Publ. Math. Debrecen In-print:: Ref. no.: 9686 (2024), 1–1

BED property for the tensor product of Banach algebras

By FATEMEH ABTAHI (Isfahan) and AHMAD PEDARAN (Isfahan)

Abstract. Let \mathcal{A} and \mathcal{B} be commutative and semisimple Banach algebras. Suppose that $\|\cdot\|_{\gamma}$ is an algebra cross-norm on $\mathcal{A} \otimes \mathcal{B}$ such that $\|\cdot\|_{\gamma} \geq \|\cdot\|_{e}$, and $\mathcal{A} \otimes_{\gamma} \mathcal{B}$ is a semisimple Banach algebra. In this paper, we verify the BED property for $\mathcal{A} \otimes_{\gamma} \mathcal{B}$. In fact, we show that if $\mathcal{A} \otimes_{\gamma} \mathcal{B}$ is of BED, then both \mathcal{A} and \mathcal{B} are so, whenever either \mathcal{A} or \mathcal{B} is unital. We also show that if \mathcal{B} (resp., \mathcal{A}) is unital and $\widehat{\mathcal{A}} \subseteq C^{0}_{\mathrm{BSE}}(\Delta(\mathcal{A}))$ (resp., $\widehat{\mathcal{B}} \subseteq C^{0}_{\mathrm{BSE}}(\Delta(\mathcal{B}))$), then $\widehat{\mathcal{A} \otimes_{\gamma} \mathcal{B}} \subseteq C^{0}_{\mathrm{BSE}}(\Delta(\mathcal{A} \otimes_{\gamma} \mathcal{B}))$. We also establish that if \mathcal{B} (resp., \mathcal{A}) is finite dimensional, then $\mathcal{A} \otimes_{\gamma} \mathcal{B}$ is of BED if and only if \mathcal{A} (resp., \mathcal{B}) is of BED.

FATEMEH ABTAHI DEPARTMENT OF PURE MATHEMATICS FACULTY OF MATHEMATICS AND STATISTICS UNIVERSITY OF ISFAHAN ISFAHAN 81746-7344 IRAN AHMAD PEDARAN DEPARTMENT OF PURE MATHEMATICS FACULTY OF MATHEMATICS AND STATISTICS UNIVERSITY OF ISFAHAN ISFAHAN 81746-73441

IRAN

Mathematics Subject Classification: Primary: 46J05; Secondary: 46J25.

Key words and phrases: BED algebra, BSE-norm, commutative Banach algebra, Gelfand space, tensor product.