Abstract. In this paper, we prove the following:
1. Let G be a Moufang loop of order $p^\alpha m$, $(p, m) = 1$, $(p - 1, p^\alpha m) = 1$ and p is a prime. Suppose G has an element of order p^α. Then $G = P \rtimes K$, a split extension of a normal subloop K of order m with a subloop P order p^α.

2. Let G be a Moufang loop of odd order $p^2 m$, $(p, m) = 1$, and p is the smallest prime dividing $|G|$. Then a similar result holds as in (1) with $\alpha = 2$.

I. Introduction

Let G be a group of order $p^\alpha m$, $(p, m) = 1$, $(p - 1, p^\alpha m) = 1$ and suppose G has an element x of order p^α. Then $G = \langle x \rangle \rtimes K$, a split extension of a normal subgroup K of order m with the subgroup $\langle x \rangle$ [4]. To prove an analogous result on a Moufang loop G, we need a normal subloop K so that we can use induction on G/K. In other words, G has to be nonsimple. By Liebeck [8], every simple nonassociative Moufang loop is isomorphic to one of the Paige’s loop $M^*(q)$. Considering the orders of elements in each of the conjugate classes of $M^*(q)$, as examined by Bannai and Song [2], we find that a Moufang loop G with the given properties stated above cannot be simple. Then G has a normal subloop K, and so induction will be possible.

Let G be a group of order, $p^2 m$, $(p, m) = 1$, and p is the smallest prime dividing $|G|$. Then $G = P \rtimes K$, a split extension of a normal subgroup K of order m with the subgroup P of order p^2 [11]. We prove

Mathematics Subject Classification: 20N05.
Key words and phrases: Moufang loop, normal, extension, simple loop.
also an analogous result on a Moufang loop G by using repeatedly several theorems of GLAUBERMAN [5].

There exist nonassociative Moufang loops of order pq^3 with $q = 1 \pmod{p}$ [10]. Moufang loops of odd order p^2q^3 can be similarly constructed. Hence our two splitting theorems are very useful in studying the structure of such finite Moufang loops.

II. Definitions

1. A binary system $\langle G, \cdot \rangle$, in which specification of any two of the elements x, y, z in the equation $x \cdot y = z$ uniquely determines the third element, is called a quasigroup. If it further contains an identity element, then it is called a loop. Clearly, a group is a loop. But there are loops which are not associative.

2. A loop $\langle G, \cdot \rangle$ is a Moufang loop if $xy \cdot zx = (x \cdot yz)x$ for all x, y, z in G. From now on, G is defined as a finite Moufang loop.

3. Define $zR(x, y) = (zx \cdot y)(xy)^{-1}$, $zL(x, y) = (yx)^{-1}(y \cdot xz)$ and $zT(x) = x^{-1} \cdot zx$. $I(G) = \langle R(x, y), L(x, y), T(x) \mid x, y \in G \rangle$ is called the inner mapping group of G.

4. Let x and y be elements of G. x and y are conjugate if there exists $\theta \in I(G)$ such that $x\theta = y$.

5. Let H be a subloop of G and π a set of primes.

(i) H is a normal subloop of G, $(H \triangleleft G)$, if $H\theta = H$ for all $\theta \in I(G)$ where $H\theta = \{h\theta \mid h \in H\}$.

(ii) H is a π-loop if the order of every element of H is a π-number. (A positive integer n is a π-number if every prime divisor of n lies in π).

(iii) H is a Hall π-subloop of G if $|H|$ is the largest π-number dividing $|L|$.

6. G_a, the associator subloop of G, is the subloop generated by all the associators (x, y, z) where $(x, y, z) = (x \cdot yz)^{-1} \cdot (xy \cdot z)$. Write $G_a = (G, G, G)$ also.
7. G_c, the commutator subloop of G, is the subloop generated by all the commutators $[x, y]$ where $[x, y] = (yx)^{-1} \cdot (xy)$.

8. $N = N(L)$, the nucleus of L, is the subloops generated by all n in L where $(n, x, y) = (x, n, y) = (x, y, n) = 1$ for all x, y in L.

9. $Z = Z(L)$, the centre of L, is the subloop generated by all z in N such that $[z, x] = 1$ for all x in L.

III. Known results with Moufang loops

Let G be a finite Moufang loop.

R_1. (a) $x \in G \Rightarrow |x| \mid |G|$. [1, p. 92, Thm. 1.2].

(b) G is disassociative. [1, p. 117, Moufang’s Theorem].

(c) $x \in G$ and $\theta \in I(G) \Rightarrow x^n \theta = (x\theta)^n$ for any integer n. [1, p. 120, (4.1) and p. 117, Lemma 3.2].

R_2. N and Z are normal subloops of G. [1, p. 114, Thm. 2.1 and p. 60, Lemma 1.1]. In fact N and Z are associative by their definitions.

R_3. Let H be a normal subloop of G such that $H \subset N$. Then

(a) $G/C_G(H) < \text{Aut } H$ where $C_G(H) = \{g \mid g \in G, gh = hg \text{ for all } h \in H\}$.

(b) $C_G(H) \cap H = Z(H)$, the centre of H. If $H = N$, then $G_a \subset C_G(N)$. [7, p. 33, Thm. 3].

R_4. G is a 2-loop if and only if $|G| = 2^m$ for some positive integer m. [6, p. 415, Thm.].

R_5. Suppose $|G|$ is odd and K is a normal subloop of G.

(a) If K is minimal normal in G, then K is an elementary Abelian group and $(K, K, G) = 1$. [5, p. 402, Thm. 7].

(b) If $(K, K, G) = 1$ and $(|K|, |G/K|) = 1$, then $K \subset N$. [5, p. 405, Thm. 10].

(c) G is solvable. [5, p. 413, Thm. 16].

(d) G contains a Hall π-subloop, π a set of primes. [5, p. 409, Thm. 12].

(e) If $H < G$ then $|H| \mid |G|$. [5, p. 359, Thm. 2].
\textbf{R}_6. If \(H \) is a subloop of \(G \), \(x \in G \) and \(d \) is the smallest positive integer such that \(x^d \in H \), then \(|\langle H, x \rangle| \geq |H|d| \text{ [3, p. 5, Lemma 0]}.\)

\textbf{R}_7. There exist simple nonassociative Moufang loops \(M^*(p^n) \) with \(|M^*(p^n)| = p^{3n}(p^{4n} - 1)/(d(p))\) where \(d(2) = 1 \) and \(d(p) = 2 \) if \(p \) is an odd prime. \text{ [9, p. 474, Thm. 4.1]}. \)

\textbf{R}_8. \(G \) is a nonassociative simple Moufang loop \(\iff \ G \) is isomorphic with \(M^*(p^n) \) for some prime \(p \). \text{ [8, p. 33, Theorem]}. \)

\textbf{R}_9. The conjugacy classes of \(M^*(p^n) \) contain elements whose orders are 1, \(p \), divisors of \(p^n - 1 \) or divisors of \(p^n + 1 \). \text{ [2, p. 224, Thm. 2.1.1 and p. 227, Thm. 2.1.2]}.

\textbf{IV. Moufang loops of order} \(p^\alpha m \)

Lemma 1. Let \(G \) be a simple nonassociative Moufang loop of order \(2^\alpha m, (2, m) = 1 \). Then \(G \) has no element of order \(2^\alpha \).

Proof. By \(R_7 \) and \(R_8 \), \(G \) is isomorphic to \(M^*(q) \) for some \(q \) where \(q = p^n \) and \(p \) is a prime. Let \(x \) be any 2-element of \(M^*(q) \).

\text{Case 1:} \(p \geq 3 \). Let \(q - 1 = 2^{\beta_1}m_1 \) and \(q + 1 = 2^{\beta_2}m_2 \), where \(m_1 \) and \(m_2 \) are odd. Suppose \(\beta = \max\{\beta_1, \beta_2\} \). By \(R_9 \), \(|x| \leq 2^\beta \).

\[
|M^*(q)| = \frac{q^3(q^2 - 1)}{2} = \frac{q^3(q^2 + 1)}{2} (q - 1)(q + 1) = \frac{q^3(q^2 + 1)}{2} 2^{(\beta_1 + \beta_2)}m_1m_2 = 2^\alpha m.
\]

Since \(q \) is odd, \(2 \not| (q^2 + 1) \). So \(\beta_1 + \beta_2 \leq \alpha \). Thus \(|x| \leq 2^\beta < 2^\beta + \beta \leq 2^\alpha \) as \(\beta_1 > 0 \) and \(\beta_2 > 0 \).

\text{Case 2: } p = 2. \text{ As } q - 1 \text{ and } q + 1 \text{ are odd, } 2 \not| (q - 1)(q + 1). \text{ So by } R_9, |x| = 2. \text{ Now } |M^*(2^n)| = 2^{3n}(2^{4n} - 1) = 2^\alpha m. \text{ So } 2^\alpha = 2^{3n} \geq 2^3 > 2 = |x|. \text{ Thus } G \text{ has no element of order } 2^\alpha.

Lemma 2. Let \(G \) be a Moufang loop and \(M \) a normal subloop of \(G \). Suppose \(H \) is a normal Hall \(\pi \)-subloop of \(M \). Then \(H \) is normal in \(G \) in each of the following two cases:

(a) \(G \) is of odd order;
(b) $|M| = 2^r m$ where m is odd, $|H| = m$ and there exists an element of order 2^r in M.

Proof. Suppose $H \not< G$. Then there exists $\theta \in I(G)$ such that $H\theta \neq H$. Since any inner mapping θ is a permutation of G, $H\theta - H \neq \emptyset$. Let $h\theta \in H\theta - H$. Since $H \triangleleft M \triangleleft G$, $H\theta \subset M\theta = M$. Since H and $\langle h\theta \rangle$ are both subloops of M with $H \triangleleft M$, clearly $H\langle h\theta \rangle$ is a subloop of M. Now by $R_1(c)$, $(h\theta)^{|h\theta|} = (h)^{|h|}\theta = 1$. So $|h\theta| | |h|$. By $R_1(a)$, $|h| | |H|$.

So $|h\theta| | |H|$. Also $|H\langle h\theta \rangle| = \frac{|H| |(h\theta)|}{|H\langle h\theta \rangle|}$.

(a) Suppose G is of odd order. Since $|h\theta| | |H|$, $H\langle h\theta \rangle$ is a π-loop in M strictly containing the Hall π-subloop H. So $|H\langle h\theta \rangle| | |M|$. This is a contradiction by $R_5(e)$.

So $H \triangleleft G$ if G is of odd order.

(b) Suppose $|M| = 2^r m$ where m is odd, $|H| = m$ and there exists an element x of order 2^r in M. Since $|h\theta| | |H|$, $|H\langle h\theta \rangle|$ is odd. Also $|H\langle h\theta \rangle| > m$ as $h\theta \notin H$. Now by $R_1(a)$, $x^d \notin H\langle h\theta \rangle$ for each $0 < d < 2^r$. But $x^{2^r} = 1 \in H\langle h\theta \rangle$. Thus $|H\langle h\theta \rangle, x| \geq |H\langle h\theta \rangle, 2^r| > R_6 > m2^r = |M|$.

This is a contradiction as $H\langle h\theta \rangle, x \subset M$. Hence $H \triangleleft G$ in this case also.

Lemma 3. Suppose G is a Moufang loop of order $p^a m$, $(p, m) = 1$; K is a normal subloop of G such that $|G/K| = p^b m_0$, $m_0 | m$. Suppose there exists an element x of order p^a in G. Then xK is an element of order p^b in G/K.

Proof. $(xK)^{p^a} = x^{p^a} K = 1K \Rightarrow |xK| | p^a \Rightarrow xK$ is a p-element in $G/K \Rightarrow |xK| | p^b$ by $R_1(a)$. So $|xK| = p^\gamma$, $\gamma \leq \beta$. Then $(xK)^{p^\gamma} = x^{p^\gamma} K = 1K$ and $x^{p^\gamma} \in K$. Since $|K| = p^{\alpha - \beta} m/m_0$ and x^{p^γ} is a p-element in K, $|x^{p^\gamma}| | p^{\alpha - \beta}$ by $R_1(a)$. Thus $(x^{p^\gamma})^{p^{\alpha - \beta}} = 1$ or $x^{p^{\alpha + \gamma - \beta}} = 1$. So $\alpha + \gamma - \beta \geq \alpha$. Then $\gamma \geq \beta$. Hence $\gamma = \beta$. So $|xK| = p^\beta$.

Lemma 4. Let G be a Moufang loop of order $2^a m$, $(2, m) = 1$. Suppose G has an element x of order 2^a. Then $G = \langle x \rangle \rtimes K$, i.e., G is a split extension of a cyclic group $\langle x \rangle$ of order 2^a with a normal subloop K of order m.

Proof. If G is a group, we are through by [4, p. 14, Problem 2.16]. So we assume that G is nonassociative. By Lemma 1, we know that G is
nonsimple. Let K be a maximal normal subloop of G. Let $|G/K| = 2^\beta m_0$, $0 \leq \beta \leq \alpha$, $m_0 \mid m$.

Case 1: $1 < m_0 < m : |G/K| = 2^\beta m_0$.

1(a) : $\beta = 0$. Then $|G/K| = m_0$ and $|K| = 2^\alpha (m/m_0)$. By Lemma 3, $|xK| = 1$. Hence $x \in K$. By induction, there exists a subloop K_0 of order m/m_0 normal in K. By Lemma 2, $K_0 \lhd G$. Now $|G/K_0| = 2^\alpha m_0$ and xK_0 is an element of order 2^α in G/K_0 by Lemma 3. By induction, there exists a subloop K_1/K_0 of order m_0 normal in G/K_0. Then $K_1 \lhd G$ and $|K_1| = |K_0|m_0 = m$. So $G = \langle x \rangle \rtimes K_1$.

1(b) : $\beta \geq 1$. By Lemma 3, xK is an element of order 2^β in G/K. By induction, there exists a subloop K_1/K of order m_0 normal in G/K. Thus $K_1 \lhd G$ and $|K_1| = |K|m_0 > |K|$, contradicting the maximality of K.

Case 2: $m_0 = 1 : |G/K| = 2^\beta$.

2(a) : $\beta = 0$. $|G/K| = 1 \Rightarrow G = K$, a contradiction.

2(b) : $0 < \beta < \alpha$. $|K| = 2^{\alpha - \beta} m$. Since $xK \in G/K$, $(xK)^{2^\beta} = 1K$ and $x^{2^\beta} K$. Clearly $|x^{2^\beta}| = 2^{\alpha - \beta}$. By induction, K has a normal subloop K_0 of order m. Thus $K_0 \lhd G$ by Lemma 2(b). So $G = \langle x \rangle \rtimes K_0$.

2(c) : $\beta = \alpha$. $|K| = m$ and $G = \langle x \rangle \rtimes K$.

Case 3: $m_0 = m : |G/K| = 2^\beta m$.

3(a) : $\beta = 0$. $|G/K| = m$. Suppose m is not a prime. Then G/K is solvable by $R_5(c)$. So it has proper normal subloop K_1/K. Then $K_1 \lhd G$ and $|K| < |K_1| < |G|$. This contradicts that K is a maximal normal subloop of L. Now $m = p$, an odd prime. Now $|G| = 2^\alpha p$. By $R_4(a)$, there exists $w \in G$ such that $|w| = p$ as otherwise, G would be a 2-loop, which is impossible by R_4. Now by R_6, $G = \langle x, w \rangle$ is a group by diassociativity, a contradiction.

3(b) : $0 < \beta < \alpha$. By Lemma 3, xK is an element of order 2^β in G/K. By induction, there exists a subloop K_1/K of order m normal in G/K. Then $K_1 \lhd G$ and $|K_1| = m|K| > |K|$, a contradiction.

3(c) : $\beta = \alpha$. Then $|K| = 1$, a contradiction since K is a maximal normal subloop of G.

Theorem 1. Let G be a finite Moufang loop of order p^a, $(p, m) = 1$, $(p - 1, p^a) = 1$. Suppose G has an element x of order p^a. Then $G = ⟨x⟩ \rtimes K$, i.e., G is a split extension of a cyclic group $⟨x⟩$ of order p^a and a normal subloop K of order m.

Proof. By Lemma 4, we can assume that p is an odd prime. Since $(p - 1, p^a) = 1$, G is of odd order. By $R_5(3)$, G is solvable. Let K be a minimal normal subloop of G. By $R_5(4)$, K is an elementary abelian q-group (where q is a prime).

Case 1: $q = p$. $K ≅ ⟨x⟩$. Otherwise, $K⟨x⟩$ is a p-subloop of G whose order is bigger than p^a, contradicting $R_5(5)$. As $⟨x⟩$ is cyclic, K is cyclic. So $K = C_p$ as it is an elementary abelian group.

$1(a) : K \not\subset ⟨x⟩$. Then $\alpha ≥ 2$, $|G/K| = p^{a-1}m$ and xK is an element of order p^{a-1} by Lemma 3. By induction, there exists a subloop K_1/K of order m normal in G/K. Then $K_1 \triangleleft G$ and $|K_1| = pm$. Now $x^{p^{a-1}}$ is an element of order p in K_1. By induction, there exists a subloop K_2 of order m normal in K_1. Now K_2 is a normal Hall subloop in K_1 and $K_1 \triangleleft G$ implies that $K_2 \triangleleft G$ by Lemma 2(a). Thus $G = ⟨x⟩ \rtimes K_2$.

$1(b) : K = ⟨x⟩ = C_p$. Now $(K, K, G) = 1$ by $R_5(1)$ and $|K| = |G/K| = 1$ implies $K \subset N$, the nucleus of G, by $R_5(5)$. By $R_5(2)$, $G/C_G(K) ≤ \text{Aut}K$. As the order of the group of automorphisms of C_p is $p - 1$, $|\text{Aut}K| ≤ p - 1$. As $(p - 1, |G|) = (p - 1, p^a) = 1$, $G = C_G(K)$. Thus $K \subset Z$, the centre of G. By $R_5(6)$, there exists a Hall subloop H of order m in G. Then $G = HZ$.

Now $G_a = (G, G, G) = (HZ, HZ, HZ) = (H, H, H) \subset H$; and $G_c = [G, G] = [HZ, HZ] = [H, H] \subset H$.

Let $h \in H$, $x, y \in G$.

Then $hT(x) = x^{-1}hx = hh^{-1}x^{-1}hx = h[h, x]$ and

$$hL(x, y) = hR(x^{-1}, y^{-1}), \quad \text{by } [1, \text{p.} \ 124, \ \text{Lemma} \ 5.4, \ (5.13)]$$

$$= h(h, y, x)^{-1}, \quad \text{by } [1, \text{p.} \ 124, \ \text{Lemma} \ 5.4, \ (5.16)].$$

Since $G_a \subset H$ and $G_c \subset H$, $h\theta \in H$ for all $\theta \in I(G)$. Thus $H \triangleleft G$ and $G = ⟨x⟩ \triangleleft H$.

Case 2: $q \neq p$. Let $|K| = q^\gamma$. Then $|G/K| = p^\alpha \frac{m}{q^\gamma}$ where $q^\gamma \mid m$.

$2(a): m > q^\gamma$. By Lemma 3, xK is an element of order p^α in G/K. By induction, there exists a normal subloop K_1/K of order m/q^γ in G/K. Therefore $K_1 \triangleleft G$ and $|K_1| = \frac{|K|m}{q^\gamma} = m$. Thus $G = \langle x \rangle \times K_1$.

$2(b): m = q^\gamma$. Then $G = \langle x \rangle \times K$ as required.

Corollary 1. Let G be a Moufang loop of order $p^\alpha m$, $(p, m) = 1$, $(p - 1, p^\alpha m) = 1$ and suppose G has an element of order p^α. Then G is solvable.

Proof. Case 1: $p = 2$. Then by Theorem 1, $G = C_{2^\alpha} \rtimes K$ with $|K| = m$ which is odd. So G/K is isomorphic to C_{2^α} which is solvable. By $R_5(c)$, K is solvable. Thus G is solvable.

Case 2: $p \neq 2$. Then $|G|$ is odd as $(p - 1, p^\alpha m) = 1$. Thus G is solvable by $R_5(c)$.

V. Moufang loops of odd order $p^2 m$

Theorem 2. Let G be a Moufang loop of odd order $p^2 m$, $(p, m) = 1$, p the smallest prime dividing $|G|$. Then there exist subloops M and P in G with $|P| = p^2$, $|M| = m$, $M \triangleleft G$ such that $G = P \rtimes M$.

Proof. If G is a group, we are through by [10, p. 141, 6.3.16]. By $R_5(c)$, G is solvable. Let K be a minimal normal subloop of G. By $R_5(a)$, K is elementary abelian. Let $|K| = q^\alpha$. Existence of P is guaranteed by $R_5(d)$.

Case 1: $q \neq p$. If $|K| = m$, then $K = M$ and we are through. If $|K| < m$, then $|G/K| = p^2 (m/q^\alpha)$. By induction, there exists a normal subloop M/K in G/K with $|M/K| = \frac{m}{q^\alpha}$. Then $M \triangleleft G$ and $|M| = \frac{m}{q^\alpha} |K| = m$.

Case 2: $q = p$. Then by $R_5(e)$, $\alpha = 1$ or 2.

$2(a): \alpha = 1 : |K| = p$. By $R_5(d)$, we can get an element xK of order p in G/K. $|G/K| = pm$. So by Theorem 1, there exists a normal subloop \hat{M}/K of order m in G/K. Then $\hat{M} \triangleleft G$ and $|\hat{M}| = pm$. Similarly by $R_5(d)$ and by Theorem 1, there exists a subloop M of order m normal in \hat{M}. By Lemma 2(a), $M \triangleleft G$.

2(b): \(\alpha = 2 : |K| = p^2 \). By \(R_5(a) \) and \(R_5(b) \), \(K \subset N \). Since \(K \) is an elementary abelian group, \(K = C_p \times C_p \).

Now by \(R_3(a) \), \(|G/C_G(K)| \mid \mid \text{Aut } K \mid = (p + 1)p(p - 1)^2 \) using [10, p. 141, 6.3.15]. Since \(K \subset C_G(K) \), and \(p \) is the smallest prime dividing \(|G| \), \(|G/C_G(K)| \mid \mid (p + 1) \). As \(p \) is odd and 2 does not divide the order of \(G, G = C_G(K) \). Thus \(K \subset Z \).

By \(R_5(d) \), there exists a subloop \(M \) of order \(m \) in \(G \). As \(G = KM = ZM \), it can be shown in a similar way as before (see the proof of Theorem 1, Case 1(b)) that \(M \triangleleft G \).

Corollary 2. Let \(G \) be a Moufang loop of odd order \(p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_m^{\alpha_m} \) where \(p_1 < p_2 < \cdots < p_m \) and \(1 \leq \alpha_i \leq 2 \). Then there exists a subloop of order \(p_m^{\alpha_m} \) normal in \(G \).

Proof. For \(\alpha_1 = 1 \), \(R_5(d) \) guarantees the existence of an element of order \(p_1 \) in \(G \). So by Theorem 1 or Theorem 2, there exists \(M_1 \), a normal subloop in \(G \) with \(|M_1| = p_2^{\alpha_2} \cdots p_m^{\alpha_m} \). Again there exists a subloop \(M_2 \) of order \(p_2^{\alpha_2} \cdots p_m^{\alpha_m} \) normal in \(M_1 \). By Lemma 2(a), \(M_2 \triangleleft G \). By this process, we get a subloop \(M_{m-1} \) of order \(p_m^{\alpha_m} \) normal in \(G \).

References

FOOK LEONG
SCHOOL OF MATHEMATICAL SCIENCES
UNIVERSITI SAINS MALAYSIA
11800 USM, PULAU PINANG
MALAYSIA

ANDREW RAJAH
SCHOOL OF MATHEMATICAL SCIENCES
UNIVERSITI SAINS MALAYSIA
11800 USM, PULAU PINANG
MALAYSIA

(Received August 2, 1995; revised January 22, 1997)