi^r, \eta^r, g)$ is, as known, defined as framed f-manifold.

With respect to the cobasis $O^* = \text{covect}\{\omega^A, \eta^r\}$ the form Ω is expressed by $\Omega = \sum \omega^a \wedge \omega^{a*}; a \in \{1, \ldots, m\}; a* = a+m$ and the horizontal connection forms ϑ^A_B satisfies the known Kählerian conditions
 (5.1) $\vartheta^a_B = \vartheta^{a*}_{a*}; \vartheta^a_{b*} = \vartheta^b_{a*}.$

Since on the other hand by (3.1) it is seen that the transversal connection forms ϑ^r_A vanish, one gets by exterior differentiation $d\Omega = 0.$ Since Ω is of constant rank and closed it follows that it is a presymplectic form on M and a symplectic form on $M^\top.$ We notice that in this case ker(Ω) coincides with the vertical distribution D^\perp_\perp of M which may be also called characteristic distribution of $\Omega.$ In addition by condition (3) of a framed f-structure and $\vartheta^r_A = 0$ one has $(\nabla \phi)Z = 0,$ $Z \in \Gamma TM,$ that is ∇ and ϕ commute.

Recall now that the torsion tensor field S of an f-structure is the vector valued 2-form defined by $S = N_\phi + S^\perp$ where $N_\phi(Z, Z') = [\phi Z, \phi Z'] + \phi^3[Z, Z'] - \phi[Z, \phi Z'] - \phi[\phi Z, Z']$ is the Nijenhuis tensor field, and $S^\perp = 2\sum \omega^a \wedge \omega^{a*}$ is the vertical component of $S.$ By (3.10), (5.6) and $(\nabla \phi)Z = 0$ it is easily seen that S vanishes on $D^\perp.$ In this case, the f-structure (ϕ, ξ^r, η^r) is said to be horizontal-normal (or D^\perp-normal) [2].

Consequently, following a definition of A. Bejancu [2] the framed f-manifold $M(\phi, \Omega, \xi^r, \eta^r, g)$ under consideration is a framed-CR manifold. On the other hand, taking into account that Ω is closed, the horizontal submanifold M^\top of M moves to a symplectic submanifold.

It also should be noticed that by (3.2) one may write S^\perp as $S^\perp = 2\omega \wedge I^\perp \Rightarrow d^\perp S^\perp = 0$ that is, S^\perp is a closed vector valued 2-form. We agree with the following
Definition 5.1. Let M be a framed f-manifold and let S^\perp be the vertical component of its associated torsion tensor. If the covariant differential of S^\perp is closed, i.e., $d^\nabla S^\perp = 0$, we say that M is a *vertical closed framed f-manifold*.

Now since one finds $\mathcal{L}_T \xi_r = [T, \xi_r] = t_r T - (t + a) \xi_r$ then one get at once $\mathcal{L}_T S^\perp = 2\lambda S^\perp$. Accordingly the Lee vector field T defines an infinitesimal conformal transformation of S^\perp.

Then we can state the following

Theorem 5.2. Let $M(\phi, \Omega, \xi_r, \eta^r, g)$ be a framed f-manifold endowed with a T-parallel almost contact 4-structure, and let S^\perp be the vertical component of the torsion tensor field S associated with the f-structure defined by ϕ.

Any such M is a framed f-CR manifold which is vertical torsion closed, i.e., $d^\nabla S^\perp = 0$, and may be viewed as the local Riemannian product $M = M^\dagger \times M^\perp$ such that:

(i) M^\dagger is a totally geodesic Kählerian submanifold of M, tangent to $\{\xi_r\}^\perp$;

(ii) M^\perp is a totally geodesic space form submanifold of M, tangent to $\{\xi_r\}$;

(iii) the Lee vector field T of the (T.P.A.C.) 4-structure defines an infinitesimal conformal transformation of S^\perp.

References

(Received July 10, 1995; revised May 13, 1996)