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Spectral synthesis and a characterization
of polynomial ideals

By LASZLO SZEKELYHIDI (Debrecen)

Dedicated to the memory of Jend Erdds

Abstract. The classical result about characterizing polynomial ideals in
several variables by differential operators is the Ehrenpreis—Palamodov theorem.
There are further results exhibiting a constructive method for finding the corre-
sponding differential operators, the so-called Noetherian operators. Here we show
the connection between this problem with discrete spectral synthesis and present
a new method for constructing Noetherian operators for polynomial ideals.

1. Spectral synthesis on semigroups

The basic ideas of discrete spectral analysis and spectral synthesis
can be formulated and investigated on commutative semigroups. Let S
be a commutative semigroup written additively. The set of all complex
valued functions on S will be denoted by C(S). This set equipped with
the pointwise linear operations (addition and multiplication by complex
numbers) and with the topology of pointwise convergence (the Thychonoff-
topology) bears the structure of a locally convex topological vector space.
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For any function f on S having values in a set H the translate of f by
the element y in S is the function T f : S — H defined by the equation

Tyf(z) = flz+y)

for each = in S. A set of functions on S is called translation invariant if
all translates of each function in the set belong to the set, too. Clearly
any intersection of translation invariant sets is translation invariant. For a
given set I’ of complex valued functions the intersection of all translation
invariant sets including F' is called the translation invariant set generated
by F. For a given set F' of complex valued functions on S the intersec-
tion of all translation invariant subspaces of C(S) including F is called the
translation invariant subspace generated by F. Finally, for a given set F' of
complex valued functions on S the intersection of all translation invariant
closed subspaces of C(S) including F' is called the variety generated by F'.
This is obviously a translation invariant closed subspace of C(.S), the small-
est one of these properties, which includes F. In general, a variety on S
is a closed translation invariant linear subspace of C(S). If F' consists of a
single function, say F' = {f}, then the variety generated by F'is called the
variety generated by f. A nonzero variety is called proper. The statement
that “the complex valued function g on S belongs to the variety generated
by f” means that g is the pointwise limit of a net of functions, each of
them being a linear combination of translates of f. Functions in the vari-
ety generated by f are exactly the ones which can be approximated in the
sense of pointwise convergence by linear combinations of translates of f.

We remark that later we shall use the term
meaning in a different context.

The dual of C(S) can be identified with the space of all finitely sup-
ported complex Radon measures on G equipped with the weak*-topology
and it is denoted by M.(S). The pairing between C(S) and M,.(S) is
given by

3

‘variety” with a different

(fo) = / f(z) dpa(z)

for each f in C(S) and p in M.(S). The convolution between C(S) and
M. (S), further between M.(S) and M.(S) is defined in the usual way

(see e.g. [1]).
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For each variety in C(S) the set of all elements in M.(S) which are
zero on the elements of the variety is called the annihilator of the variety
and for any closed ideal in M. (S) the set of all elements in C(S) on which
every element of the ideal is zero is called the annihilator of the ideal. It is
easy to see (see e.g. [5]) that the relationship between varieties in C(S) and
closed ideals in M_.(S) is the following: the annihilator of any variety in
C(9) is a closed ideal in M. (S), which is proper if and only if the variety
is proper. Conversely, the annihilator of any closed ideal in M.(S5) is a
variety in C(S), which is proper if and only if the ideal is proper. Also,
the annihilator of the annihilator is the original proper variety or proper
closed ideal, respectively.

The basic building blocks of spectral synthesis are the additive and
exponential functions, as well as exponential monomials and exponential
polynomials. Additive functions on S are the homomorphisms of S into
the additive group of complex numbers. Polynomials on S are obtained
by substituting additive functions into complex polynomials in several
variables. Hence the general form of a polynomial on S is the follow-
ing: & — P(ai(x),a2(x),... ,an(z)), where P is a complex polynomial
in n variables and a1, as,...,a, are additive functions on S. Ezxponential
functions on S are the non-identically zero homomorphisms of S into the
multiplicative semigroup of complex numbers. If S is a group, then expo-
nential functions cannot take the zero value. An exponential monomial on
S is the product of a polynomial and an exponential function and linear
combinations of exponential monomials are called exponential polynomials.

The basic question of spectral analysis is about the existence of an
exponential function in a given proper variety. In the affirmative case
we say that spectral analysis holds for the given wvariety, and if spectral
analysis holds for each variety then we say that spectral analysis holds in
the semigroup. The basic problem of spectral synthesis is if the exponential
monomials in a given variety span a dense subvariety. In the affirmative
case we say that spectral synthesis sis holds for the given variety, and if
spectral synthesis holds for each variety then we say that spectral synthesis
holds in the semigroup. For more about spectral analysis and spectral
synthesis see e.g. [5] and the references in it. In this paper we will consider
the special cases S = Z"™ and S = N" only.

Let n be a fixed positive integer. For each z = (21, 22,...,2,) in C"
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and for each multi-index o = (o, ag,...,a,) in N” we will use the no-
tation z* = 2{"257 ... 2% and o! = ajlas!... ). If P is any complex
polynomial in n variables, that is, any element of Clz] = Clz1, 22, ..., 2],

the ring of all complex polynomials in n variables, then the notation for the
differential operator P(9) = P(01,0a,...,0,) has the obvious meaning.

Using the simple ideas similar to those in the proofs of Theorem 6.10
and 6.11 in [5], p. 57, we have that any complex polynomial p on Z" or
on N" is actually an ordinary complex polynomial in n variables and any
exponential function m on Z™ or on N” has the form

m(z1,22, ..., o) = ma(w1)ma(w2) . .. mp(Tn)
for all z1,x2,...,2, in Z or N with some exponentials of Z or N
(1t = 1,2,...,n). However, in contrast to the case of Z, on N we have

a special exponential mgy which is 1 for z = 0 and is 0 for x # 0. We shall
use the notation mg(x) = 0% for this exponential which is correct if we
agree on 0 = 1. This means that the exponentials of N” have the form

O\ T1\T2 T
m(zT1,T2,...,Tn) = ATTAGE AT

for each x1, x9, ..., 2, in N with arbitrary complex numbers A1, Ag, ..., Ay.
Hence the set of all exponentials of N can be identified with C". We shall
use the notation A? for the product A\7*A5% ... AE» if X = (A1, Ag, ..., Ap)
and x = (r1,x2,...,T,). For any finitely supported measure p in M.(N")
we will use its Fourier—Laplace-transform which is defined by

A = [N du(o)

for each A in C". This is a complex polynomial in n variables. Obviously
any complex polynomial in n variables is the Fourier—Laplace-transform
of some finitely supported measure on N, hence the ring (actually alge-
bra) of all Fourier-Laplace-transforms of finitely supported measures on
N™ can be identified with the ring C[z1, 29, ..., 2z,,]. Basically, the Fourier—
Laplace-transformation p +— p identifies M.(N") with the polynomial ring
Clz1, 22, ..., 2n). The exponential corresponding to A belongs to a variety
if and only if A is a common root of the polynomials corresponding to the
annihilator ideal of the variety. By Hilbert’s Nullstellensatz the polyno-
mials in any proper ideal in Clz1, 29, ..., 2z,] have a common root (see e.g.
[6]), thus we have the following result.
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Theorem 1. Spectral analysis holds in N™.

It turns out that spectral synthesis also holds in N”. To verify this
statement one needs the famous Lasker—Noether-theorem on primary de-
composition (see [6]), which states that in C|zy, 22,...,2,] each proper
ideal is the intersection of finitely many primary ideals. Using this theo-
rem, a slight modification of the proof of Lefranc’s theorem in [2] gives the
following result.

Theorem 2. Spectral synthesis holds in N™.

2. Spectral synthesis and polynomial ideals

Characterization of polynomial ideals in several variables is the content
of the Ehrenpreis—Palamodov theorem (see [4], Theorem 10.12, p. 141).
One of its consequences is the following theorem (see [4], Theorem 10.13,
p. 142).

Theorem 3. Given any primary ideal I in the ring of complex poly-
nomials in n variables there exist differential operators with polynomial
coefficients

Ai(z,0) = Z p;-(.’bl,.’l/’g, . ,xn)ﬁflﬁgg . 87]1"
J

for i = 1,2,...,r with the following property: a polynomial f lies in the
ideal I if and only if the result of applying A;(x,0) to f vanishes on the
(irreducible) variety of I fori=1,2,...,r.

We recall that the variety of a polynomial ideal is the set of all com-
mon zeros of the polynomials in the ideal. The differential operators
Aq(z,0), A2(x,0),..., A (z,0) are called Noetherian operators for the pri-
mary ideal I. An algorithm for computing Noetherian operators for a
given primary ideal is given in [3]. Here we present another approach to
this problem based on spectral synthesis on N and we present a simpler
method for finding Noetherian operators.

We have seen in the previous section that the ring of complex polyno-
mials C[z1, 22, ..., 2z, can be identified with M.(N"), the dual of C(N"),
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the space of all complex valued functions on N" equipped with the topol-
ogy of pointwise convergence. The weak*-topology on M.(N") is identical
with the topology on C[z1, 29, . . ., z,] corresponding to coefficient-wise con-
vergence. Now we describe the identification between Clzq, 29, ..., 2,] and
M. (N™) in more details.

Let p be a complex polynomial in C[zy, 22, ..., 2,]. Writing z for the
vector (21,22, ...,2,) the polynomial p can be written in the form

1
pe)= 3 Sop(0)"
aeNr

for all z in C™, where a! = ajlas!...a,!. Then the linear functional or
finitely supported measure p, corresponding to p effects on a function f
in C(N") in the following way:

iy f) = 3 00 f(0).

aeN”

Obviously, the convolution of y, and p, corresponds to p-r. We observe
that

Ao = (ppla) ) = 32 S0 (O = (),
aeN”?

hence the Fourier-Laplace-transform of p, can be identified with p. This
means that we can simply write p for .

Theorem 4. Let I be an arbitrary primary ideal in the polynomial
ring C[z1, 22, ..., 2y). Then there exists a nonempty set P of linear dif-
ferential operators with polynomial coefficients such that a polynomial p
belongs to I if and only if

P(&,0)p(§) =0 (1)
holds for each £ in the variety of I and for each P in P.

(This means that the differential operators in P have the form as it was
given in Theorem 3.)

PROOF. Let p be a polynomial in C[z1, 29, ..., 2,]. We have

) = Y 0

aeN”
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hence )
16 — — o« Bra—pB
) = D —a"p(0)l)' X7,
aeNn
where [a]? denotes the product [a;]* [an]® ... [o,]?* with the usual nota-

tion [oy)% = (o —1)... (0 — B + 1) for i = 1,2,...,n. It follows

Vol = 3 —0p(0)]al’A".

aeN”

We consider an exponential monomial ¢ : N* — C having the general form

with some complex polynomial P in n variables and A in C™. The polyno-
mial P has a unique representation in the form

P(a)= ) csla)?,

BeEN™

which implies

eVt = 3 i@ap(O)P(a))\o‘.

BeEN™ aeNn

Suppose that j, annihilates ¢, that is (u,, ¢) = 0. This means

(1 0) = 32 20" p(0) Pla)e® = 0,

aeN”

or

> epe?07p(e) = 0. (2)

BeEN™

Suppose now that the primary ideal I is given and its irreducible
variety is V', which is nonempty by Hilbert’s Nullstellensatz (that is, by
spectral analysis on N™.) By Theorem 2 the linear hull of all exponential
monomials of the form ¢ is dense in the annihilator of I. This means
that p belongs to the closure of I if and only if p satisfies a system of
equations of the form (2), corresponding to the points ¢ in the variety of I.
To complete our proof it is enough to show that in the given topology on
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M (N") any ideal is closed. It is obvious that the given topology is exactly
the topology of coefficient-wise convergence of polynomials. On the other
hand, if I is any proper ideal, then it is finitely generated, by Hilbert’s
Basis Theorem (see e.g. [6]). Let fi, fa,..., fnv be a Groebner-basis of I
with respect to any fixed monomial ordering and let R denote the operator
on C|z1, 29, ..., z,) mapping each polynomial to its remainder with respect
to the given Groebner-basis. Then R is linear and its kernel is exactly I.
On the other hand, analyzing the division algorithm, it is clear that R
is continuous with respect to the topology of coefficient-wise convergence:
the coefficients of the remainder are continuous functions of the coefficients
of the original polynomial. It follows that the kernel of R is closed and our
theorem is proved. O

Theorem 5. Let I be an arbitrary proper ideal in the polynomial
ring C[z1, 22, ..., zy|. Then to any irreducible variety V; of the associated
primes corresponding to the primary decomposition of I there exists a
nonempty set P; of linear differential operators with polynomial coefficients
such that a polynomial p belongs to I if and only if

P(£,0)p(§) =0 (3)
holds for each £ in V; and for each P in P;.

PRrROOF. The statement follows from the Lasker—Noether Primary De-
composition Theorem (see e.g. [6]), which says that any proper ideal in the
polynomial ring is the intersection of finitely many primary ideals. O

In the case n = 1 any proper ideal in C[z] is a principal ideal, hence
its variety V is a nonempty finite set:

V= {517527 R 7516}7
where the complex numbers &1,&s,...,& are the different roots of the
generating polynomial of I with positive multiplicities mq,mo, ..., mg.

These numbers, as singletons, represent the varieties of the associated
primes. In this case P¢; can be taken as the set of differential operators
{1,D,D?, ..., D™~} for j =1,2,...,k, where D is the operator of dif-
ferentiation. The condition (3) means that a polynomial p belongs to I
if and only if its derivatives p(® for i = 0,1,... ,m; — 1 vanish at ¢; for
i=12,... k.
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3. Noetherian operators of polynomial ideals

Now we describe the sets of polynomials P for a given proper ideal I
in Clz1,22,...,2,]. We need the following simple result.

Theorem 6. Let P, f, g be given polynomials in Clz1, z2,. .., zp].
Then we have

POV -g)= 3 0" F (@ P)O). (4)

aeN"

PROOF. The statement is obvious if P is a monomial of the form
P(z) = 2” by Leibniz’s Rule:

|
P(fg)= Y o0

et al(f — a)!
Hence the general statement follows. O

Let & be a fixed point in the variety V' of I and let P¢(I) be the set of
all polynomials P in Clz1, 22, ..., 2,] for which

P0)f(€) =0

holds for each f in I. Obviously P¢([) is a linear space of polynomials. By
the following theorem it is also closed under differentiation: if P belongs
to Pe(1) then 0*P belongs to P¢(I) for any multi-index ov.

Theorem 7. Let I be a proper ideal in C|z1, 29, ..., 2, and let £ be
a common zero of all polynomials in I. Then the set of all polynomials P
in Clz1, 22, ..., 2,] which satisfy

P)f(§) =0 ()

for all f in I is a nonzero translation invariant linear space closed under
differentiation. Conversely, if P is any nonzero linear space of polynomials,
which is closed under differentiation then the set of all polynomials f
satisfying (5) with some fixed § in C" is a proper ideal.

PROOF. Suppose first that the polynomial P satisfies (5) for any f
in I. Fix f in I and let g(z) = =1, then g - f is in I and we have by
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Theorem 6
1
0=P)lg- fI(€) =) —0"9(&)[0"P]f(¢)

«

=& [PO)fIE) + [01P(O)If(E),

which implies that 01 P satisfies (5) for any f in I. By iteration we obtain
that the given linear space of polynomials is closed under differentiation.
It is nonzero, because by Hilbert’s Nullstellensatz, it includes all constant
polynomials. On the other hand, using the Newton Interpolation Formula
and the Taylor Formula we see that a linear space of polynomials is closed
under differentiation if and only if it is translation invariant: derivatives
are linear combinations of translates and translates are linear combinations
of derivatives.

Conversely, suppose now that I is the set of all polynomials f satis-
fying (5) with some fixed £ in C" for any P from a nonzero linear space
of polynomials P, which is closed under differentiation. As P includes all
constant polynomials, hence I is proper. Clearly, I is closed under addi-
tion. On the other hand, if f is in I and g is an arbitrary polynomial, then
by Theorem 6 we have for any P in P

P@)(g- NE) =Y 200 PO)LIE) =0,

as P is closed under differentiation. Hence g- f isin I and [ is an ideal. [
The following theorem gives a complete description of P¢(I).

Theorem 8. Let I be a proper ideal in Clz1, 2o, ..., 2,] and let £ be
a point in the variety V of I. Then the polynomial P belongs to P¢(I) if
and only if
1
> LI P(:) =0 (©

aeNn?
holds for each f in I and for all z in C".

PROOF. Obviously we may suppose that I # {0}. First suppose that
P satisfies (6) for each f in I and for each z in C". For any multi-index «
and for any z in C" we let ¢o(2) = (z — £)®. Then it follows

[P(9)4al(§) = 0°P(0), (7)
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P)f(§) = P(9)

> ﬁaaf@qa] ©

aeN™

= 3 L HOP@IE = Y 0 P0) =0

aeNn aeN”

for any f in I by (6). This means that P is in P¢(I).
Conversely, suppose that P is in P¢(I). Then we have as above

0=P(0)f(&) = P(9)

> ﬁaaf@qa] ©
acNn?

= Y LOPOIE = Y 4 TEFP).

aeNn aENn

As P¢ (1) is translation invariant, this latter equation holds for any trans-
late of P. Replacing P by w +— P(w + z) our statement follows. O

By Theorem 4 and Theorem 5 Noetherian operators for a given proper
ideal I (which are not unique) can be found in the following way. Suppose
that f1, fa,..., fn is a Groebner-basis for I and the irreducible varieties
of the associated primes in the primary decomposition of I are the sets
Vi,Va,...,V, in C". We consider the partial differential equations (6)
with f; instead of f for ¢ =1,2,..., N and with { in V} for j =1,2,...,r.
The polynomial solutions P = P(&, z) of this system depend polynomially
on &, as it is shown by (2). These polynomial solutions form the differen-
tiation invariant linear spaces of polynomials for each Vj, independently.
Then the linear differential operators with polynomial coefficients P(£, 9)
form a set of Noetherian operators. The way, how to choose a finite num-
ber of them depends on the special form of the corresponding systems of
partial differential equations. If each of them has a finite dimensional so-
lution space, then we simply take bases of them, and since their number r
is finite, the problem is solved. If any of them has an infinite dimensional
solution space, then in the general polynomial solution arbitrary polyno-
mials appear. More exactly, there are a finite number of polynomials such
that any polynomial of them is a solution, too. In this case it turns out,
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that instead of “any polynomial” we can take a polynomial of degree large
enough to obtain a finite number of Noetherian operators.

Here we present a simple example to illustrate the method. The ex-
ample is taken from [4].

Let I be the ideal generated by the polynomials zz — y, y? and z2.
Then [ is primary to the ideal generated by y and z. The variety of I is
obtained by solving the system zz—y = 0, y?> = 0, 22 = 0 and the solution
set is the z-axis. We write V = {(£,0,0)|¢ € C}. For any (£,0,0) in V
we need the Taylor-series of the three generating polynomials at (£,0,0),
by (6). We have

zz—y=(r—§z+& —vy, Yy =Y, Z =z,

and hence, by replacing x — £ by 91, y by 02 and z by 03 the system of
partial differential equations (6) for the Noetherian operators at (£,0,0)
takes the form

(0105 + £03 — O02) P(z,y,2) =0,
3P (z,y,z) =0, 3P (x,y,2) = 0.
By a straightforward computation we have that P has the form
P(a,y,2) = A(z) + B(@)(&y + 2) + B (x)y

with arbitrary polynomials A, B. This means, that any Noetherian oper-
ator for I has the form

P(01,02,05) = A(01) + B(01)(£02 + 93) + B'(01) 02 (8)

with arbitrary polynomials A, B. However, it is obvious that if the two
operators 1 and £0 + 03 annihilate a polynomial f at (£,0,0), then so
does any operator of the form (8). Hence we can take these two operators
as Noetherian operators for I, which means that a polynomial f belongs
to I if and only if it satisfies

f(x,0,0) =0, 20 f(2,0,0) + 03 f(2,0,0) =0

for any complex number z.
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