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1. Introduction

Random surfaces encountered in the study of physical models such
as Burgers turbulence or interface growth often display long-range depen-
dence and fractional behavior caused by the underlying long-range depen-
dence, see, e.g., [28] and [22]. Experimental data from observation of sur-
face ocean waves, in particular in presence of surf beats, multivariate time
series of the velocities of ocean drifters along their trajectories, and thin
semiconductor film growth in chemical vapor deposition reactors produce
planar spectra indicating presence of singularities, see, e.g., [10], [25] and
[5], see, also, Figure 1 and Figure 2. Several recent papers, such as [3], [15],
and [24], studied different aspects of time-dependent, linear and nonlinear
evolution of such interfaces based on integro-differential equation. Statis-
tical parametric estimation problems, essential for practical application of
the above mentioned models, were addressed in [16]. Examples of singular
planar spectra of interest in geophysical sciences can be found in [7]. In
optics, singular spectra have been studied in the context of phase critical
point densities in planar isotropic random waves, see [6]. The self-affine
random surfaces characterized by power-law spectra have been also used
in the study of surface structure, topography and roughness [30].

In the present paper we describe several models of fractional scalar
random fields with two-dimensional parameter which extend the classical
Ornstein–Uhlenbeck model. We will call such fields fractional Ornstein–
Uhlenbeck sheets although the usage varies in the literature. The regular
Ornstein–Uhlenbeck sheets have been extensively studied, in particular, in
the context of stochastic partial differential equation, see e.g., [26], and
other papers cited in the references section. Some statistical problems of
random sheets and fields have been studied in [2] and [8], including specific
problems of the quasilikelihood-based higher-order spectral estimation of
random processes and fields with possible long-range dependence, see [1].

The present paper is preliminary in nature and contains mostly con-
cepts and relatively straightforward calculations indicating opportunities
for interesting work that needs to be done. The aim is to formulate some
novel and flexible, but also analytically doable models of random fields for
data displaying approximate spectral singularities at the origin or along
the axes (and related long-range dependence) and probe what can be done
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Figure 1. An atomic force microscopy (AFM) image of the sur-
face of the diamond-like-carbon (DLC) thin semiconductor film
deposited in the chemical vapor deposition (CVD) reactor in the
Chemical Engineering Department at Case Western Reserve Uni-
versity (courtesy of J.A. Mann).

to explain their behavior. Of course, much work remains to be done, but
we address some new fundamental issues arising in this context such as
the concept of integration in the frequency domain for random sheets,
including the special situation encountered in the fractional cases.

Two basic models of fractional Ornstein–Uhlenbeck sheets immedi-
ately suggest themselves. The first assumes the structure of the covariance
to be of the product form

const × (|x1|2H1+ |y1|2H1− |x1 − y1|2H1
) · (|x2|2H2+ |y2|2H2− |x2 − y2|2H2

)
,

with anisotropic Hurst parameter (H1,H2), and the other insists on isotropy
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Figure 2. The two-dimensional log-spectrum of the random sur-
face from Figure 1

and the structure of the covariance

const× (‖x‖2H + ‖y‖2H − ‖x − y‖2H
)
,

with x = (x1, x2), y = (y1, y2). Both random sheets are generalizations
of the fractional Brownian motion introduced by Mandelbrot and van

Ness [21] and their definitions have an obvious extension to random fields
with higher dimensional parameter.

Section 2 discusses the classical Brownian sheets from the perspective
of planar stochastic integrals. Section 3 introduces the spectral approach
to fractional Brownian sheets which then is used in Section 4 to study
planar stochastic integration with respect to them. In Section 5 we turn
out attention to the isotropic case. The paper is concluded by description
of fractional Ornstein–Uhlenbeck sheets.
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2D-Selfsimilarity and Stationarity. Like in the one-dimensional
case, the issues of stationarity and selfsimilarity for random sheets are
related via the Lamperti transformation. Walsh [26] noticed that if one
considers the Brownian sheet B at exponential points B (ex1 , ex2) then the
result is the Ornstein–Uhlenbeck sheet. It turns out that the Lamperti
Transformation can be extended to provide a similar connection between
selfsimilarity and stationarity in a more general situation. Let us observe
that in view of the properties of the Brownian sheet it follows that

B (x1, x2)
d= a

−1/2
1 a

−1/2
2 B (a1x1, a2x2) ,

where the equality is in the distribution. The right-hand side is called
renormalized dilatation of a stochastic process, see [18]. We use the same
terminology for sheets.

Definition 1. Let X (x1, x2), (x1, x2) > 0, be a random sheet. For
a = (a1, a2) > 0, and H = (H1,H2) > 0, define the renormalized dilatation
for X(x1, x2) by the equation

DH,aX(x1, x2) = a−H1
1 a−H2

2 X(a1x1, a2x2), (x1, x2) > 0.

The sheet X(x1, x2) will be called selfsimilar with selfsimilarity parame-
ter (Hurst exponent) H = (H1,H2) if for each a > 0, it is invariant, in
distribution, under the renormalized dilatation DH,a i.e.

DH,aX(x1, x2)
d= X(x1, x2), (x1, x2) > 0,

where d= denotes the equality in the distribution, more precisely the equal-
ity of all finite dimensional distributions.

It is clear that B(h1,h2) is selfsimilar with selfsimilarity parameter H =
(H1,H2) =

(
h1 + 1

2 , h2 + 1
2

)
, see (3.1) bellow.

The concept of the renormalized dilatation has been introduced by
Lamperti [18] and widely used in the theory of stochastic processes; for
recent applications see [9].

Definition 2. Let X(x1, x2) be a stochastic sheet and H = (H1,H2)> 0.
The Lamperti Transformation LHX of X is defined by the following equa-
tion:

LHX(x1, x2) = xH1
1 xH2

2 X(log x1, log x2), (x1, x2) > 0.
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Its inverse

L−1
H X(x1, x2) = e−H1x1−H2x2X (ex1 , ex2) , (x1, x2) ∈ R

2.

Similarly to the scalar case we have

L−1
H DH,aLH = Slog a,

where Slog a is the translation operator, i.e.,

Slog aX(x1, x2) = X(x1 + log a1, x2 + log a2).

The following Theorem shows that the Lamperti Transformation gives a
one-to-one correspondence between selfsimilar sheets and stationary sheets.

Theorem 1. If X(x1, x2), (x1, x2) > 0, is a selfsimilar sheet with

selfsimilarity parameter H = (H1,H2) then its inverse Lamperti Trans-

formation Y = L−1
H X is stationary, and if Y (x1, x2), (x1, x2) ∈ R

2, is a

stationary sheet then its Lamperti Transformation X = LHY is a selfsim-

ilar sheet with selfsimilarity parameter H.

2. Planar integration
with respect to Brownian sheet

Let B = B(x1, x2), (x1, x2) ∈ R
2, be a Brownian sheet with the spec-

tral domain representation

B(x1, x2) =
∫
R2

(ei2πx1ω1 − 1)
i2πω1

· (ei2πx2ω2 − 1)
i2πω2

W (dω1, dω2), (2.1)

where W is a complex, Gaussian, white noise spectral measure with
E|W (dω1, dω2)|2 = dω1dω2. Denoting

e(x, ω) =
ei2πxω − 1

i2πω
=

∫ x

0
ei2πωudu,

we can write

B(x1, x2) =
∫
R2

e(x1, ω1)e(x2, ω2)W (dω1, dω2).
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We begin by summarizing some known results, see [4], [27], [26], con-
cerning the problem of stochastic integration in the plane with respect to
the Brownian sheet. We address this problem by utilizing the concept of
the Skorohod integral in the frequency domain, a line of attack different
from the usual approach.

At this point it is worthwhile to observe significant differences between
the Brownian 1-D stochastic integral and the 2-D stochastic integral with
respect to the Brownian sheet: For example,∫∫ T

0
B(x1, x2)dB(x1, x2)

=
B2(T1, T2) − T1T2

2
−

∫∫ T

0
∂1B(x1, x2)∂2B(x1, x2),

(2.2)

where our standard 2-D notation is 0 = (0, 0), T = (T1, T2), see [27], and
(2.7) bellow. In what follows our basic tool is the Diagram Formula for
multiple stochastic integrals in the frequency domain, see Major [20],
which, for a Fourier transform g ∈ L2(R2) of a real function and a Fourier
transform f ∈ L2(R2k) of a real symmetric functions reads∫

R2

g(ω)W (dω)
∫

R2k

f
(
ω(1:k)

)
W

(
dω(1:k)

)

=
∫

R2(k+1)

f
(
ω(1:k)

)
g(ωk+1)W

(
dω(k+1)

)
(2.3)

+ k

∫
R2(k−1)

∫
R2

ḡ(ωk)f
(
ω(1:k)

)
dωkW

(
dω(k−1)

)
.

Here ω ∈ R
2, ω(1:k) ∈ R

2k, and W (dω) is a complex, Gaussian, white noise
spectral measure on R

2 with E |W (dω)|2 = dω.
Furthermore, note that this multiple integral is invariant under the

symmetrization operation sym on the integrand which, for f
(
ω(1:k)

)
, where

ω(1:k) = (ω1, ω2, . . . , ωk), ωj ∈ R
2, is defined by the formula

sym
ω(1:k)

f
(
ω(1:k)

)
=

1
k!

∑
p∈Pk

f
(
pω(1:k)

)
, (2.4)
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where Pk is the set of all permutations of numbers (1, 2, . . . , k); if p =
(p1, p2, . . . , pk) ∈ Pk then pω(1:k) = (ωp1

, ωp2
, . . . , ωpk

). Thus, for instance,
the product f

(
ω(1:k)

)
g
(
ωk+1

)
in (2.3) can be symmetrized without chang-

ing the value of the integral over R
2k. Now, use the Diagram Formula (2.3)

for the integral∫∫ T

0
B(x1, x2)dB(x1, x2)

=
∫∫ T

0

∫
R2

e(x1, ω1)e(x2, ω2)W (dω1, dω2)

×
∫
R2

ei2πx1λ1+i2πx2λ2W (dλ1, dλ2)dx1dx2 (2.5)

=
∫
R4

∫∫ T

0
e(x1, ω1)e(x2, ω2)ei2πx1λ1+i2πx2λ2dx1dx2W (dω, dλ)+ const .

It is easy to see that∫ T

0
e(x, ω)ei2πxλdx +

∫ T

0
e(x, λ)ei2πxωdx = e(T, ω)e(T, λ),

so that

2 sym
ω,λ

∫∫ T

0
e(x1, ω1)e(x2, ω2)ei2π(x1λ1+x2λ2)dx1dx2

= e(T1, ω1)e(T2, ω2)e(T1, λ1)e(T2, λ2)

−
∫∫ T

0
e(x1, λ1)e(x2, ω2)ei2π(x1ω1+x2λ2)

+ e(x1, ω1)e(x2, λ2)ei2π(x1λ1+x2ω2)dx1dx2,

(2.6)

This function of (ω, λ) is symmetric as a function of two vector variables,
that is, its value will not change if (ω, λ) is replaced by (λ, ω), keeping the
order inside the variables λ = (λ1, λ2) and ω = (ω1, ω2) intact. The first
term on the right-hand side of (2.6) satisfies equality

B2(T1, T2) =
∫
R4

e(T1, ω1)e(T2, ω2)e(T1, λ1)e(T2, λ2)W (dω, dλ) + T1T2,
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while, for the first part of the second term, we have∫∫ T

0
∂1B(x1, x2)∂2B(x1, x2)

=
∫∫ T

0

∫
R2

ei2πx1ω1e(x2, ω2)W (dω1, dω2)

×
∫
R2

e(x1, ω1)ei2πx2ω2W (dω1, dω2)dx1dx2 (2.7)

=
∫
R4

∫∫ T

0
ei2πx1ω1e(x2, ω2)e(x1, λ1)ei2πx2λ2dx1dx2W (dω, dλ) + const .,

with similar equality for the second part.
We shall show that the above constant zero which, in view of (2.5),

(2.6) and (2.7), yields equation (2.2). Indeed, the typical term for both
constants is the integral∫

R

e(x, ω)e−i2πxωdω =
∫
R

1 − e−i2πxω

i2πω
dω, (2.8)

the principal value of which is zero.
Notice that the Abel and the Gauss mean of (2.8) is 1/2 but these

facts do not affect the 2-D formula (2.2) the way they do the 1-D case,
where one obtains the Itô version of BdB by choosing the principal value,
and the Stratonovich version of BdB by choosing either the Abel or the
Gauss mean. A general treatment of the Itô and Stratonovich integrals
and their connections is given in the book [14], Chapter 3. We summa-
rize the above discussion about the 2-D random measure generated by
∂1B(x1, x2)∂2B(x1, x2) (see also Walsh [27]) in the following

Proposition 1. The formula∫∫ T

0
∂1B(x1, x2)∂2B(x1, x2)

=
B2(T1, T2) − T1T2

2
−

∫∫ T

0
B(x1, x2)dB(x1, x2),
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holds true for both Itô and Stratonovich integrals, but, for Itô integrals,

we have ∫∫ T

0
∂1B(x1, x2)∂2B(x1, x2) =

∫ T1

0
B(x1, T2)∂1B(x1, T2)

−
∫∫ T

0
B(x1, x2)dB(x1, x2),

and, for Stratonovich integrals, we have∫∫ T

0
∂1B(x1, x2)∂2B(x1, x2) =

∫ T1

0
B(x1, T2)∂1B(x1, T2)

−
∫∫ T

0
B(x1, x2)dB(x1, x2) − T1T2

2
.

Closing this section let us recall the spectral domain chaotic represen-
tation of a second-order isotropic and homogeneous sheet X subordinated
to the Brownian sheet:

X(x1, x2) =
∞∑

k=0

∫
R2k

ei2πΣ[x,ωj ]fk

(
ω(1:k)

)
W

(
dω(1:k)

)
, (2.9)

where [x, ω] = x1ω1 + x2ω2 and the integrals are the multiple Wiener–Itô
integrals (see, e.g., Major [20], and Kwapien and Woyczynski [17]) and

E|X(x1, x2)|2 =
∞∑

k=0

k!
∫

R2k

|fk

(
ω(1:k)

)|2dω(1:k) < ∞.

The stochastic integration of a homogeneous sheet X (subordinated to the
Brownian sheet) according to the Brownian sheet, XdB, is carried out
by the diagram formula in an obvious way, we follow this idea for the
integration by the fractional Brownian sheet, as well.

3. Fractional Brownian sheet –
frequency domain approach

The fractional Brownian sheet with parameter (h1, h2) ∈ (−1
2 , 1

2) ×
(−1

2 , 1
2), a generalization of the fractional Brownian motion introduced by
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Mandelbrot and Ness [21] will be defined as follows: For (x1, x2) ∈ R
2
+,

B(h1,h2)(x1, x2)

.=
1

Γ(1 + h1)Γ(1 + h2)

{∫ x2

0

∫ x1

0
(x1 − y1)h1(x2 − y2)h2dB(y1, y2)s

−
∫ 0

−∞

∫ x1

0
(x1 − y1)h1

[
(x2 − y2)h2 − (−y2)h2

]
dB(y1, y2)

−
∫ x2

0

∫ 0

−∞

[
(x1 − y1)h1 − (−y1)h1

]
(x2 − y2)h2dB(y1, y2)

+
∫ 0

−∞

∫ 0

−∞

[
(x1−y1)h1−(−y1)h1

][
(x2−y2)h2−(−y2)h2

]
dB(y1, y2)

}
,

where B(y1, y2) is the standard Brownian sheet. Clearly, B(0,0)(x1, x2) =
B(x1, x2).

The definition is closely related to the fractional integral operator

I
(h1,h2)
(x1,x2)

(f(y1, y2))

=
1

Γ(h1)Γ(h2)

∫ x1

−∞

∫ x2

−∞
(x1 − y1)1−h1(x2 − y2)1−h2f(y1, y2)dy1dy2,

since the fractional Brownian sheet happens to be the (h1, h2)th fractional
integral of the Brownian sheet, but only after conditioning it to be zero
at the origin. To avoid this difficulty we shall rewrite the definition of
the fractional Brownian sheet B(h1,h2)(x1, x2) in the spectral domain, con-
sidering only the case 0 < hk < 1

2 , k = 1, 2. The proof of the spectral
representation is similar in spirit to that for the fractional Brownian mo-
tion, see [13]. Another derivation of the spectral representation of B(h1,h2),
based on its distributional properties, can be found in [12].

Theorem 2. Let W be a complex Gaussian white noise spectral mea-

sure with E|W (dω1, dω2)|2 = dω1dω2. Then we have the following spectral

domain representation of the fractional Brownian sheet B(h1,h2):

B(h1,h2)(x1, x2)

.=
∫
R2

(
ei2πx1ω1−1

) (
ei2πx2ω2−1

)
(i2πω1) (i2πω2)

(iπω1)−h1(i2πω2)−h2W (dω1, dω2).
(3.1)



164 György Terdik and Wojbor A. Woyczyński

Proof. In view of the definition of the fractional Brownian sheet we
have

B(h1,h2)(x1, x2)
.=

1
Γ(1 + h1)Γ(1 + h2)

×
∫ ∞

−∞

∫ ∞

−∞

{
χ[(0,0),(x1,x2)](y1, y2)(x1 − y1)h1(x2 − y2)h2

− χ[(0,−∞),(x1,0)](y1, y2)(x1 − y1)h1
[
(x2 − y2)h2 − (−y2)h2

]
− χ[(−∞,0),(0,x2)](y1, y2)

[
(x1 − y1)h1 − (−y1)h1

]
(x2 − y2)h2

+ χ[(−∞,−∞),(0,0)](y1, y2)
[
(x1 − y1)h1− (−y1)h1

][
(x2 − y2)h2− (−y2)h2

]}
× dB(y1, y2) =

1
Γ(1 + h1)Γ(1 + h2)

∫
R2

[ ∫
R2

ei2π(y1ω1+y2ω2)

×
{

χ[(0,0),(x1,x2)](y1, y2)(x1 − y1)h1(x2 − y2)h2

− χ[(0,−∞),(x1,0)](y1, y2)(x1 − y1)h1
[
(x2 − y2)h2 − (−y2)h2

]
− χ[(−∞,0),(0,x2)](y1, y2)

[
(x1 − y1)h1 − (−y1)h1

]
(x2 − y2)h2

+ χ[(−∞,−∞),(0,0)](y1, y2)
[
(x1 − y1)h1 − (−y1)h1

]
× [

(x2 − y2)h2 − (−y2)h2
]}

dy1dy2

]
W (dω1, dω2). (3.2)

Let us introduce function ϕ ((x1, x2), (ω1, ω2)) such that

B(h1,h2)(x1, x2)
.=

∫
R2

ϕ ((x1, x2), (ω1, ω2)) W (dω1, dω2).

For a fixed (x1, x2)∈R
2, function ϕ ((x1, x2), (ω1, ω2)) is an inverse Fourier-

transform. We need to consider it only for ω2 > 0 because its value
for ω2 < 0 is a complex conjugate. Unfortunately, the function being
inverse Fourier-transformed is not in L1(R2) although it is in L2(R2). To
circumvent this difficulty we shall calculate ϕ ((x1, x2), (ω1, ω2)) for zk =
ωk + iλk, λk < 0, and then take the limit as λk → 0. Therefore,

ϕ ((x1, x2), (z1, z2)) =
1

Γ(1 + h1)Γ(1 + h2)
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×
[ ∫

R2

ei2π(y1z1+y2z2)
{

χ[(0,0),(x1,x2)](y1, y2)(x1 − y1)h1(x2 − y2)h2

− χ[(0,−∞),(x1,0)](y1, y2)(x1 − y1)h1
[
(x2 − y2)h2 − (−y2)h2

]
− χ[(−∞,0),(0,x2)](y1, y2)

[
(x1 − y1)h1 − (−y1)h1

]
(x2 − y2)h2

+ χ[(−∞,−∞),(0,0)](y1, y2)
[
(x1 − y1)h1 − (−y1)h1

]
× [

(x2 − y2)h2 − (−y2)h2
]}

dy1dy2

]
. (3.3)

We separate these products as follows:

ϕ ((x1, x2), (z1, z2)) =
1

Γ(1 + h1)Γ(1 + h2)

×
∫ x2

−∞

∫ x1

−∞
ei2π(y1z1+y2z2)(x1 − y1)h1(x2 − y2)h2dy1dy2

−
∫ 0

−∞

∫ x1

−∞
ei2π(y1z1+y2z2)(x1 − y1)h1(−y2)h2dy1dy2

−
∫ x2

−∞

∫ 0

−∞
ei2π(y1z1+y2z2)(−y1)h1(x2 − y2)h2dy1dy2

+
∫ 0

−∞

∫ 0

−∞
ei2π(y1z1+y2z2)(−y1)h1(−y2)h2dy1dy2.

All of these integrals are splitting into one-variable integrals since, inte-
grating by parts and transforming the interval of integration to (0,∞), we
get

1
Γ(h + 1)

∫ x

−∞
ei2πzy(x − y)hdy =

1
Γ(h)

1
i2πz

∫ x

−∞
ei2πzy(x − y)h−1dy

=
1

Γ(h)
ei2πzx

i2πz

∫ ∞

0
e−i2πzuuh−1du.

Since (see, e.g., [11], formula 3.381.4.), for Re z < 0,
∫ ∞
0 e−i2πzuuh−1du =

Γ(h)(i2πz)−h, we have

ϕ ((x1, x2), (z1, z2))

=
(i2πz1)−h1(i2πz2)−h2

(i2πz1)(i2πz2)

[
ei2π(x1z1+x2z2) − ei2πx1z1 − ei2πx2z2 + 1

]
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=

(
ei2πx1z1 − 1

) (
ei2πx2z2 − 1

)
(i2πz1)(i2πz2)

(i2πz1)−h1(i2πz2)−h2 .

Taking the (λ1, λ2) → 0 limit of this expression in the L2(R2)-sense and
then the same limit of (3.3), we can apply the Lebesgue Dominated Con-
vergence theorem to obtain

ϕ ((x1, x2), (ω1, ω2)) =

(
ei2πx1ω1 − 1

) (
ei2πx2ω2 − 1

)
(i2πω1)(i2πω2)

(i2πω1)−h1(i2πω2)−h2,

ω1ω2 �= 0.

This concludes the proof of the theorem. �

The following proposition summarizes the most important and easily
proved properties of the fractional Brownian sheet B(h1,h2). They should
be compared with the well known similar properties of the fractional Brow-
nian motion, see [21].

Proposition 2. Let B(h1,h2)(x1, x2), (x1, x2) ∈ R
2, be a fractional

Brownian sheet. Then,

(1) EB(h1,h2)(x1, x2) = 0;

(2) B(h1,h2)(x1, x2) is mean-square continuous and continuous with prob-

ability 1;

(3) B(h1,h2)(x1, x2) has homogeneous increments, that is, the distribu-

tion of

∆(u1,u2)B
(h1,h2)(x1, x2) = B(h1,h2)(x1 + u1, x2 + u2)−B(h1,h2)(x1 + u1, x2)

− B(h1,h2)(x1, x2 + u2) + B(h1,h2)(x1, x2)

does not depend on (x1, x2);

(4) For any (x1, x2) ∈ R
2, random sheet B(h1,h2)(x1, x2) is not differen-

tiable at (x1, x2) with probability 1;

(5) The covariance structure of B(h1,h2)(x1, x2) is given by the formula

cov
(
B(h1,h2)(x1, x2), B(h1,h2)(y1, y2)

)
=

κ1(h1)κ1(h2)
4

×
(
|x1|2h1+1 + |y1|2h1+1 − |x1 − y1|2h1+1

)
×

(
|x2|2h2+1 + |y2|2h2+1 − |x2 − y2|2h2+1

)
,

(3.4)
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where

κ1(h) .=
∫
R

∣∣∣∣ei2πω − 1
i2πω

∣∣∣∣
2

|2πω|−2hdω

=
Γ(1 − 2h)
h(2h + 1)π

cos
(π

2
(1 − 2h)

)
.

(3.5)

Proposition 3. Fractional Brownian sheet is selfsimilar, that is, for

each (a1, a2) > 0,

B(h1,h2)(a1x1, a2x2) = aH1
1 aH2

2 B(h1,h2)(x1, x2),

where Hk = hk + 1/2.

The last statement follows from the spectral representation (3.1) of the
fractional Brownian sheet. Indeed, changing variables in (3.1) we observe
that

Wa(dω1, dω2) = a
H1+1/2
1 a

H2+1/2
2 W (dω1/a1, dω2/a2)

is a Gaussian stochastic spectral measure with E
∣∣Wa (dω1, dω2)

∣∣2 =
a2H1

1 a2H2
2 dω1dω2.

This proposition and Theorem 1 imply that the inverse Lamperti
transformation of the fractional Brownian sheet
Y (x1, x2) = L−1

H B(h1,h2)(x1, x2) is a stationary sheet. Indeed the form of
covariance of

Y (x1, x2) = e−H1x1−H2x2B(h1,h2) (ex1 , ex2) ,

follows from (3.4):

Cov (Y (x1, x2), Y (y1, y2))

=
(
eH1(x1−y1) + eH1(y1−x1) − ∣∣eH1(x1−y1) − eH1(y1−x1)

∣∣2H1
)

×
(
eH2(x2−y2) + eH2(y2−x2) − |eH2(x2−y2) − eH2(y2−x2)|2H2

)
(3.6)

=
κ1(h1)κ1(h2)

4

(
cosh(|y1 − x1|) + 22H1−1[sinh(|y1 − x1|/2)]2H1

)
×

(
cosh(|y2 − x2|) + 22H2−2[sinh(|y2 − x2|/2)]2H2

)
.
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If (h1, h2) = (0, 0), i.e. in the standard Brownian motion case, we shall
have the covariance function corresponding to the spectrum (6.3) of an
Ornstein–Uhlenbeck sheet; this particular case has been noticed
by Walsh [26].

Remark 1. It can be seen, for instance, that the Lamperti Transfor-
mation of the fractional Brownian sheet is not long-range dependent.

The covariance (3.6) corresponds to a spectrum which can be obtained
from the original covariances of the fractional Brownian sheet using the
Mellin transform. These connections open up a new field which we plan
to study in more detail in another paper.

4. Planar integration with respect to the fractional
Brownian sheet

Formula (3.1) gives the following formal representation of the “deriv-
ative process” [21]:

dB(h1,h2)(x1, x2)

=
∫
R2

ei2π(x1ω1+x2ω2)dx1dx2(i2πω1)−h1(i2πω2)−h2W (dω1, dω2).

Rigorously, the “derivative” exists only in the generalized, distributional
sense. We will establish the invertibility of B(h1,h2)(x1, x2). For that pur-
pose we define formally the integral of a non–random function with respect
to B(h1,h2)(x1, x2) via the formula∫

R2

f(x1, x2)B(h1,h2)(dx1, dx2)

=
∫
R2

f(x1, x2)
∫
R2

ei2π(x1ω1+x2ω2)(i2πω1)−h1(i2πω2)−h2W (dω1, dω2)dx1dx2

=
∫
R2

[∫
R2

ei2π(x1ω1+x2ω2)f(x1, x2)dx1dx2

]
(i2πω1)−h1(i2πω2)−h2W (dω1, dω2).
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This formal definition can be made rigorous under an additional assump-
tion.

Definition 3. Let f : R
2 → R

2, f ∈ L2(R2k), and∫
R2

∣∣f̌(ω1, ω2)
∣∣2 |ω1|−2h1 |ω2|−2h2dω1dω2 < ∞,

where f̌ is the inverse Fourier transformation of f , i.e. f̌(ω1, ω2) =∫
R2

ei2π(x1ω1+x2ω2)f(x1, x2) dx1dx2. Then,

∫
R2

f(x1, x2)B(h1,h2)(dx1, dx2)

.=
∫
R2

f̌(ω1, ω2)(i2πω1)−h1(i2πω2)−h2W (dω1, dω2).

As an application of the above integral we provide the following inver-
sion formula for the fractional Brownian sheet:

B(x1, x2)

=
1

Γ(1 + h1)Γ(1 + h2)

∫
R2

{
χ[(0,0),(x1,x2)](y1, y2)(x1 − y1)−h1(x2 − y2)−h2

− χ[(0,−∞),(x1,0)](y1, y2)(x1 − y1)−h1
[
(x2 − y2)−h2 − (−y2)−h2

]
− χ[(−∞,0),(0,x2)](y1, y2)

[
(x1 − y1)−h1 − (−y1)−h1

]
(x2 − y2)−h2

× [
(x2 − y2)−h2 − (−y2)−h2

]}
B(h1,h2)(dy1, dy2). (4.1)

Let us denote by L2(B(h1,h2)) the space of all homogeneous sheets
X(x1, x2) which are measurable with respect to the σ-algebra F(B(h1,h2)) .=
σ{B(h1,h2)(x1, x2), x ∈ R

2}, i.e.,

L2(B(h1,h2))
.=

{
X(x1, x2) ∈ L2

(F(B(h1,h2))
)
, X is second order homogeneous

}
.
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Any random sheet X(x1, x2) ∈ L2

(
B(h1,h2)

)
has a spectral chaotic expan-

sion

X(x1, x2) =
∞∑

k=0

∫
R2k

ei2πΣ[x,ωj ]fk

(
ω(1:k)

)

×
k∏
1

(i2πωj)
−(h1,h2)W

(
dω(1:k)

)
,

(4.2)

where (i2πω)−(h1,h2) = (i2πω1)−h1(i2πω2)−h2, and

E |X(x1, x2)|2 =
∞∑

k=0

k!
(2π)2k

∫
R2k

∣∣∣fk

(
ω(1:k)

)∣∣∣2 k∏
1

|ωj |−(h1,h2)dω(1:k) < ∞.

Vice versa, every random sheet X(x1, x2) of the form (4.2) is in L2

(
B(h1,h2)

)
.

Functions fk will be called here transfer functions; they are unique, up to
a permutation of their variables ωj ∈ R

2. The proofs for both formulae
(4.1) and (4.2) is similar to the proof of the analogous properties for the
fractional Brownian motion, see [13]. We provide here the stochastic in-
tegral B(h1,h2)dB(h1,h2), as an example of the stochastic integration with
respect to the fractional Brownian sheet.

Proposition 4. The formulae∫∫ T

0
B(h1,h2)(x1, x2)dB(h1,h2)(x1, x2)

=

[
B(h1,h2)(T1, T2)

]2

2
−

∫∫ T

0
∂1B

(h1,h2)(x1, x2)∂2B
(h1,h2)(x1, x2),

and ∫∫ T

0
∂1B

(h1,h2)(x1, x2)∂2B
(h1,h2)(x1, x2)

=
∫ T1

0
B(h1,h2)(x1, T2)∂1B

(h1,h2)(x1, T2)

−
∫∫ T

0
B(h1,h2)(x1, x2)dB(h1,h2)(x1, x2)

− κ1(h1)κ1(h2)
4

T 1+2h1
1 T 1+2h2

2 ,
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are valid for both Itô and Stratonovich integrals.

Proof. First consider

[
B(h1,h2)(T1, T2)

]2 =
∫
R4

e(T1, ω1)e(T2, ω2)e(T1, λ1)e(T2, λ2)

× (i2πω1)−h1(i2πω2)−h2(i2πλ1)−h1(i2πλ2)−h2W (dω, dλ)

+T 1+2h1
1 T 1+2h2

2 κ1(h1)κ1(h2),

where κ1(h) is given by (3.5). Now, use the Diagram Formula (2.3) again
for the integral∫∫ T

0
B(h1,h2)(x1, x2)dB(h1,h2)(x1, x2)

=
∫
R4

∫∫ T

0
e(x1, ω1)e(x2, ω2)ei2πx1λ1+i2πx2λ2

× (i2πω1)−h1(i2πω2)−h2(i2πλ1)−h1(i2πλ2)−h2dx1dx2W (dω, dλ) + c1.

The constant term c1 is calculated by the integral∫
R

e(x, ω)e−i2πxω |2πω|−2h1dω =
∫
R

1 − e−i2πxω

i2πω
|2πω|−2h1dω,

which contrary to the (2.8) has a unique value, namely κ1(h1)
2 (1+2h1)x2h1 ,

hence

c1 =
κ1(h1)κ1(h2)

4
T 1+2h1

1 T 1+2h2
2 .

Now, (2.6) and
∫∫ T

0
∂1B

(h1,h2)(x1, x2)∂2B
(h1,h2)(x1, x2)

=
∫
R4

∫∫ T

0
e(x2, ω2)e(x1, λ1)ei2π(x1ω1+x2λ2)

× (i2πω1)−h1(i2πω2)−h2(i2πλ1)−h1(i2πλ2)−h2dx1dx2W (dω, dλ) + c1,
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implies

∫∫ T

0
B(h1,h2)(x1, x2)dB(h1,h2)(x1, x2)

=

[
B(h1,h2)(T1, T2)

]2

2
−

∫∫ T

0
∂1B

(h1,h2)(x1, x2)∂2B
(h1,h2)(x1, x2).

Similar calculation leads to the second equation of the proposition. �

5. Isotropic fractional sheets

An important example of a fractional random sheet is the fractional
Lévy’s Brownian sheet B

(h)
L (x) with isotropic increments (see, e.g., Lind-

strøm [19]) which, for parameter h = H − 1/2, H ∈ (0, 1), is defined by
the stochastic integral

B
(h)
L (x) .= ch

∫
R2

[
‖x − y‖h−1/2 − ‖y‖h−1/2

]
dB(y),

where x = (x1, x2), y = (y1, y2), and ‖ . ‖ denotes the Euclidean norm.
Distribution-wise, fractional Lévy’s Brownian sheet has the spectral rep-
resentation

B
(h)
L (x) .=

∫
R2

ei2π[x,ω] − 1
(i2π‖ω‖)3/2+h

W (dω),

where ω = (ω1, ω2), and W is a complex Gaussian white noise spectral
measure and E|W (dω1, dω2)|2 = dω1dω2. Basic properties of B

(h)
L (x) are

listed in the following

Proposition 5. Let B
(h)
L (x) be a fractional Lévy’s Brownian sheet.

Then,

(1) B
(h)
L (x) is centered;

(2) B
(h)
L (x) is mean square continuous and continuous with probability 1;
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(3) The covariance structure of B
(h)
L (x) is given by formula

Cov
(
B

(h)
L (x), B(h)

L (y)
)

= κ2(h)
(‖x‖2(h+1/2) + ‖y‖2(h+1/2) − ‖x − y‖2(h+1/2)

)
,

(5.1)

where

κ2(h) = κ1(h)22h+1B(h + 1, h + 1),

κ1(h) is the constant featuring in (3.5) and B(·, ·) is the Beta Function.

(4) B
(h)
L (x) has isotropic increments, in particular along each direction

B
(h)
L (x) − B

(h)
L (y) d= B

(h)
L (x − y) − B

(h)
L (0),

as a consequence the “total” increments ∆B
(h)
L2 are homogeneous.

(5) B
(h)
L (x) is selfsimilar, that is, for each a > 0,

B
(h)
L (ax) d= ah+1B

(h)
L (x).

Proof. The continuity follows easily from the Kolmogorov Theorem
since B

(h)
L is Gaussian with the particular covariance structure (5.1). The

isotropy can be demonstrated as follows: Observe that

B
(h)
L (x) − B

(h)
L (y) =

∫
R2

ei2π[x,ω] − ei2π[y,ω]

(i2π‖ω‖)3/2+h
W (dω).

Then change the variable to ‖x − y‖ω to obtain

B
(h)
L (x) − B

(h)
L (y) = ‖x − y‖h+1/2

∫
R2

ei2π[x,ω]/‖x−y‖ − ei2π[y,ω]/‖x−y‖

(i2π‖ω‖)3/2+h
W (dω)

= ‖x − y‖h+1/2

∫
R2

ei2π[y,ω]/‖x−y‖(ei2π[uα,ω] − 1)
(i2π‖ω‖)3/2+h

W (dω),

where uα is a unit vector depending on the angle α between x− y and one

of the axis. It is clear now that the variance of B
(h)
L (x)−B

(h)
L (y) depends
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only on ‖x−y‖ and it is equal to the variance of B
(h)
L (x−y). Evaluation of

the value of constant κ2(h) follows from the following variance calculation:

∫
R2

∣∣∣∣∣ ei2π[x,ω] − 1
(i2π‖ω‖)3/2+h

∣∣∣∣∣
2

dω = ‖x‖2(h+1/2)

∫
R2

∣∣∣∣∣ ei2π[uα,ω] − 1
(i2π‖ω‖)3/2+h

∣∣∣∣∣
2

dω

= ‖x‖2(h+1/2)

∫ 2π

0

∫ ∞

0

∣∣∣∣ei2πρ cos β − 1
(i2πρ)3/2+h

∣∣∣∣
2

ρdρdβ

= ‖x‖2(h+1/2)

∫ 2π

0
| cos β|1+2h

∫ ∞

0

|ei2πρ − 1|2
(2πρ)2(1+h)

dρdβ

= ‖x‖2(h+1/2)κ1(h)22(h+1)B(h + 1, h + 1),

where B(·, ·) is the Beta Function. �

Notice that the above argument also shows that the increments of the
fractional Lévy’s Brownian sheet are stationary in the strong sense, that is,
they are invariant under rigid body motions, see [23] for the time domain
approach.

As in (3.1) we can write a formal representation for the “derivative
process” of the fractional Lévy’s Brownian motion:

dB
(h)
L (x) =

∫
R2

ei2π[x,ω]dx
(i2πω1)(i2πω2)
(i2π‖ω‖)3/2+h

W (dω).

Again, rigorously, it exists only in the sense of Schwartzian distributions.
For any h ∈ (−1/2, 1/2), its spectrum∣∣∣∣ (i2πω1)(i2πω2)

(i2π‖ω‖)3/2+h

∣∣∣∣
2

(5.2)

vanishes at the origin, and its memory parameter is 0. Since in many
physical applications fractional model fields with long-range dependence,
i.e. fields with singular spectrum, are important (see, e.g., [28]), we will
now introduce another fractional Brownian sheet as a model enjoying these
properties. It is markedly different from the, usual in this situation, model
of the Gaussian h-fractional noise.
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Definition 4. The h-fractional Brownian sheet B
(h)
F is defined by the

formula

B
(h)
F (x) .=

∫
R2

ei2π[x,ω] − 1 − i2π[x, ω]
(i2πω1)(i2πω2)(i2π‖ω‖)1/2+h

W (dω). (5.3)

Note that the h-fractional Brownian sheet B
(h)
F is well defined since

its transfer function is square integrable. The basic properties of the h-
fractional Brownian sheet B

(h)
F are listed in the following

Proposition 6. Let B
(h)
F be the h-fractional Brownian sheet defined

in (5.3). Then,

(1) B
(h)
F (x) is centered;

(2) B
(h)
F (x) is mean-square continuous and continuous with probability 1;

(3) The “total” increments ∆B
(h)
F of B

(h)
F are homogeneous, that is,

∆uB
(h)
F (x) is independent of x; Actually, the variance

Var
(
∆uB

(h)
F (x)

)
=

∫
R2

∣∣∣∣ (ei2πω1u1 − 1)(ei2πω2u2 − 1)
(i2πω1)(i2πω2)(i2π‖ω‖)1/2+h

∣∣∣∣
2

dω

= 2

u∫∫
0

x1x2C2(x1, x2)dx1dx2,

where the covariance structure C2(x1, x2) is given bellow (5.5).

(4) The singular spectrum of the derivative sheet

dB
(h)
F (x) =

∫
R2

ei2π[x,ω]dx
1

(i2π‖ω‖)1/2+h
W (dω),

of B
(h)
F is of the form∣∣∣∣ 1

2π‖ω‖1/2+h

∣∣∣∣
2

=
1

(2π)2‖ω‖1+2h
, (5.4)

and the derivative sheet is an isotropic Gaussian sheet with the co-

variance structure

C2(x1, x2) =
22h‖x‖2h−1

(2π)3−2h
B(h, h)Γ(1 − 2h) cos(π(1 − 2h)). (5.5)
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Proof. The stationarity immediately follows from the following cal-
culation (the rest of the proposition is evident):

∆uB
(h)
F (x) =

∫
R2

ei2π[x+u,ω] − ei2π[x+u1e1,ω] − ei2π[x+u2e2,ω] + ei2π[x,ω]

(i2πω1)(i2πω2)(i2π‖ω‖)1/2+h
W (dω)

=
∫
R2

(ei2πω1(x1+u1) − ei2πω1x1)(ei2πω2(x2+u2) − ei2πω2x2)
(i2πω1)(i2πω2)(i2π‖ω‖)1/2+h

W (dω)

=
∫
R2

ei2π[x,ω](ei2πω1u1 − 1)(ei2πω2u2 − 1)
(i2πω1)(i2πω2)(i2π‖ω‖)1/2+h

W (dω),

where ej is the jth basis vector. The variance

Var
(
∆uB

(h)
F

)
=

2∫
R

∣∣∣∣∣e
i2π[x,ω](ei2πω1u1 − 1)(ei2πω2u2 − 1)
(i2πω1)(i2πω2)(i2π‖ω‖)1/2+h

∣∣∣∣∣
2

dω

=

2∫
R

∣∣∣∣ (ei2πω1u1 − 1)(ei2πω2u2 − 1)
(i2πω1)(i2πω2)(i2π‖ω‖)1/2+h

∣∣∣∣
2

dω

=

2∫
R

∣∣∣∣
∫∫ u

0
ei2π[x,ω]dx

∣∣∣∣
2 1

(i2π‖ω‖)1+2h
dω

= 2

u∫∫
0

x1x2C2(x1, x2)dx1dx2,

where C2(x1, x2) is given bellow, see (5.6). The calculation of the covari-
ance structure for the derivative sheet is similarly straightforward:

C2(x1, x2) =
∫
R2

ei2π[x,ω]

(2π)2‖ω‖1+2h
dω

=
∫ 2π

0

∫ ∞

0

ei2πρ‖x‖ cos ϑ

(2π)2ρ2h
dρdϑ

=
2‖x‖2h−1

(2π)2

∫ π/2

0
(cos ϑ)2h−1dϑ

[
2Re

∫ ∞

0

ei2πρ

ρ2h
dρ

]
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=
4‖x‖2h−1

(2π)2
22h−2B(h, h)Γ(2h + 1)Re

[
(2π)2h−1e−iπ(2h−1)

]

=
4‖x‖2h−1

(2π)3−2h
22h−2B(h, h)Γ(1 − 2h) cos(π(1 − 2h)), (5.6)

where we applied the well known formula
∫ ∞
0 eiyρρ1−udρ = Γ(u)y−ue−iπu

(see, e.g., [11]). �

The selfsimilarity of both fractional Lévy’s sheet and h-fractional Brow-
nian sheet introduced above follows from their spectral representations
and changing variables in a Gaussian stochastic spectral measure since
E
∣∣W (dω1/a1, dω2/a2)

∣∣2 = (a1a2)−1/2dω1dω2. Thus we have

B
(h)
L (ax) = aHB

(h)
L (x),

where H = h + 1/2, and

B
(h)
F (ax) = aHB

(h)
F (x),

where H = h + 3/2.

6. Fractional Ornstein–Uhlenbeck sheet

A Gaussian homogeneous sheet X(x1, x2) on the plane is called an
Ornstein–Uhlenbeck sheet if, EX(x1, x2) = 0, and if its covariance function

Cov
(
X(x1, x2),X(0, 0)

)
= σ2

Xe−(α1|x1|+α2|x2|),

where α1, α2 > 0. The later condition for α1, α2 will be kept for the rest
of the section as well.

The Ornstein–Uhlenbeck sheet is a unique homogeneous solution of
the stochastic differential equation

dX(x1, x2) = α1∂2X(x1, x2)dx1 + α2∂1X(x1, x2)dx2

− α1α2X(x1, x2)dx1dx2 + σdB(x1, x2),
(6.1)

where∫∫ T

0
dX(x1, x2) = X(T1, T2) − X(T1, 0) − X(T1, 0) + X(0, 0),
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and ∫ T1

0
∂1X(x1, x2) = X(T1, x2) − X(0, x2).

In the spectral domain it has the representation

X(x1, x2) =
∫
R2

ei2π(x1ω1+x2ω2)

(i2πω1 − α1)(i2πω2 − α2)
σW (dω1, dω2), (6.2)

and its spectral density is

S2(ω1, ω2) =
σ2(

α2
1 + (2πω1)2

)(
α2

2 + (2πω2)2
) . (6.3)

It is easy to see that the chaotic representation form (2.9) of an Ornstein–
Uhlenbeck sheet contains only a single, Gaussian, term.

If the driving term B(x1, x2) in (6.1) is replaced by the fractional
Brownian sheet B(h1,h2) and we consider stochastic differential equation

dX(x1, x2) = α1∂2X(x1, x2)dx1 + α2∂1X(x1, x2)dx2

− α1α2X(x1, x2)dx1dx2 + σdB(h1,h2)(x1, x2),

with the same boundary conditions as (6.1), then the resulting homoge-
neous solution random sheet will be called a fractional Ornstein–Uhlenbeck
sheet. Its spectral representation is

X(x1, x2) =
∫
R2

ei2π(x1ω1+x2ω2)

× (i2πω1)−h1(i2πω2)−h2

(i2πω1 − α1)(i2πω2 − α2)
σW (dω1, dω2),

(6.4)

and its spectral density

SX,2(ω1, ω2) =
σ2|2πω1|−2h1 |2πω2|−2h2(

α2
1 + (2πω1)2

)(
α2

2 + (2πω2)2
) . (6.5)

In the chaotic representation (4.2) the fractional Ornstein–Uhlenbeck
sheet contains only one, Gaussian, term.

Although it is well known that the Ornstein–Uhlenbeck field can not be
isotropic, see [29], there are important applications for Ornstein–Uhlenbeck
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sheets with h-fractional Brownian sheet B
(h)
F input, see (5.3). They have

the spectral representation in the form

X(x1, x2) =
∫
R2

ei2π(x1ω1+x2ω2) (i2π‖ω‖)−(1/2+h)

(i2πω1 − α1)(i2πω2 − α2)
σW (dω1, dω2),

and the spectral density

SX,2(ω1, ω2) =
σ2(2π‖ω‖)−(1+2h)(

α2
1 + (2πω1)2

)(
α2

2 + (2πω2)2
) .
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