Framed \((2M + 3)\)-dimensional manifolds endowed with a vertical cyclic connection structure

By FILIP DEFEVER (Leuven) RADU ROSCA (Paris)

Abstract. Geometrical and structural properties are proved for a class of framed manifolds which are equipped with a vertical cyclic connection structure.

1. Introduction

Framed manifolds and \(f\)-structures have been initiated by K. YANO and M. KON and have subsequently been studied intensively, see for example [1], [19], [22], [18]. We recall that if \(M(\phi, \Omega, \xi_r, \eta^r, g)\) is a \((2m + q)\)-dimensional manifold of this kind, then the \(\xi_r\), for \((r = 2m+1, \ldots , 2m+q)\), are the Reeb vector fields (in the large sense) of the \(f\)-structure, and \(\eta^r = \xi_r^\flat\) their corresponding covectors. One has the following structure equations:

\[
\phi^2 = -\text{Id} + \sum \eta^r \otimes \xi_r, \quad \phi \xi_r = 0, \quad \eta^r \circ \phi = 0, \quad \eta^s(\xi_r) = \delta^s_r,
\]

where \(\phi\) is a \((1,1)\) tensor field. With respect to \(g\), one has the following relation

\[
g(\phi Z, Z') + g(Z, \phi Z') = 0, \quad Z, Z' \in \mathfrak{X}(M),
\]

(i.e. \(\phi\) is skew-symmetric with respect to \(g\)). The 2-form \(\Omega\) of rank \(2m\) has

Mathematics Subject Classification: 53B20.
Key words and phrases: framed manifolds, \(f\)-structures.
The first author is a Postdoctoral Researcher of the Research Council of the K.U. Leuven.
the following properties

\[(2) \quad \Omega(Z, Z') = g(\phi Z, Z'), \quad \Omega^m \wedge \eta^{2m+1} \wedge \cdots \wedge \eta^{2m+q} \neq 0,\]

and is called the fundamental form of the framed manifold.

In the present paper we assume that \(r \in \{2m + 1, 2m + 2, 2m + 3\}\) and for the indices \(a\) and \(b\) we have the following range \(a, b \in \{1, \ldots, 2m\}\).

Under these conditions and with reference to [18], we call \(\theta^a, \theta^r,\) and \(\theta^s\) the horizontal, the transversal, and the vertical connection forms respectively. We will assume here that the \(\theta^a\) vanish and that the \(\theta^r\) are defined by a cyclic permutation of the Reeb covectors \(\eta^r,\) which means that

\[(3) \quad \theta^r_s = f_s \eta^r - f_r \eta^s, \quad \forall r, s, t\]

where the \(f_r\) are scalar fields, called the principal scalars on \(M\). In the sequel we will call

\[(4) \quad \eta^r = f_r \eta^r, \quad \text{and} \quad \eta^s = \sum f_r \xi_r,\]

the principal pfaffian and the principal vector field of \(M\) respectively. Further, let \(D^\top_p = \{e_a\}\) and \(D^\perp_p = \{\xi_r\}\) be the horizontal, respectively vertical, distribution on \(M\).

In a first step, the following properties are proved.

(i) The manifold \(M\) under consideration may be viewed as the local Riemannian product \(M = M^\top \times M^\perp,\) where \(M^\top\) is a \(2m\)-dimensional submanifold tangent to \(D^\top_p\) and \(M^\perp\) is a \(3\)-dimensional submanifold tangent to \(D^\perp_p,\) and the immersion \(x : M^\top \to M\) is totally geodesic;

(ii) the Ricci tensor field \(\mathcal{R}\) of \(M^\perp\) is expressed by

\[\mathcal{R}(\xi, Z) = -4\|\xi\|^2 g(\xi, Z), \quad Z \in \Xi(M);\]

(iii) \(\xi\) is harmonic and if \(V\) is any vertical vector which has the property to be a skew-symmetric Killing vector field having \(\xi\) as generative, then \(V\) is an exterior concurrent vector field and by Bochner’s theorem \(g(V, \xi)\) is closed;

(iv) the principal scalars \(f_r\) define an isoparametric system [20];

(v) the gradients \(df_r^\sharp = \text{grad} f_r,\) define a commutative group.
In a second step, and making use of E. Cartan’s structure equations involving the curvature 2-forms, one finds that the vertical curvature 2-forms Θ^s_r satisfy

$$\Theta^s_r = \left(\left(\|\xi\|^2 - \frac{f_t^2}{2} \right) \eta^r + f_r f_t \eta^t \right) \wedge \eta^s - \left(\left(\|\xi\|^2 - \frac{f_t^2}{2} \right) \eta^s + f_s f_t \eta^t \right) \wedge \eta^r,$$

\forall \; r, s, t,

and consequently, following [19] the above equations prove that M^\perp is a conformally flat submanifold of M.

Finally, the structure 2-form Ω of M is presymplectic. Then, if X is any horizontal vector field and $^bX = -i_X \Omega$ means the symplectic isomorphism, and in addition the 1-form bX is ϕ-closed, it follows that Ω is invariant by X. In consequence of this, X is a 2-covariant recurrent vector field, which in the case under consideration is expressed by

$$\nabla^2 X = \frac{d\lambda}{\lambda} \otimes \nabla X, \quad \lambda \in \Lambda^0 M.$$

2. Preliminaries

Let (M, g) be a Riemannian C^∞-manifold and let ∇ be the covariant differential operator with respect to the metric tensor g. We assume that M is oriented and ∇ is the Levi–Civita connection of g. Let ΓTM be the set of sections of the tangent bundle, and

$$^b: TM \overset{\bullet}{\longrightarrow} T^* M \quad \text{and} \quad \sharp: TM \overset{\bullet}{\longleftarrow} T^* M$$

the isomorphisms defined by g (i.e. b is the index lowering operator, and \sharp is the index raising operator).

Following [14], we denote by

$$A^q(M, TM) = \Gamma \text{Hom}(\Lambda^q TM, TM),$$

the set of vector valued q-forms ($q < \dim M$), and we write for the covariant derivative operator with respect to ∇

$$d\nabla : A^q(M, TM) \to A^{q+1}(M, TM).$$
It should be noticed that in general $d\nabla^2 = d\nabla \circ d\nabla \neq 0$, unlike $d^2 = d \circ d = 0$. If $p \in M$ then the vector valued 1-form $dp \in A^1(M, TM)$ is the canonical vector valued 1-form of M, and is also called the soldering form of M [4]. Since ∇ is symmetric one has that $d\nabla(dp) = 0$.

A vector field Z which satisfies

$$d\nabla(\nabla Z) = \nabla^2 Z = \pi \wedge dp \in A^2(M, TM), \quad \pi \in \Lambda^1 M,$$

is defined to be an exterior concurrent vector field [16] (see also [13]). The 1-form π in (6) is called the concurrence form and is defined by

$$\pi = \lambda Z^2, \quad \lambda \in \Lambda^0 M.$$

In this case, if \mathcal{R} is the Ricci tensor of ∇, one has

$$\mathcal{R}(Z, V) = \varepsilon(n - 1)\lambda g(Z, V)$$

($\varepsilon = \pm 1$, $V \in \Xi(M)$, $n = \dim M$).

A function $\mathbb{R}^n \to \mathbb{R}$ is isoparametric [20] if $\|\nabla f\|^2$ and $\operatorname{div}(\nabla f)$ are functions of f ($\nabla f = \operatorname{grad} f$).

Let $\mathcal{O} = \{e_A \mid A = 1, \ldots, n\}$ be a local field of orthonormal frames over M and let $\mathcal{O}^* = \operatorname{covect} \{\omega^A\}$ be its associated coframe. Then E. Cartan’s structure equations can be written in indexless manner as

$$\nabla e = \theta \otimes e,$$

$$d\omega = -\theta \wedge \omega,$$

$$d\theta = -\theta \wedge \theta + \Theta.$$

In the above equations θ (resp. Θ) are the local connection forms in the tangent bundle TM (resp. the curvature 2-forms on M).

3. The main theorem

Let $M(\phi, \Omega, \xi^r, \eta^r, g)$ be a $(2m + 3)$-dimensional C^∞-manifold with soldering form dp and carrying an f-structure ϕ [22], that is a tensor field
of type (1.1) of rank $2m$ which satisfies

$$
\phi^3 + \phi = 0,
$$

$$
\phi^2 = -\text{Id} + \sum \eta^r \otimes \xi^r, \quad \phi \xi^r = 0, \quad \eta^r \circ \phi = 0,
$$

$$
g(Z, Z') = g(\phi Z, \phi Z') + \sum \eta^r(Z) \eta^r(Z'),
$$

where Id is the identity morphism of M.

If in addition the fundamental 2-form Ω of M satisfies

$$
\Omega(Z, Z') = g(\phi Z, Z'), \quad \Omega^m \wedge \eta^{2m+1} \wedge \eta^{2m+2} \wedge \eta^{2m+3} \neq 0,
$$

then M is known [22] to be a framed f-manifold.

With respect to the cobasis $O^\ast = \text{covect} \{\omega^a, \eta^r\}$ of $O = \text{vect} \{e_a, \xi^r\}$ $(1 \leq a \leq 2m; \ 2m + 1 \leq r \leq 2m + 3)$, the 2-form Ω is expressed by the standard form

$$
\Omega = \sum_{i=1}^m \omega^i \wedge \omega^i, \quad i^* = i + m.
$$

Making use of (9) and (13), one finds the known Kaehlerian relations

$$
\theta^i_j = \theta^i_j, \quad \theta^i_j = \theta^i_j.
$$

We recall [18] that one may split the tangent space $T_p(M)$ of M at every point $p \in M$ as

$$
T_p(M) = D_p^\top \oplus D_p^\perp,
$$

where $D_p^\top = \{e_a \mid a \in \{1, \ldots, 2m\}\}$ and $D_p^\perp = \{\xi^r\}$ are two complementary orthogonal distributions, called the horizontal and the vertical distribution respectively. As a consequence of this decomposition, one may write the soldering form as

$$
dp = dp^\top \oplus dp^\perp,
$$

where $dp^\top = dp \mid_{D^\top}$ and $dp^\perp = dp \mid_{D^\perp}$. By reference to [18] (see also [12]), the connection forms θ^a_b, θ^r_s, and θ^c_a are called the horizontal, the vertical, and the transversal connection forms respectively. In the present
paper we assume that the θ^a vanish and that the vertical connection forms are defined by a cyclic permutation of the Reeb covectors η^r, that is:

\begin{equation}
\theta^r_s = f_s \eta^r - f_r \eta^s, \quad \forall \hat{r}, s, t \quad \text{(cyclic)}.
\end{equation}

In the above relations, the f_r are scalar fields, called the principal scalars on M, and setting

\begin{equation}
\eta = f_r \eta^r, \quad \eta^\sharp = \xi = \sum f_r \xi_r,
\end{equation}

η and ξ are called the principal pfaffian and the principal vector field respectively. Taking into account that

\begin{equation}
\theta^a_r = 0,
\end{equation}

one derives by (10) and (20) that

\begin{equation}
d\eta^r = \eta \wedge \eta^r.
\end{equation}

This shows that the Reeb covectors are η^r exterior recurrent forms [3]. In addition, exterior differentiation of (23) and taking into account (21), yields

\begin{equation}
df_r = f_r \eta,
\end{equation}

which expresses that η is an exact form. Since one has that

\begin{equation}
(d\eta^r) \neq 0, \quad \eta^r \wedge d\eta^r = 0,
\end{equation}

it follows according to a known definition [6] that in the case under discussion the Reeb covectors are of class 2. Let now

\begin{equation}
\varphi^\perp = \eta^{2m+1} \wedge \eta^{2m+2} \wedge \eta^{2m+3}
\end{equation}

and

\begin{equation}
\varphi^\top = \omega^1 \wedge \cdots \wedge \omega^{2m}
\end{equation}

be the simple unit forms which correspond to the distributions D_p^\perp and D_p^\top respectively. Taking the exterior derivative of (25) and (26), and in view of (20) and (22), one derives that

\begin{equation}
d\varphi^\perp = 0
\end{equation}

and

\begin{equation}
d\varphi^\top = 0.
\end{equation}
Hence, in terms of well known terminology [9], the above equations show that \(\varphi^\perp \) and \(\varphi^\top \) are integral invariants of \(D_p^\perp \) and \(D_p^\top \) respectively. Therefore, by the theorem of Frobenius, we conclude that the manifold \(M \) under consideration may be viewed as the local Riemannian product

\[
(29) \quad M = M^\top \times M^\perp,
\]
where \(M^\top \) is a \(2m \)-dimensional manifold tangent to \(D^\top \) and \(M^\perp \) is a 3-dimensional manifold tangent to \(D^\perp (= \{ \xi_r \}) \).

Remark 3.1. As the tangent space \(T_p(M) \), the soldering form \(dp \) may be split as

\[
dp = dp^\top + dp^\perp,
\]
where \(dp^\top \) and \(dp^\perp \) are the horizontal and the vertical components of \(dp \) respectively. In the case under discussion, operating on \(dp^\top \) and \(dp^\perp \) by the exterior covariant derivative operator \(d^\nabla \), one finds

\[
(30) \quad d^\nabla (dp^\perp) = 0, \quad d^\nabla (dp^\top) = 0,
\]
which, since \(\nabla \) is the Levi–Civita connection, leads to

\[
d^\nabla (dp) = 0.
\]

Using (20), (21), and (22), one gets

\[
(31) \quad \nabla \xi_r = f_r dp^\perp - \eta^r \otimes \xi,
\]
and one derives

\[
(32) \quad [\xi_r, \xi_s] = f_s \xi_r - f_r \xi_s.
\]
In view of (24), the covariant differential of \([\xi_r, \xi_s] \) can be expressed as

\[
(33) \quad \nabla [\xi_r, \xi_s] = \eta \otimes [\xi_r, \xi_s] - [\xi_r, \xi_s]^\flat \otimes \xi,
\]
with which one can check Jacobi’s identity

\[
\sum_{r,s,t} [\xi_r, [\xi_s, \xi_t]] = 0, \quad \forall \xi_r, \xi_s, \xi_t.
\]
Next, operating on (21) with ∇, and using (20) and (21), one derives that

$$\nabla\xi = \|\xi\|^2 dp^\perp;$$

consequently, following a well known definition [2] one may consider ξ as a concurrent vector field on M^\perp. This implies [15] (see also [13]) that ξ is an exterior concurrent vector field on M^\perp. Since $\|\xi\|^2 = \sum f^2_r$, one gets at once by (24) that

$$d\|\xi\|^2 = 2\|\xi\|^2 \eta.$$

Therefore, since $d\nabla (dp^\perp) = 0$, operating on (34) by $d\nabla$ yields

$$d\nabla (\nabla\xi) = \nabla^2\xi = 2\|\xi\|^2 \eta \wedge dp^\perp.$$

Hence, by reference to [13], the Ricci tensor field \mathcal{R} of M^\perp is expressed by

$$\mathcal{R}(\xi, Z) = -4\|\xi\|^2 g(\xi, Z), \quad Z \in \Xi(M).$$

Next, by (24) one may write

$$\left((df_r)^2 = f_r \xi_r, \quad (df_r)^2 = \text{grad} f_r, \right.$$

and after further elaboration, one derives that

$$\left[(df_r)^2, (df_s)^2 \right] = 0, \quad \forall \, r, s, t.$$

Accordingly we may say that the vector fields $(df_r)^2$, $(df_s)^2$, and $(df_t)^2$ define a commutative group.

Next, by (24) one has that

$$\|\text{grad} f_r\|^2 = \|\xi\|^2 f^2_r,$$

and since

$$\text{div} Z = \text{tr} \nabla Z, \quad Z \in \Xi(M),$$

one derives that

$$\text{div} \text{grad} f_r = f^3_r + \|\xi\|^2 f^2_r, \quad \|\xi\|^2 = \sum f^2_r.$$

Hence, noticing that $[\text{grad} f_r, \text{grad} f_t] = 0$ and on behalf of [20], we conclude from the above relations that the scalars f_r define an isoparametric system.
In another perspective, we recall that the star operator $*$ on an oriented n-dimensional Riemannian manifold (M, g) is an isometric bundle isomorphism between $\Lambda T^* M$ and itself, and maps $\Lambda^q T^* M$ isomorphically to $\Lambda^{n-q} T^* M$ (see also [14]).

Coming back to the case under consideration, one has

\begin{equation}
\Lambda^q T^* M \rightarrow \Lambda^{2m+3-q} TM.
\end{equation}

With the usual notation, we denote the codifferential of a p-form by $\delta = (-1)^p \ast^{-1} d\ast$, where $\ast^{-1} = (-1)^{n(n-p)}$ (p is the degree of the form, n is the dimension of the manifold, thus $\delta \omega$ is of degree $p - 1$; see also [14]). Then, in the case under consideration, one deduces that

\begin{equation}
d\delta \eta = 0.
\end{equation}

Since η is a closed pfaffian, there follows at once that

\begin{equation}
\Delta \eta = 0.
\end{equation}

This shows that η is a harmonic pfaffian (and consequently $\eta^\#$ is a harmonic vector field). Finally, consider the immersion $x : M^\top \rightarrow M$. As it is well known, the second quadratic forms l_r associated with x are defined by

\begin{equation}
l_r = -\langle dp^\top, \nabla \xi_r \rangle.
\end{equation}

Then, by reference to (31), it can be seen that the l_r vanish, and consequently the immersion $x : M^\top \rightarrow M$ is totally geodesic.

Summarizing, we can formulate the following

Theorem 3.1. Let $M(\phi, \Omega, \xi_r, \eta^r, f_r, g)$ be a $(2m + 3)$-dimensional manifold endowed with a vertical cyclic connection structure and with vanishing transversal connection forms. Let $\eta, \xi (= \eta^\#)$, and f, be the principal pfaffian, the principal vector field, and the principal scalars on M; and let D_p^\top and $D_p^\perp = \{\xi_r\}$ be the horizontal and the vertical distributions respectively on M.

Then any such manifold may be viewed as the local Riemannian product $M = M^\top \times M^\perp$, where M^\top is a $2m$-dimensional presymplectic submanifold tangent to D_p^\top and M^\perp is a 3-dimensional submanifold tangent to D_p^\perp.

The following properties are proved.
(i) The immersion $x : M^\perp \to M$ is totally geodesic;
(ii) the principal vector field ξ is an exterior concurrent vector field on M^\perp, i.e.
$$\nabla^2 \xi = 2\|\xi\|^2 \eta \wedge dp^\perp,$$
and this implies
$$R(\xi, Z) = -4\|\xi\|^2 g(\xi, Z), \quad Z \in \Xi(M),$$
where R denotes the Ricci tensor field of M^\perp;
(iii) the principal pfaffian η is harmonic;
(iv) the vector fields df_r define a commutative group, and the scalars f_r define an isoparametric system.

4. Corollaries

Making use of E. Cartan’s structure equations, involving the curvature 2-forms (11), one derives by (20), (23), and (24) that the vertical curvature forms Θ^*_r satisfy

$$\Theta^*_r = \left(\|\xi\|^2 - \frac{f_t^2}{2}\right) \eta^r + f_r f_t \eta^l \wedge \eta^s - \left(\|\xi\|^2 - \frac{f_t^2}{2}\right) \eta^s + f_s f_t \eta^l \wedge \eta^r, \quad \forall r, s, l.$$

Then, by reference to [19], the above expressions for Θ^*_r affirm that the vertical submanifold M^\perp of M is a conformally flat submanifold of M.

In another perspective, let

$$V = V^\tau \xi_r, \quad r \in \{2m + 1, 2m + 2, 2m + 3\},$$

be any vertical vector field on M^\perp, and assume that V is a skew-symmetric Killing vector field, having ξ as generative [16] (see also [12]), thus

$$\nabla V = V \wedge \xi,$$

where \wedge denotes the wedge product of vector fields

$$V \wedge \xi = \eta \otimes V - V^\flat \otimes \xi.$$
Since by (31) one gets

\[\nabla V = dV^r \otimes \xi_r + g(V, \xi) dp^\perp - V^b \otimes \xi, \]

then comparison of (46) and (47) gives

\[dV^b = \eta \wedge V^b, \]

which by (48) is in agreement by Rosca’s lemma [16], [17] (see also [12]). Moreover, since \(V \) is a Killing vector field and the vector field \(\xi (= \eta^b) \), is harmonic, one finds by (21) that

\[dg(V, \xi) = 0, \]

and (49) is in agreement with Bochner’s theorem [21], and thus yields a confirmation for the correctness of our computations. In addition, by (34) and (46), one calculates that

\[[V, \xi] = g(V, \xi) \xi, \]

and the above equation means that \(V \) defines an infinitesimal conformal transformation of \(\xi \). Operating now on (46) by the operator \(d\nabla \) and in view of (34), one gets

\[d\nabla (\nabla V) = \nabla^2 V = ||\xi||^2 V^b \wedge dp^\perp, \]

which shows that \(V \) is an exterior concurrent vector field on \(M^\perp \) with \(||\xi||^2 \) as concurrent scalar, and by (6) one may write

\[\mathcal{R}(V, Z) = -2||\xi||^2 g(V, Z). \]

On the other hand, by (17) and (22), one finds that

\[d\Omega = 0. \]

Since \(\Omega \) has constant rank, this means that \(\Omega \) is a presymplectic form on \(M \). We notice that in this case \(\text{Ker}(\Omega) \) coincides with the vertical distribution \(D_p^\perp = \{ \xi_r \} \) of \(M \), which is also called the characteristic distribution of \(\Omega \). Denote now with the usual notation

\[\Omega^b : \quad TM \rightarrow T^*M : \quad Z \rightarrow -i_Z \Omega = ^b Z, \]
the symplectic isomorphism defined by Ω [8]. Since Ω is closed, any vector field X with the property that $\flat X$ is closed, defines an infinitesimal automorphism of Ω, i.e.

$$\mathcal{L}_X \Omega = 0.$$

Assume that X is a horizontal vector field on M, i.e.

$$X = X^a e_a, \quad a \in \{1, \ldots, 2m\}.$$

Then, by (52) one has

$$\flat X = \sum (X^{i^*} \omega^i - X^i \omega^{i^*}), \quad i \in \{1, \ldots, m\}, \quad i^* = i + m,$$

and by the structure equations (10) one gets by exterior differentiation of $\flat X$

$$d \flat X = -(dX^{i^*} + X^a \theta^i_a) \wedge \omega^i - (dX^i + X^a \theta^i_a) \wedge \omega^{i^*}.$$

Hence, in order for $\flat X$ to be a ϕ-closed form [16], one must write

$$\begin{cases} dX^i + X^a \theta^i_a = -\lambda \omega^{i^*}, \\ dX^{i^*} + X^a \theta^{i^*}_a = \lambda \omega^i, \end{cases}$$

where λ is a scalar. Taking now the covariant differential of the vector field X, one deduces by (56) and the structure equations (9) that

$$\nabla X = \lambda \phi dp.$$

This shows that X is a ϕ-concurrent vector field. Further, operating on the vector valued 1-form ϕdp by the operator $d\nabla$, one calculates that

$$d\nabla (\phi dp) = 0,$$

and therefore it follows from (57) that

$$\nabla^2 X = \frac{d\lambda}{\lambda} \otimes \nabla X.$$

Hence, the above equation proves that the vector field X is, according to well known terminology [10], a 2-covariant recurrent vector field with closed recurrence form.

Summarizing, we proved the following
Theorem 4.1. The vertical submanifold M^\perp of the manifold M under consideration is conformally flat, and the vertical skew-symmetric Killing vector field V is an exterior concurrent vector field which moreover also defines an infinitesimal conformal transformation of the principal vector field ξ. The structure 2-form Ω of M is presymplectic, and if X is any horizontal vector field for which in addition $\nabla^b X(= -i_X \Omega)$ is ϕ-closed, then Ω is invariant by X, i.e. $\mathcal{L}_X \Omega = 0$; moreover, X also has the following 2 properties:

a) X is a ϕ-concurrent vector field, i.e.

$$\nabla X = \lambda \phi dp;$$

b) X is a 2-covariant recurrent vector field with closed recurrence form, i.e.

$$\nabla^2 X = \frac{d\lambda}{\lambda} \otimes \nabla X.$$

References

(Received May 11, 2000; file obtained November 6, 2000)