Gauss bounds of quadratic extensions

By FRANZ LEMMERMEYER (Saarbrücken)

Abstract. We give a simple proof of results of Lubelski and Lakein on Gauss bounds for quadratic extensions of imaginary quadratic Euclidean number fields.

1. Preliminaries

Let k be a number field with class number 1; in the following, N will denote the absolute value of the norm, i.e. $N\alpha = |N_{k/Q}\alpha|$. We define the Euclidean minimum $M(k)$ by $M(k) = \inf \{ \delta > 0 : \forall \xi \in k \exists \eta \in \mathbb{Z}_k \text{ such that } N(\xi - \eta) < 1 \}$. An ideal I in the maximal order \mathbb{Z}_K of a quadratic extension K/k is called primitive if it is not divisible by any non-unit $a \in \mathbb{Z}_k$. Since $h(k) = 1$, there exists a relative integral basis $\{1, \omega\}$ of \mathbb{Z}_K.

The following lemma and its proof are well known for $k = \mathbb{Q}$ ([2], 14.12):

Lemma 1. Let k be a number field with class number 1, and suppose that K/k is a quadratic extension. Then every primitive ideal I has the form $I = (\alpha + c\omega)\mathbb{Z}_k + c\mathbb{Z}_k$ for algebraic integers $\alpha, c \in \mathbb{Z}_k$, where c is a generator of the ideal $c\mathbb{Z}_K = N_{K/k}I$.

Proof. Choose $\alpha = a + b\omega$ such that $I = (\alpha, c)$ (cf. [2], 6.19). Writing $c\omega \in I$ as a linear combination of $a + b\omega$ and c shows easily that $b | a$ and $b | c$. Since I is primitive, b must be a unit, and we may assume without loss of generality that $b = 1$. \qed

Mathematics Subject Classification: 11 R 11, 11 R 16, 11 R 29.
Key words and phrases: Quadratic Fields, Ideal Classes, Discriminants.
2. Quadratic number fields

The following theorem is well known (see e.g. Holzer [3]); we will give a very simple proof which we will generalize in the next section.

Theorem 2. Let \(K = \mathbb{Q}(\sqrt{m}) \) be a quadratic number field with ring of integers \(\mathbb{Z}_K = \mathbb{Z}[\omega] \) and discriminant \(\Delta \), where

\[
\begin{align*}
\omega &= \begin{cases}
\sqrt{m}, & \text{if } m \equiv 2, 3 \mod 4, \\
\frac{1 + \sqrt{m}}{2}, & \text{if } m \equiv 1 \mod 4.
\end{cases} \\
\Delta &= \begin{cases}
4m, & \text{if } m \equiv 2, 3 \mod 4, \\
m, & \text{if } m \equiv 1 \mod 4.
\end{cases}
\end{align*}
\]

Let \(\mu_K \) be defined by

\[
\mu_K = \begin{cases}
1, & \text{if } \Delta = 5 \\
\sqrt{\Delta}/8, & \text{if } \Delta \geq 8 \\
\sqrt{-\Delta/3}, & \text{if } \Delta < 0.
\end{cases}
\]

Then each ideal class of \(K \) contains an integral ideal of norm \(\leq \mu_K \).

Proof. Let \([I]\) be an ideal class generated by an integral ideal \(I \) which we may assume to be primitive. Then \(I = (\gamma, c) = N_{K/\mathbb{Q}}I \) and \(\gamma = a + \omega = s + \frac{1}{2}\sqrt{\Delta} \), where \(2s \in \mathbb{Z} \). Applying the Euclidean algorithm to the pair \((s, c)\) we see that there exists a \(\gamma = r + \frac{1}{2}\sqrt{\Delta} \in I \) such that

\[
\begin{align*}
|r| &\leq \frac{c}{2} \quad \text{if } \Delta < 0, \\
\frac{c}{2} &\leq |r| \leq c \quad \text{if } c^2 > \frac{\Delta}{5}, \\
c &\leq |r| \leq \frac{3}{2}c \quad \text{if } \frac{\Delta}{8} < c^2 < \frac{\Delta}{5}.
\end{align*}
\]

We claim that \(|N\gamma| \leq \frac{1}{2}(c^2 - \Delta) < c^2 \) provided that \(c^2 > \mu_K \); this shows that \(I_1 = \gamma'c^{-1}I \sim I \) (where \(\gamma' \) denotes the algebraic conjugate of \(\gamma \)) is an integral ideal such that \([I_1] = [I] \) and \(NI_1 < NI \). Repeating this procedure if necessary we eventually arrive at an integral ideal \(I_n \sim I \) with norm \(\leq \mu_K \).

The claimed inequality is proved by going through all the cases:

1. \(\Delta < 0 \): here \(|N\gamma| = |r^2 - \frac{\Delta}{4}| \leq \frac{c^2 + |\Delta|}{4} < 1 \) since \(c^2 > \mu_K = |\Delta|/3 \).
2. \(c^2 > \frac{\Delta}{5} \): here \(-c^2 = \frac{c^2 - 5c^2}{4} < r^2 - \frac{\Delta}{4} < c^2 \).
3. \(\frac{\Delta}{8} < c^2 < \frac{\Delta}{5} \): then \(-c^2 = c^2 - \frac{8c^2}{4} < r^2 - \frac{\Delta}{4} < \frac{9c^2 - 5c^2}{4} = c^2 \).
The only possibility not covered by the proof is \(c^2 = \Delta/5 \); since the odd part of \(\Delta \) is squarefree, this will happen if and only if \(\Delta = 5 \) and \(c = \pm 1 \). This completes the proof of the theorem. \(\square \)

3.2. Quadratic extensions of imaginary quadratic fields

Let \(k = \mathbb{Q}(\sqrt{-n}) \), where \(n \in \{-1, -2, -3, -7, -11\} \). These are the Euclidean among the imaginary quadratic fields, and it is known (cf. [5]) that for all \(\xi \in k \) there exist integers \(\eta \in \mathbb{Z}_k \) such that
\[
N(\xi - \eta) \leq M,
\]
where the Euclidean minimum \(M = M(k) \) is given by
\[
M = \begin{cases}
\frac{|n| + 1}{4}, & \text{if } \Delta \equiv 0 \mod 4, \\
\frac{(|n| + 1)^2}{16|n|}, & \text{if } \Delta \equiv 1 \mod 4.
\end{cases}
\]

Fix an embedding of \(k \) into \(\mathbb{C} \); then \(N\xi = |\xi|^2 \) for all \(\xi \in k \), and the above result translates into

Lemma 3. Let \(k = \mathbb{Q}(\sqrt{-n}) \) be Euclidean; then for all \(\xi \in k \) there exist \(\eta \in \mathbb{Z}_k \) such that \(|\xi - \eta|^2 \leq M \).

Now we redo our computations in the proof of Theorem 1, assuming \(a, c, m, \) etc. to be integers (resp. half-integers) in \(k \); the discriminant \(\Delta \) is now replaced by the relative discriminant \(d = \text{disc}_{K/k}(1, \omega) \), and we have
\[
\Delta = \text{disc}(K/\mathbb{Q}) = d_0^2 N d, \quad \text{where } d_0 = \text{disc}(k/\mathbb{Q}).
\]

Now
\[
\frac{|r^2 - d/4|}{|c|^2} \leq \frac{4|\xi|^2 + |d|}{4|c|^2} \leq \frac{4M|c|^2 + |d|}{4|c|^2},
\]
and this expression is \(< 1\) if and only if

\[
|c|^2 > \frac{|d|}{4(1 - M)} = \frac{\sqrt{\Delta}}{4d_0(1 - M)}.
\]

For \(k = \mathbb{Q}(\sqrt{-1}) \) we have \(M(k) = \frac{1}{2} \) and \(d_0 = -4 \), hence \(\mu_K = \sqrt{\Delta}/8 \). Evaluating (1) for the other fields gives

Theorem 4. Let \(k = \mathbb{Q}(\sqrt{-n}) \) be Euclidean, and let \(K/k \) be a quadratic extension with absolute discriminant \(\Delta \). Then every ideal class of \(K \) contains an integral ideal of norm \(\leq \mu_K \), where
\[
\mu_K = \frac{\sqrt{\Delta}}{4d_0(1 - M)} = \begin{cases}
\sqrt{\Delta}/8, & \text{if } n \in \{-1, -2, -3, -11\}; \\
\sqrt{\Delta}/12, & \text{if } n = -7.
\end{cases}
\]
These are exactly the bounds given by Lakein [4]; another proof is due to Mordell [7]. The result in the special case $k = \mathbb{Q}(\sqrt{-1})$ was already known to S. Kuroda and J. A. Nyman (cf. [4]). After the completion of this article I discovered that S. Lubelsky (in his posthumously published paper [6]) had already found the formula connecting the bounds given in Theorem 2 with the Euclidean minima of imaginary quadratic number fields; his results remained unnoticed, probably because he used the language of quadratic forms.

In [1], Robin Chapman has generalized Theorem 2 to quadratic extensions of imaginary quadratic fields with class number 1.

Acknowledgement. I would like to thank Sachar Paulus, Felicity George, and Chris Smyth for some helpful discussions on Euclidean-like algorithms in quadratic number fields from which this note originated, and Robin Chapman for considerably simplifying the proofs. I also thank the referee for his careful reading of the manuscript.

References

FRANZ LEMMERMEYER
UNIVERSITÄT DES SAARLANDES
FB 14 INFORMATIK
D–66041 SAARBRÜCKEN
GERMANY
E-MAIL: lemmermf@cs.uni-sb.de

(Received August 6, 1996)