Note on metric spaces and continuous functions

By JACEK TABOR (Kraków)

Abstract. W. RING, P. SCHÖPF and J. SCHWAIGER showed in [RSS] that if E is a finite dimensional normed space then a function $f : E \to \mathbb{R}$ is continuous iff $f \circ \gamma$ is continuous for every regular curve $\gamma : [0, 1] \to E$.

We investigate a similar problem for metric spaces and the class of Lipschitz curves.

1. Introduction

W. RING, P. SCHÖPF and J. SCHWAIGER constructed in [RSS] an example of a not continuous function $f : \mathbb{R}^2 \to \mathbb{R}$ such that $f \circ \gamma$ is continuous for every analytic curve $\gamma : (-1, 1) \to \mathbb{R}^2$. They also showed that if instead of analytic we take regular curves, such a function does not exist. In view of the above results the following general problem appears:

Problem 1. Let X, T be metric spaces, let Γ be a family of functions from T into X. We assume that $f : X \to \mathbb{R}$ is such that $f \circ \gamma$ is continuous for every $\gamma \in \Gamma$. Does this imply that f is continuous?

In this paper we investigate the above problem in few cases.

Let us first consider as an illustration the case when X is an arbitrary metric space, T denotes the set $\{0\} \cup \bigcup_{n \in \mathbb{N}} \{\frac{1}{n}\}$, and Γ denotes the space of all continuous functions from T into X.

Let $f : X \to \mathbb{R}$ be arbitrary. We assume that $f \circ \gamma$ is continuous for every $\gamma \in \Gamma$. We show that then f is continuous. For an indirect proof, let us assume that this is not the case. Then there exists an $x_0 \in X$ and a

Mathematics Subject Classification: 46B20, 33Exx.

Key words and phrases: continuity, Lipschitz functions.
sequence \(\{x_n\} \) convergent to \(x_0 \) such that the sequence \(\{f(x_n)\} \) does not converge to \(f(x_0) \). We define \(\gamma \in \Gamma \) by

\[
\gamma(0) = x_0, \quad \gamma \left(\frac{1}{n} \right) = x_n.
\]

One can now easily notice that \(f \circ \gamma \) is not continuous, a contradiction.

Let us now consider a situation when \(T = [0, 1] \) and \(\Gamma \) is the space of all continuous functions from \(T \) into \(X \). Under no additional assumption on \(X \) the answer to Problem 1 is negative. It is sufficient to put \(X = \{0\} \cup \bigcup_{n \in \mathbb{N}} \{\frac{1}{n}\} \). Then every \(\gamma \in \Gamma \) is constant, which means that \(f \circ \gamma \) is continuous for every \(f : X \to \mathbb{R} \). However, there exist non-continuous functions on \(X \).

As shows the following result, under reasonable assumption on \(X \) the answer to Problem 1 is positive.

Theorem 1. Let \(X \) be a locally arcwise connected metric space, and let \(T = [0, 1] \). Let \(f : X \to \mathbb{R} \). If \(f \circ \gamma \) is continuous for every continuous function \(\gamma : T \to X \) then \(f \) is continuous.

Proof. For an indirect proof let us assume that there exists an \(x_0 \in X \) such that \(f \) is not continuous at \(x_0 \).

Since \(X \) is locally arcwise connected for every \(n \in \mathbb{N} \) there exists \(r_n < \frac{1}{n} \) such that each two points from \(B(x_0, r_n) \) can be connected by an arc contained in \(B(x_0, \frac{1}{n}) \). Without loss of generality we may assume that \(\{r_n\} \) is a decreasing sequence.

Since \(f \) is not continuous at \(x_0 \) there exists a sequence \(\{x_n\} \) convergent to \(x_0 \) such that \(x_n \in B(x_0, r_n) \) and

\[
\liminf_{n \to \infty} |f(x_n) - f(x_0)| > 0.
\]

Then for every \(n \in \mathbb{N} \) there exists a continuous curve \(\gamma_n : [0, 1] \to B(x_0, \frac{1}{n}) \) such that \(\gamma_n(0) = x_{n+1}, \gamma_n(1) = x_n \). We define a continuous function \(\gamma : [0, 1] \to X \) by

\[
\gamma(t) := \begin{cases}
\gamma_n(2^n t - 1) & \text{for } t \in \left[\frac{1}{2^n}, \frac{1}{2^{n-1}} \right], \ n \in \mathbb{N}, \\
x_0 & \text{for } t = 0.
\end{cases}
\]

We obtain a contradiction since \(f \circ \gamma \) is not continuous at \(0 \). \(\square \)
Now let us consider as Γ the set of all Lipschitz mappings from $T = [0, 1]$ into X. Then the assumption that X is locally arcwise connected does not guarantee a positive solution to Problem 1. As an example one can take as X the graph of an arbitrary continuous nowhere differentiable function $f : [0, 1] \to \mathbb{R}$. Then X is locally connected. As there are no non-constant Lipschitz functions $\gamma : [0, 1] \to X$, $g \circ \gamma$ is continuous for every function $g : X \to \mathbb{R}$. This suggests that the assumption that X is a locally arcwise connected is too weak, since there may not exist nontrivial Lipschitz functions from $[0, 1]$ into X. The following definition is an analogue of the definition of locally arcwise connected spaces for Lipschitz curves.

Definition 1. Let X be a metric space. We say that X is **locally Lipschitz connected** if for every point $x \in X$ and $R > 0$ there exists an $r > 0$ such that each points from $B(x, r)$ can be connected by a Lipschitz arc in $B(x, R)$.

It occurs that even this property is too weak to guarantee the positive solution to Problem 1. We have the following result.

Theorem 2. There exists a compact locally Lipschitz connected metric space $X \subset \mathbb{R}^2$ and a not continuous function $f : X \to \mathbb{R}$ such that $f \circ \gamma$ is continuous for every Lipschitz function $\gamma : [0, 1] \to X$.

Proof. We put $r(x) := |x - \text{round}(x)|$, where $\text{round}(x)$ denotes the nearest integer to x. For $n \in \mathbb{N}$ we define the function $g_n : [0, \frac{1}{2^n}] \to \mathbb{R}^2$ by

$$g_n(x) := \left(\frac{1}{2^n} + \frac{1}{2^n} \sqrt{1 - \frac{1}{4^n} r(4^n x)}, x\right)$$

and put

$$X_n := g_n \left(\left[0, \frac{1}{2^n}\right]\right), \quad Y := \{(x, 0) : x \in [0, 1]\}.$$

One can easily check that the g_n is chosen so that the length of the curve g_n is exactly 1. We put $X = \bigcup_{n \geq 0} X_n \cup Y$ (see picture below).

Clearly X is locally Lipschitz connected.

Let $f_n : X_n \to \mathbb{R}$ be defined by

$$f_n(g_n(x)) = 2^n x \quad \text{for} \ x \in \left[0, \frac{1}{2^n}\right].$$
We also define $f_0 : Y \to \mathbb{R}$ by $f_0 \equiv 0$. Let $f = \bigcup_{n \geq 0} f_n$. Then $f : X \to \mathbb{R}$ is clearly not continuous at $(0, 0)$.

Let $\gamma : [0, 1] \to X$ be a Lipschitz function. We show that $f \circ \gamma$ is continuous. The function $f \circ \gamma$ is obviously continuous in the neighborhood of every $t \in [0, 1]$ such that $\gamma(t) \neq (0, 0)$. We check what happens in the neighborhood of $(0, 0)$.

Let

$$k_n := \sup \left\{ x \in \left[0, \frac{1}{2^n}\right] : g_n(x) \in \gamma([0, 1]) \right\}.$$

By the definition of g_n the length of the part of γ contained in X_n is greater then $2^n k_n$, which implies that the length of γ is greater then $\sum_n 2^n k_n$. Since length of γ is finite this yields that $2^n k_n$ converges to zero. By (1) this yields that the function f restricted to the set

$$X_\gamma = \bigcup_{n \geq 0} \{ g_n(x) : x \in [0, k_n] \} \cup Y$$

is continuous. As $\gamma([0, 1]) \subset X_\gamma$, this implies $f \circ \gamma$ is continuous. □

The reason why such an example can be constructed is that although $(0, 0)$ can be connected with every point x of X by a Lipschitz curve γ_x, the Lipschitz constant of γ_x (as a function of x) is not bounded from above. This leads to the following definition.

Definition 2. Let X be a metric space. We say that X is uniformly locally Lipschitz connected if for every point $x \in X$ and $R > 0$ there exist $r > 0$, $L > 0$ such that each points from $B(x, r)$ can be connected by a Lipschitz arc in $B(x, R)$ with Lipschitz constant smaller then L.

Figure 1: Set X
We omit the proof of the following result since it is analogous to that of Theorem 1.

Theorem 3. Let X be a uniformly locally Lipschitz connected metric space, and let $T = [0,1]$. Let $f : X \to \mathbb{R}$. If $f \circ \gamma$ is continuous for every Lipschitz function $\gamma : T \to X$ then f is continuous.

Acknowledgement. I would like to thank my father for valuable remarks.

References

JACEK TABOR
INSTITUTE OF MATHEMATICS
JAGIELLONIAN UNIVERSITY
REYMONTA 4
30-059 KRAKÓW
POLAND
E-mail: tabor@im.uj.edu.pl

(Received July 15, 2001, revised October 9, 2001; file arrived December 19, 2001)