Uniqueness conjecture on simultaneous Pell equations. II

By YASUTSUGU FUJITA (Narashino) and MAOHUA LE (Zhanjiang)

Abstract

Let A and B be distinct positive integers. It is known that any positive solution to the simultaneous Pell equations $x^{2}-A y^{2}=1$ and $z^{2}-B y^{2}=1$ gives rise to a positive solution to the simultaneous Pell equations $x^{2}-\left(m^{2}-1\right) y^{2}=1$ and $z^{2}-\left(n^{2}-1\right) y^{2}=1$ for some distinct integers m and n greater than one. In this paper, we prove that the latter equations have only the positive solution $(x, y, z)=(m, 1, n)$ if $\{1, b, c\}$ is a Diophantine triple with $b=m^{2}-1, c=n^{2}-1$ and $c \geq \max \left\{200 b^{4}, 2 b^{5}\right\}$. Moreover, we show that the same conclusion holds if we replace the inequality assumed above by $b=\sigma p^{e}+1$ for some prime p, a positive integer e and $\sigma \in\{1,2,4\}$.

YASUTSUGU FUJITA
DEPARTMENT OF MATHEMATICS
COLLEGE OF INDUSTRIAL TECHNOLOGY
NIHON UNIVERSITY, 2-11-1 SHIN-EI
NARASHINO, CHIBA
JAPAN
MAOHUA LE
INSTITUTE OF MATHEMATICS
LINGNAN NORMAL COLLEGE
ZHANJIANG, GUANGDONG, 524048
CHINA

[^0]
[^0]: Mathematics Subject Classification: 11D09, 11B37, 11J68, 11J86.
 Key words and phrases: Pell equations, Padé approximation method, linear form in logarithms, Diophantine tuple.

