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Tool supported performance modelling of finite-source
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Abstract. In this paper the tool supported performance modelling of a sin-
gle server homogeneous finite-source retrial queueing system is presented. The
server is assumed to be subject to random breakdowns depending on whether
it is busy or idle. The failure of the server may block or unblock the system’s
operations and the service of the interrupted request may be resumed or the call
can be transmitted to the orbit. All random variables involved in the model con-
structions are supposed to be exponentially distributed and independent of each
other.

The novelty of investigations is the different type of non-reliability of the
server. The MOSEL (Modeling, Specification and Evaluation Language) tool, de-
veloped at the University of Erlangen, Germany, was used to formulate and solve
the problem and the main performance and reliability measures were derived and
graphically displayed. Several numerical calculations were performed to show the
effect of the non-reliability of the server on the mean response times of the calls,
the overall utilization of the system, and the mean number of calls staying at the
server or in the orbit.
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1. Introduction

Over the last decade considerable effort has been put in the devel-
opment of techniques to assess the performance and the dependability
of computer and communication systems in an integrated way. This so-
called performability modelling becomes especially useful when the system
under study can operate partially, which is for instance the case for fault-
tolerant computer systems and distributed systems. A prerequisite of a
more practical but not less important nature is the availability of software
tools to support the modelling techniques and to allow system designers
to incorporate the new techniques in the design process of systems. Since
performability modelling requires many aspects of a system to be spec-
ified, high requirements should be posed on modelling tools. Moreover,
these tools should be structured such that the models can be specified at a
level that is easy to understand for a system designer, and that the math-
ematical aspects are hidden as much as possible. The output of the tool
should also be such that it can be understood with only limited knowledge
of the underlying mathematical model [8], [9].

Performance modelling tools usually have their own textual or graph-
ical specification language which depends largely on the underlying mod-
elling formalism. The different syntax of the tool-specific modelling lan-
guages implies that once a tool has been chosen it will be difficult to switch
to another one as the model has to be rewritten using a different syntax.
On the other hand the solution of the underlying stochastic process is per-
formed in most tools by the same standard numerical algorithms. Starting
from these observations the development of MOSEL is based on the follow-
ing idea: Instead of creating another tool with all the components needed
for system description, state space generation, stochastic process deriva-
tion, and numerical solution, we focus on the formal system description
part and exploit the power of various exisiting and well tested packages for
the subsequent stages. MOSEL is a modelling environment which comprises
a high-level modelling language that provides a very simple way for system
description. In order to reuse existing tools for the system analysis, the en-
vironment is equipped with a set of translators which transform the MOSEL
model specification into various tool-specific system descriptions [2].
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The main features of the MOSEL-environment are the following:

¢ The modeller inspects the real-world system and generates a high-level
system description using the MOSEL specification language. He also
specifies the desired performance and reliability measures using the
syntax provided by MOSEL. He passes the model to the environment
which then performs all following steps without user interaction.

e The MOSEL environment automatically translates the MOSEL model
into a tool-specific system description, for example a CSPL-file suitable
to serve as input for SPNP.

e The appropriate tool (i.e. SPNP) is invoked by the MOSEL-environment.

e The state space of the model is generated by the tool according to
the semantic rules of its modelling formalism out of the static model
description.

e The semantic model is mapped onto a stochastic process.

o The stochastic process is solved by one of the standard numerical solu-
tion algorithms which are part of the tool. The results of the numerical
analysis are saved in a file with a tool-specific structure.

e The MOSEL-environment parses the tool-specific output and generates
a result file (sys.res) containing the performance and reliability mea-
sures which the user specified in the MOSEL system description. If the
modeller requested graphical representation of the results, a second
file (sys.igl) is generated by MOSEL [2], [5].

To show an example for using MOSEL we analyze a retrial queueing system.
Retrial queues with quasi-random input are recent interest in modeling of
magnetic disk memory systems [13], cellular mobile networks [14], and
local-area networks with nonpersistent CSMA/CD protocols [11] and star
topology [10], [12], [7].

Since in practice some components of the systems are subject to ran-
dom breakdowns it is of basic importance to study reliability of retrial
queues with server breakdowns and repairs because of limited ability of re-
pairs and heavy influence of the breakdowns on the performance measures
of the system. For related literature the reader is referred to the works [4],
[1], [15] where infinite-source non-reliable retrial queues were treated.
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In this paper, finite-source retrial queueing systems with the following
assumptions are investigated. Consider a single server queueing system,
where the primary calls are generated by K, 1 < K < oo homogeneous
sources. The server can be in three states: idle, busy and failed. If the
server is idle, it can serve the calls of the sources. Each of the sources can be
in three states: free, sending repeated calls and under service. If a source
is free at time ¢ it can generate a primary call during interval (¢,¢ + dt)
with probability Adt + o(dt). If the server is free at the time of arrival of
a call then the call starts to be served immediately, the source moves into
the under service state and the server moves into busy state. The service
is finished during the interval (¢,t + dt) with probability pdt 4+ o(dt) if the
server is available. If the server is busy at the time of arrival of a call,
then the source starts generation of a Poisson flow of repeated calls with
rate v until it finds the server free. After service the source becomes free,
and it can generate a new primary call, and the server becomes idle so it
can serve a new call. The server can fail during the interval (t,t+ dt) with
probability ddt + o(dt) if it is idle, and with probability ~vdt + o(dt) if it
is busy. If § = 0,7 > 0 or § = v > 0 active or independent breakdowns
can be discussed, respectively. If the server fails in busy state, it either
continues servicing the interrupted call after it has been repaired or the
interrupted request transmitted to the orbit. The repair time is exponen-
tially distributed with a finite mean 1/7. If the server is failed two different
cases can be treated. Namely, blocked sources case when all the operations
are stopped, that is neither new primary calls nor repeated calls are gener-
ated. In the unblocked (intelligent) sources case only service is interrupted
but all the other operations are continued (primary and repeated calls can
be generated). All the times involved in the model are assumed to be
mutually independent of each other.

Our main objective is to continue the investigations which were started
in [3] but because of page limitations only some results were presented.
The mean number of requests staying in the orbit or in the service, overall
utilization of the system and the mean response time of calls are displayed
as the function of server’s failure and repair rates. To achieve this goal
MOSEL is used to formulate and solve the problem.

The paper is organized as follows. In Section 2 the full description of
the model by the help of the corresponding Markov chain is given. Then,
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the main performance and reliability measures are derived that can be
obtained using MOSEL tool. In Section 3 several numerical examples are
presented and some comments are made. Finally, the paper ends with a
Conclusion.

2. The M/M/1//K retrial queue
with unreliable server

The system state at time ¢ can be described with the process X (t) =
(Y(t);C(t); N(t)), where Y(t) = 0 if the server is up, Y (¢) = 1 if the
server is failed, C(t) = 0 if the server is idle, C(¢) = 1 if the server is busy,
N(t) is the number of sources of repeated calls at time ¢. Because of the
exponentiality of the involved random variables this process is a Markov
chain with a finite state space. Since the state space of the process (X(¢),
t > 0) is finite, the process is ergodic for all reasonable values of the rates
involved in the model construction, hence from now on we will assume that
the system is in the steady state.

We define the stationary probabilities:

Pgi7;j) = lim P(Y(t) =g, C(t) =7, N(t) = )

qg=0,1, r=0,1, 7=0,...,K",

K-—-1 for blocked case,

where K™ = { K—r for unblocked case.

Knowing these quantities the main performance measures can be obtained
as follows:

o Utilization of the server

o Utilization of the repairman
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Awailability of the server

1 K*
ZZ (0,7,7) =1 —Ug.

r=0 j=0

Mean number of calls staying in the orbit or in service

1 1 K* 1 K-1
M=EN®+CHI=>_ Y > jPlgri)+Y_> Plg1,5).
q=0 r=0 j=0 q=0 j=0
o Utilization of the sources
EIK-C(H)~N(t);Y (1)=0) for blocked case
K )
Uso = K—M
T for unblocked case.

Owverall utilization

Uo=Us+ KUgp + Ug.

Mean rate of generation of primary calls

5 AE[K —C(t) — N(t);Y(t) = 0] for blocked case,
a AE[K — C(t) — N(t)] for unblocked case.

e Mean response time

E[T] = M/\.

3. Numerical results

In this section we consider some sample numerical results to illustrate
graphically the influence of the non-reliable server on the mean response
time, overall utilization of the system and mean number of calls staying in
the orbit or in the service. In each case the independent failure is consid-
ered and different comparisons are made according to service continuation
(resumed, transmitted) and system operations (blocked, unblocked).
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3.1. The MOSEL implementation. Because of the fact that the state
space of the describing Markov chain is very large (especially in the hetero-
geneous model we would like to investigate later), it is difficult to calculate
the system measures in the traditional way of solving the system of steady-
state equations. To simplify the procedure and to make our study more
usable in practice, we used the software tool MOSEL to formulate the model
and to calculate the main performance measures. By the help of MOSEL
we can use various performance tools (like SPNP — Stochastic Petri Net
Package) to get these measures.

In this section we show the base MOSEL program and the explana-
tion of its main parts without the technical details of programming. This
program belongs to the case of continued service after server’s repair and
request’s generation is blocked during the server repairing. It does not
contain the picture section, which is needed to generate various graphical
representations of the measures. The figures in the next section are auto-
matically generated by the tool with the corresponding picture part. In
the MOSEL program we used the following terminology: The server and
the sources are referred to as a CPU and terminals, respectively.

/* retrialnr-hom-cpu-cont.msl begins */

#define NT 6

VAR double prgen;

VAR double prretr;

VAR double prrun;

VAR double cpubreak_idle;

VAR double cpubreak_busy;

VAR double cpurepair;

enum cpu_states {cpu_busy, cpu_idle};
enum cpu_updown {cpu_up, cpu_down};

NODE busy_terminals[NT] = NT;

NODE retrying_terminals[NT] = O;

NODE waiting_terminals[1] = O;

NODE cpu_state[cpu_states] = cpu_idle;
NODE cpulcpu_updown] = cpu_up;

IF cpu==cpu_up FROM cpu_idle, busy_terminals
TO cpu_busy, waiting_terminals W prgen*busy_terminals;
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IF cpu==cpu_up AND cpu_state==cpu_busy FROM busy_terminals

TO retrying_terminals W prgen*busy_terminals;
IF cpu==cpu_up FROM cpu_idle, retrying_terminals

TO cpu_busy, waiting_terminals W prretr*retrying_terminals;
IF cpu==cpu_up FROM cpu_busy, waiting_terminals

TO cpu_idle, busy_terminals W prrun;
IF cpu_state==cpu_idle FROM cpu_up TO cpu_down W cpubreak_idle;
IF cpu_state==cpu_busy FROM cpu_up TO cpu_down W cpubreak_busy;
FROM cpu_down TO cpu_up W cpurepair;
et Results --——--- */
RESULT>> if (cpu==cpu_up AND cpu_state==cpu_busy) cpuutil += PROB;
RESULT>> if (cpu==cpu_up) goodcpu += PROB;
RESULT if (cpu==cpu_up) busyterm += (PROB*busy_terminals);
RESULT>> termutil = busyterm / NT;
RESULT>> if (cpu==cpu_up) retravg += (PROB*retrying_terminals);
RESULT if(waiting_terminals>0) waitall += (PROB*waiting_terminals);
RESULT if(retrying_terminals>0)

retrall += (PROB*retrying_terminals);

RESULT>> resptime = (retrall + waitall) / NT / (prgen * termutil);
RESULT>> overallutil = cpuutil + busyterm;
/* retrialnr-hom-cpu-cont.msl ended */

In the declaration part we define the number of terminals (NT'), this is
the only program code line, that must be modified when modeling larger
systems. The terminals have three states: busy (primary call generation),
retrying (repeated call generation) and waiting (job service at the cpuv).
The cpU has two states: idle and busy, and it can be up or failed in both
states. We define the three parameters for the terminals: prgen denotes the
rate of primary call generation, prretr references to the rate of repeated
call generation and prrun denotes the service rate. The cpubreak_idle,
cpubreak_busy and cpurepair variables denote the failure rate in the two
CPU states and the repair rate.

The node part defines the nodes of the system. Our queueing network
contains 5 nodes: one node for the number of busy, retrying and waiting
terminals, respectively, and two nodes for the cpu. The cPU is idle and
up and all the terminals are busy at the starting time.

The transition part describes how the system works. The first tran-
sition rule defines the successful primary call generation: the CPU moves
from the idle state to busy and the terminal from busy to waiting. The
second rule shows an unsuccessful primary call generation: if the CPU is
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busy when the call is generated then the terminal moves to state retrying.
The third rule handles the case of a successful repeated call generation:
the cPU moves from the idle state to busy and the terminal from retrying
to waiting. The fourth rule describes the request service at the cpu. The
fifth and sixth rules describe the CPU fail in idle and busy state. The last
rule shows the CPU repair.

Finally, the result part calculates the requested output performance
measures.

3.2. Numerical examples. We used the tool SPNP which was able to
handle the model with up to 126 sources. In this case, on a computer
containing a 1.1 GHz processor and 512 MB RAM, the running time was
approximately 1 second.

The results in the reliable case (with very low failure rate and very
high repair rate) were validated by the (a little modified) Pascal program
for the reliable case given in [6], on pages 272-274. See Table 1 for some
test results. The non-reliable case was tested with the non-reliable FIFO
model, see Table 2.

In Figures 1-3 we can see the mean response time, the overall utiliza-
tion of the system and mean number of calls staying in the orbit or in the
service for the reliable and the non-reliable retrial system when the server’s
failure rate increases. In Figures 4-6 the same performance measures are
displayed as the function of increasing repair rate. The input parameters
are collected in Table 3.

retrial (cont.) retrial (orbit)  reliable [6]

Number of sources: 5 ) )
Request’s generation rate: 0.2 0.2 0.2
Service rate: 1 1 1
Retrial rate: 0.3 0.3 0.3
Utilization of the server: 0.5394868123 0.5394867440 0.5394867746
Mean response time: 4.2680691205 4.2680667075 4.2680677918

Table 1. Validations in the reliable case
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retrial (cont.) retrial (orbit) mnon-rel. FIFO

Number of sources: 3 3 3
Request’s generation rate: 0.1 0.1 0.1
Service rate: 1 1 1
Retrial rate: le+25 le+25 —
Server’s failure rate: 0.01 0.01 0.01
Server’s repair rate: 0.05 0.05 0.05
Utilization of the server: 0.2232796561 0.2232796553  0.2232796452
Mean response time: 1.4360656331 1.4360656261 1.4360655471

Table 2. Validations in the non-reliable case

K A I v o,y T
Figure1 6 0.8 4 0.5 x axis 0.1
Figure2 6 0.1 05 05 xaxis 0.1
Figure 3 6 0.1 05 0.05 xaxis 0.1
Figure4 6 0.8 4 0.5 0.05  x axis
Figure5 6 0.05 0.3 0.2 0.05 X axis
Figure 6 6 0.1 05 0.05 0.05  x axis

Table 3. Input system parameters

3.3. Comments. In Figure 1, we can see that in the case when the re-
quest returns to the orbit at the breakdown of the server, the sources will
have always longer response times. Although the difference is not consid-
erable it increase as the failure rate increase. The almost linear increase
in E[T] can be explained as follows. In the blocked (non-intelligent) case
the failure of the server blocks all the operations and the response time
is the sum of the down time of the server, the service and repeated call
generation time of the request (which does not change during the failure)
thus the failure has a linear effect on this measure. In the intelligent case
the difference is only that the sources send repeated calls during the server
is unavailable, so this is not an additional time.

In Figure 2 and Figure 5 it is shown how much the overall utilization
is higher in the intelligent case with the given parameters. It is clear that
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the continued cases have better utilizations, because a request will be at
the server when it has been repaired.

In Figure 3 we can see that the mean number of calls staying in the
orbit or in service does not depend on the server’s failure rate in continuous,
non-intelligent case, it coincides with the reliable case. It is because during
and after the failure the number of requests in these states remains the
same. The almost linear increase in the non-continuous, non-intelligent
case can be explained with that if the server failure occurs more often the
server will be idle more often after repair until a source repeats his call.

In Figure 4, we can see that if the request returns to the orbit at the
breakdown of the server, the sources will have longer response times like
in Figure 1. The difference is not considerable too, and as it was expected
the curves converge to the reliable case.

In Figure 6, it can be seen that the mean number of calls staying in the
orbit or in service does not depend on the server’s repair rate in continuous,
non-intelligent case, it coincides with the reliable case like in Figure 3. It
is true for the non-continuous, non-intelligent case too, which has more
requests in the orbit on the average because of the non-continuity.
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4. Conclusions

In this paper a finite-source homogeneous retrial queueing system is
studied with the novelty of the non-reliability of the server. The MOSEL
tool was used to formulate and solve the problem, and the main per-
formance and reliability measures were derived and analyzed graphically.
Several numerical calculations were performed to show the effect of server’s
breakdowns and repairs on the mean response times of the calls, on the
overall utilization of the system and on the mean number requests staying
in the orbit or in service.
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