Exceptional sets related to the product of consecutive digits in Lüroth expansions

By JIN-FENG WANG (Nanchang) and QING-LONG ZHOU (Wuhan)

Abstract

Every real number $x \in(0,1]$ admits a Lüroth expansion $\left[d_{1}(x), d_{2}(x)\right.$, $\ldots]_{L}$ with $d_{n}(x) \in \mathbb{N}_{\geq 2}$ being its digits. Let $\left\{\frac{p_{n}(x)}{q_{n}(x)}, n \geq 1\right\}$ be the sequence of convergents of the Lüroth expansion of x. We study the growth rate of the product of consecutive digits relative to the denominator of the convergent for the Lüroth expansion of an irrational number. More precisely, given a natural number m, we prove that the set $$
E_{m}(\beta)=\left\{x \in(0,1]: \limsup _{n \rightarrow \infty} \frac{\log \left(d_{n}(x) d_{n+1}(x) \cdots d_{n+m}(x)\right)}{\log q_{n}(x)}=\beta\right\}
$$

and the set

$$
\widetilde{E}_{m}(\beta)=\left\{x \in(0,1]: \limsup _{n \rightarrow \infty} \frac{\log \left(d_{n}(x) d_{n+1}(x) \cdots d_{n+m}(x)\right)}{\log q_{n}(x)} \geq \beta\right\}
$$

share the same Hausdorff dimension for $\beta \geq 0$. It significantly generalises the existing results on the Hausdorff dimension of $E_{1}(\beta)$ and $\widetilde{E}_{1}(\beta)$.

JIN-FENG WANG
SCHOOL OF MATHEMATICS
AND INFORMATION SCIENCES
NANCHANG HANGKONG UNIVERSITY
NANCHANG, 330063
CHINA

QING-LONG ZHOU
SCHOOL OF SCIENCE
WUHAN UNIVERSITY OF TECHNOLOGY
WUHAN, 430070
CHINA

