On a conjecture concerning the minimal index of pure quartic fields

By TÍMEA ARNÓCZKI (Debrecen) and GÁBOR NYUL (Debrecen)

Abstract

Monogeneous pure quartic fields $\mathbb{Q}(\sqrt[4]{m})$ are not completely described, not even if m is square-free. I. Gaál and L. Remete [7] formulated a conjecture stating that there are only two monogeneous pure quartic fields with square-free m satisfying $m \equiv 9(\bmod 16)$. We disprove it by showing the existence of infinitely many monogeneous fields of this type if the $a b c$ conjecture is true. In this paper, we study the minimal index of pure quartic fields and find all elements with minimal index in totally complex pure quartic fields having a square-free parameter m.

TÍMEA ARNÓCZKI
INSTITUTE OF MATHEMATICS
UNIVERSITY OF DEBRECEN
H-4002 DEBRECEN
P. O. BOX 400

HUNGARY
GÁBOR NYUL
INSTITUTE OF MATHEMATICS
UNIVERSITY OF DEBRECEN
H-4002 DEBRECEN
P. O. BOX 400

HUNGARY

[^0]
[^0]: Mathematics Subject Classification: 11R16, 11D57.
 Key words and phrases: pure quartic fields, minimal index.

