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On the Lie derivative of structure Jacobi operator
of real hypersurfaces in complex projective space

By JUAN DE DIOS PÉREZ (Granada) and FLORENTINO G. SANTOS (Granada)

Abstract. We prove the non-existence of real hypersurfaces in CPm, m ≥ 3,
such that its structure Jacobi operator has Lie derivative equal to zero.

1. Introduction

We will consider connected real hypersurfaces M in complex projective
space CPm, m ≥ 3, endowed with the metric of constant holomorphic
sectional curvature equal to 4.

The problem of classifying such hypersurfaces is still open, although
several partial results have been obtained in works due to Lawson, [11],
Takagi, [18] and [19], Okumura, [16], Maeda, [12], Kimura, [8], Kon,
[9], Cecil and Ryan, [2], Montiel, [13], Montiel and Romero, [14],
and Berndt, [1], among others. In [15] there is a survey of the most
important results in this line.

The fact of a Riemannian manifold being a real hypersurface in CPm

yields hard restrictions to its intrinsic geometry. For example, it cannot
be Einstein, thus its sectional curvature is not constant. It neither can be
a locally symmetric space.
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Therefore some weaker intrinsic conditions have been studied (Ricci-
parallelness, [9], harmonic curvature, [10], cyclic-Ryan, [6], and so on).

These results are very important steps in the problem of classification
of such submanifolds but there are still many open problems, for instance,
if the structure vector field ξ is not principal. That is, following Berndt’s
notation, if the real hypersurface is not Hopf.

The Jacobi operator RX with respect to a unit vector field X is defined
as RX = R(. ,X)X, where R is the curvature tensor field on M . Then we
see that RX is a self-adjoint endomorphism of the tangent space. It is
related to Jacobi vector fields, which are solutions of the second order
differential equation (the Jacobi equation) ∇γ̇(∇γ̇Y )+R(Y, γ̇)γ̇ = 0 along
a geodesic γ in M . It is well-known that the notion of Jacobi vector
fields involves many important geometric properties. Cho and Ki, [3],
show that the Jacobi operator Rξ with respect to the structure vector
field ξ of a geodesic hypersphere is represented by Rξ = k(I − η ⊗ ξ)
where I denotes the identity transformation and k is a constant and they
give a local structure theorem of a real hypersurface of CPm satisfying
Rξ = k(I − η ⊗ ξ) where k is a function.

These authors study in [3] and [4] real hypersurfaces of CPm in terms
of the commutativity of Rξ and φ when Aξ is a principal curvature vector
field on M . In [3] they also study Hopf real hypersurfaces of CPm such that
the Jacobi operator Rξ is diagonalizable by a parallel orthonormal frame
field along each trajectory of ξ and at the same time their eigenvalues are
constant along each trajectory of ξ.

In this line of characterizing real hypersurfaces of CPm in terms of Rξ

it is natural to consider the problem about the parallelism and the in-
variance, or Lie parallelism. In [17] we prove the non-existence of real
hypersurfaces in nonflat complex space forms with parallel structure Ja-
cobi operator. By the expression of Rξ in a geodesic hypersphere of CPm

it can be proved that (LXRξ)φX = −2 cot3 rξ, where r is the radius of the
hypersphere, 0 < r < π/2, k = cot2 r and X is a tangent vector field on M

orthonormal to ξ. Then, Rξ is not Lie parallel for geodesic hyperspheres
of CPm.

The purpose of this paper is to classify real hypersurfaces in CPm

whose structure Jacobi operator is Lie parallel, that is its Lie derivative
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with respect to any tangent vector field vanishes. Concretely we will prove
the following

Theorem. There exist no real hypersurfaces in CPm, m ≥ 3, such

that LXRξ = 0, for every X tangent to M .

The theorem assures that there exist no real hypersurfaces in CPm,
m ≥ 3, such that every tangent vector field is a collineation for the struc-
ture Jacobi operator.

2. Preliminaries

Throughout this paper, all manifolds, vector fields, etc., will be con-
sidered of class C∞ unless otherwise stated. Let M be a connected real
hypersurface in CPm, m ≥ 2, without boundary. Let N be a locally de-
fined unit normal vector field of M . Let ∇ be the Levi–Civita conection
on M and (J, g) the Kaehlerian structure of CPm.

For any vector field X tangent to M we write JX = φX+η(X)N , and
−JN = ξ. Then (φ, ξ, η, g) is an almost contact metric structure on M .
That is, we have

φ2X = −X + η(X)ξ, η(ξ) = 1,

g(φX,φY ) = g(X,Y ) − η(X)η(Y ),
(2.1)

for vector fields X, Y tangent to M . From (2.1) we obtain

φξ = 0, η(X) = g(X, ξ). (2.2)

From the parallelism of J we get

(∇Xφ)Y = η(Y )AX − g(AX,Y )ξ (2.3)

and
∇Xξ = φAX (2.4)

for any vector fields X, Y tangent to M , where A denotes the Weingarten
endomorphism of the immersion. As the ambient space has holomorphic
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sectional curvature 4, the equations of Gauss and Codazzi are given re-
spectively by

R(X,Y )Z = g(Y,Z)X − g(X,Z)Y + g(φY,Z)φX − g(φX,Z)φY

− 2g(φX, Y )φZ + g(AY,Z)AX − g(AX,Z)AY,
(2.5)

and

(∇XA)Y − (∇Y A)X = η(X)φY − η(Y )φX − 2g(φX, Y )ξ (2.6)

for any vector fields X, Y and Z tangent to M , where R is the curvature
tensor of M .

In the sequel we shall call D the distribution on M given by all vectors
orthogonal to ξ at any point of M . We will need the following results

Theorem 2.1 ([7]). There exist no real hypersurfaces in CPm, m ≥ 2,
such that Aφ + φA = 0.

Theorem 2.2 ([17]). There exist no real hypersurfaces M in CPm,

m ≥ 3, such that the Weingarten endomorphism is given by Aξ = ξ + βU ,

where U is a vector field orthonormal to ξ, AU = βξ + (β2 − 1)U , AφU =
−φU , AX = −X for every tangent vector X orthogonal to Span{ξ, U, φU},
where β is a nonvanishing smooth function defined on M .

3. Some lemmas

Our hypothesis gives 0 = (LXRξ)Y = ∇X(Rξ(Y )) − ∇Rξ(Y )X −
Rξ(∇XY ) + Rξ(∇Y X) for any vector fields X, Y tangent to M . From
the equations in Section 2 this equation yields

− g(φAX,Y )ξ − g(ξ, Y )φAX + g(∇X(Aξ), ξ)AY + g(Aξ, φAX)AY

+ g(Aξ, ξ)∇X (AY ) − g(∇X(AY ), ξ)Aξ − g(AY, φAX)Aξ

− g(AY, ξ)∇X(Aξ) + g(ξ, Y )∇ξX − g(Aξ, ξ)∇AY X

+ g(AY, ξ)∇AξX − g(Aξ, ξ)A∇XY + g(∇XY,Aξ)Aξ

− g(∇Y X, ξ)ξ + g(Aξ, ξ)A∇Y X − g(∇Y X,Aξ)Aξ = 0. (3.1)
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Taking the scalar product of this equation and ξ we obtain

− g(φAX,Y ) + g(φAX,Aξ)g(AY, ξ) − g(AY, φAX)g(Aξ, ξ)

+ g(ξ, Y )g(∇ξX, ξ) − g(Aξ, ξ)g(∇AY X, ξ)

+ g(AY, ξ)g(∇AξX, ξ) − g(∇Y X, ξ) = 0

(3.2)

for any vector fields X,Y tangent to M .

Theorem 3.1. Let E be a subspace of D that is both holomorphic

and A-invariant. Let G = {X ∈ E | (φA + Aφ)X = 0} and let F be its

orthogonal complement in E. Then AX = σX for all X ∈ F where σ is

the number satisfying 1 + ασ = 0. Furthemore, there is a principal basis

for G of the form {Xi, φXi} with corresponding principal curvatures λi

and −λi. In particular, F and G are A-invariant.

Proof. Take any orthonormal principal basis S for E. Let V be
the vector space spanned by the elements of S that are actually in G.
The orthogonal complement, W of V (in E) is spanned by the remaining
vectors, namely those Y ∈ S satisfying (Aφ + φA)Y �= 0. Consideration
of (3.2) for X and Y in E yields g((I + αA)X, (Aφ + φA)Y ) = 0. In
particular, if X is one of the basis vectors spanning W , the corresponding
eigenvalue must be σ. (Otherwise we would have g(X, (Aφ+φA)Y ) = 0 for
all Y ∈ E and setting Y = (Aφ + φA)X would produce a contradiction.)
Since V is a subspace of G, we must have that F is a subspace of W .
Thus we have shown that A = σI on F . Consequently F and hence G

are A-invariant. The statement about the basis of G now follows from the
condition Aφ = −φA which holds on G. �

Let us suppose that ξ is principal (Aξ = αξ).
Let us call G = {X ∈ D/(φA + Aφ)X = 0}. We can decompose

Dp = Fp ⊕ Gp, for any p ∈ M , where at any p ∈ M , Fp is the orthogo-
nal complement of Gp in Dp. Thus from the above Theorem 3.1 G is a
holomorphic subspace of D at any point.

Then if F = {0}, in a neighborhood where M is a Hopf real hyper-
surface we have G = D and as (Aφ + φA)ξ = 0, Aφ + φA = 0 which is
impossible by Theorem 2.1.

If F �= {0} in p (this is true in a neighborhood of p), then as D is
holomorphic and A-invariant, by the above Theorem 3.1 we conclude that
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F is holomorphic and AX = σX for all X ∈ Fp where σ is the nonzero
number satisfying 1 + ασ = 0. But it is well-known that for a Hopf real
hypersurface such that X and φX are principal vectors in D with the same
principal curvature σ we have σ2 = ασ + 1 which contradicts 1 + ασ = 0.
Thus the case F �= 0 cannot occur and there are no Hopf real hypersurfaces
satisfying the hypothesis of the Main Theorem.

Therefore we suppose that there exist a unit U ∈ D such that Aξ =
αξ+βU , for a certain nonvanishing function β at least on a neighbourhood
of any point, that is, take a point where Aξ − g(Aξ, ξ)ξ �= 0 and work in a
neighborhood where this holds. From now on, every computation is made
locally.

Lemma 3.1. In the above conditions, AφU = −(1/α)φU and AU =
βξ + γU , where γ satisfies (αγ − 1)(αγ − (β2 − 1)) = 0.

Proof. We take Y = U , X = ξ in (3.1) and obtain αβg(AU,φU) = 0.
Thus either α = 0 or g(AU,φU) = 0. In (3.1) we take Y = φU and get

− g(AX,U)ξ + g(∇X(Aξ), ξ)AφU + βg(U, φAX)AφU + α∇X(AφU)

− α∇AφUX − αA∇XφU − αg(U,AX)Aξ + βg(∇XφU,U)Aξ

− g(∇φUX, ξ)ξ + αA∇φUX − αg(∇φUX, ξ)Aξ

− βg(∇φUX,U)Aξ = 0 (3.3)

for any vector field X tangent to M .
Take X = ξ in (3.3) and the scalar product by ξ. This yields

−β − αβg(AφU, φU) = 0. (3.4)

Thus α does not vanish and g(AφU, φU) = −(1/α). Similarly we get
g(AφU,U) = 0.

Take Y ∈ DU = D ∩ Span{U, φU}⊥ in (3.1) and the scalar product
by ξ. We have

−g(φAX,Y ) − αg(AY, φAX) − αg(∇AY X, ξ) − g(∇Y X, ξ) = 0 (3.5)

for any vector field X tangent to M . If in (3.5) we take X = ξ we obtain
αβg(AY, φU) = 0, for any Y ∈ DU . This and (3.4) give the result about
AφU . From (3.5), taking X = U we have

g(AU,φY ) + αg(AU,φAY ) = 0 (3.6)
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for any Y ∈ DU . If X = φU in (3.5) we get −αg(AY, φAφU)+
αg(φU, φA2Y ) + g(φU, φAY ) = 0, and taking AφU = −(1/α)φU we get

g(AU,AY ) = 0 (3.7)

for any Y ∈ DU . Take Y = U in (3.1) and the scalar product by ξ. Thus
for any vector field X tangent to M we obtain

−g(φAX,U) + β2g(φAX,U) − αg(AU,φAX)

−αg(∇AUX, ξ) + βg(∇AξX, ξ) − g(∇UX, ξ) = 0.
(3.8)

If in (3.8) we take X ∈ DU we get −αg(AU,φAX) + αg(X,φA2U) −
βg(X,φA2ξ)+ g(X,φAU) = 0, for any X ∈ DU . From (3.6) and (3.7) this
yields β2g(φX,AU) = 0, for any X ∈ DU . Thus AU ∈ Span{ξ, U}, that
is, for a certain smooth function γ, AU = βξ + γU .

Now take X = φU , Y = U in (3.1) and the scalar product by ξ. This
gives ((β2 − 1)/α)+ αg(AU,AU)−αβ2 −β2γ = 0. That is, (αγ − 1)(αγ −
(β2 − 1)) = 0, and this finishes the proof. �

Anyway, we obtain that DU is a holomorphic and A-invariant distri-
bution.

Lemma 3.2. With the above conditions, for any arbitrary tangent

vector X we get X(αγ − β2) = 0, that is, αγ − β2 is constant.

Proof. If we take in (3.1) Y = U and the scalar product by U , we
obtain the result. �

Lemma 3.3. If X ∈ DU is such that AX = λX, then:

1. X(β) = βg(∇UU,X)

2. X(γ) = (γ − λ)g(∇UU,X)

3. (φU)(β) + βg(∇UφU,U) = 1 + γα + 2(γ/α)

4. (φU)(γ) + (γ + (1/α))g(∇U φU,U) = β(γ − (2/α)).

Proof. Codazzi equation gives (∇XA)U − (∇UA)X = 0. If we de-
velop this equality and take the scalar product by ξ we obtain the first
equality and the scalar product by U gives the second one. Also Codazzi
equation yields (∇φUA)U −(∇UA)φU) = 2ξ. If we take the scalar product
by ξ, the third equality follows and the scalar product by U gives the last
one. �
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Lemma 3.4. If X ∈ DU is such that AX = λX, then:

1. X(α) + βg(∇ξX,U) = 0

2. X(β) + (γ − λ)g(∇ξX,U) = 0.

Proof. Codazzi equation gives (∇XA)ξ − (∇ξA)X = −φX. If we
develop this equality and take the scalar product by ξ we get the first
equation. Taking the scalar product by U we get the second one. �

Proposition 3.1. If Y ∈ DU is such that AY = λY , for every X

tangent to M we get (1 + αλ)g(X, (φA + Aφ)Y ) = 0.

Proof. In (3.1) we take Y ∈ DU such that AY = λY , and X tangent
to M . The scalar product of the result and ξ gives the proposition. �

4. Proof of Main Theorem

We will continue with the notations appearing in Section 3.
Let us call now GU = {X ∈ DU | (φA + Aφ)X = 0}. Let us write

DU = FU ⊕ GU , where FU is the orthogonal complement of GU in DU .
Thus at any point, from Theorem 3.1 GU is a holomorphic subspace of
DU . As DU is holomorphic, the same is true for FU .

From Proposition 3.1 we have three possibilities:

Case A: dimGU = 0, that is, from Theorem 3.1, A = −(1/α)Id.
on DU .

Case B: dimGU = 2m − 4. That is, GU = DU .

Case C: 0 < dim GU < 2m − 4. Notice that this case only occurs if
m ≥ 4.

For Cases A and C we have:

Lemma 4.1. With the conditions of either Case A or Case C, we have

α2β2 = 1 + αγ.

Proof. Codazzi equation implies (∇XA)Y −(∇Y A)X =−2g(φX, Y )ξ
for any X,Y ∈ FU . If we develop this equation and take the scalar product
by ξ we obtain

g([Y,X], U) = (2/α2β)g(φX, Y ). (4.1)
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If we take the above Codazzi equation and its scalar product by U we get

g([Y,X], U) = (2β/(1 + αγ))g(φX, Y ). (4.2)

The result follows from (4.1) and (4.2). �

From Lemma 4.1 and the equation (αγ − 1)(αγ − (β2 − 1)) = 0 of
Lemma 3.1, we have in this Case

(α2β2 − 2)(α2 − 1) = 0. (4.3)

Lemma 4.2. If we are either in Case A or in Case C we have for any

X ∈ FU , (1 + αγ − β2)g(∇ξX,U) = 0.

Proof. In (3.1) we take X ∈ FU , Y = ξ and the scalar product of
the result by U gives the result. �

Remarks. a) From Lemma 4.1 and (4.3) we get that either α2β2 = 2
and γ = (1/α) or α2 = 1 and γ = (β2 − 1)/α.

b) From Lemma 4.2 we have (2 − β2)g(∇ξX,U) = 0 if γα = 1.

c) From Lemmas 4.1 and 4.2 we obtain that β2(α2−1)g(∇ξX,U) = 0.

Now we begin with Case A. From (4.3) we have two Subcases for
Case A:

Subcase A1: α2 = 1. In this case, maybe changing ξ by −ξ, if
necessary, we can suppose that α = 1. Thus γ = β2 − 1. This kind of real
hypersurfaces cannot occur by Theorem 2.2.

Subcase A2: α2 �= 1 at some point. Thus we work in a neighbor-
hood where this holds. Then α2β2 − 2 is identically zero so that αγ = 1.
From Lemma 3.2, β is constant and from third equation in Lemma 3.3,
βg(∇UφU,U) = 2(1 + (1/α)2). From last equation in Lemma 3.3, as γ

is constant, we get (2/α)g(∇U φU,U) = −(β/α), thus 4α2 + 4 = −α2β2,
which is impossible. Then we obtain

Proposition 4.1. Case A cannot appear.

From now on we consider Cases B and C. All computations are going to
be made in a neighborhood of any point. In these cases from Theorem 3.1
we have the following situation: Aξ = αξ + βU , AU = βξ + γU (with
(αγ − 1)(αγ − (β2 − 1)) = 0), AφU = −(1/α)φU , and for every X ∈ GU
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such that there exists a function λ(X) such that AX = λ(X)X, AφX =
−λ(X)φX. Thus we obtain the following results where λ denotes λ(X):

Lemma 4.3. In Cases B and C, for any X ∈ GU such that AX = λX

we get:

1. αλg(∇XφX,X) = 0

2. αλg(∇φXX,φX) = 0

3. λX(α) + αX(λ) = 0

4. (αλ + αγ − β2)(g(∇φXX,U) − g(∇XφX,U)) = 0.

Proof. If in (3.1) we take Y = φX and the scalar product by X we
get first item. Taking the scalar product by φX we have the third equality.

If in (3.1) we take X = φX, Y = X and the scalar product by φX

we obtain the second equation and fourth one follows taking the scalar
product by U . �

We begin to study Case B. Now from Lemma 4.3 we obtain the fol-
lowing subcases:

Subcase B1: λ = 0 on a neighborhood of every point.

Subcase B2: g(∇XφX,X) = g(∇φXX,φX) = 0.

Let us begin with Subcase B1. From the fourth item in Lemma 4.3 we
get (αγ − β2)(g(∇φXX,U) − g(∇XφX,U)) = 0.

Lemma 4.4. If λ = 0, we have:

1. β(g(∇XφX,U) − g(∇φXX,U)) = 2

2. γg(∇φXX,U) = γg(∇XφX,U)

for any X ∈ GU .

Proof. Codazzi equation gives (∇X+φXA)X−(∇XA)(X+φX) = 2ξ.
If we develop this equality and take its scalar product by ξ, as X(λ) =
(φX)(λ) = 0, we obtain first item. The second one is obtained taking the
scalar product by U . �

From Lemma 4.3 and Lemma 4.4 the case γα = β2 − 1 does not
occur because the fourth equation in Lemma 4.3 yields g(∇φXX,U) =
g(∇XφX,U) which contradicts first equality in Lemma 4.4.
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If γα = 1, the second item in Lemma 4.4 yields g(∇φXX,U) =
g(∇XφX,U) and we have a new contradiction with Lemma 4.4. Thus
we obtain

Proposition 4.2. Subcase B1 does not occur.

Let us study Subcase B2: for any X ∈ DU such that AX = λX, λ �= 0,
g(∇φXX,φX) = g(∇XφX,X) = 0. We have:

Lemma 4.5. In Subcase B2 we obtain:

1. X(λ) = (φX)(λ) = 0

2. λ(φX)(α) + α(φX)(λ) = 0

3. −(φU)(λ) + ((1/α) − λ)g(∇φXφU, φX) = 0

for any X ∈ DU such that AX = λX, λ �= 0.

Proof. To obtain the second equality, take X = φX, Y = X in (3.1)
and the scalar product by X.

By Codazzi equation (∇XA)φX − (∇φXA)X = −2ξ. Developing this
equation and taking the scalar product by φX we get X(λ) = 0. Taking
its scalar product by X we have (φX)(λ) = 0, finishing the first item.

Codazzi equation also yields (∇X+φUA)φX−(∇φXA)(X+φU) = −2ξ.
If we develop this equation and take the scalar product by φX, bearing in
mind that X(λ) = 0 and g(∇φXX,φX) = 0, we finish the proof. �

If we now take X = φX, Y = φU in (3.1) and the scalar product by
φX, from the third equation of Lemma 4.5 we get (φU)(λ) = 0. From
the fourth equality in Lemma 4.3 we have (αλ + αγ − β2)(g(∇φXX,U) −
g(∇XφX,U)) = 0. Thus we have two new subcases:

Subcase B21: g(∇φXX,U) = g(∇XφX,U) for any X ∈ DU such that
AX = λX, λ �= 0.

Subcase B22: αλ + αγ − β2 = 0.
Let us consider Subcase B21: Codazzi equation yields (∇XA)ξ −

(∇ξA)X = −φX. Taking its scalar product by φX we get

βg(∇XU, φX) − 2λg(∇ξX,φX) = −1 − λ2 − αλ. (4.4)

If we rewrite (4.4) taking φX, −X and −λ instead X, φX and λ, respec-
tively, we obtain

βg(∇φXU,X) + 2λg(∇ξφX,X) = 1 + λ2 − αλ. (4.5)
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In this Subcase, (4.4) and (4.5) imply 2 + 2λ2 = 0 which is impossible.
Thus we have obtained

Proposition 4.3. Subcase B21 does not occur.

Let us deal with Subcase B22. As αλ + αγ −β2 = 0 for every X such that
AX = λX, as now AφX = −λφX, we also get −αλ + αγ − β2 = 0, thus
λ = 0 which gives a contradiction. Thus we have

Proposition 4.4. Case B does not occur.

We continue with Case C.
Lemma 4.1 implies α2β2 = 1 + αγ.
From Lemma 4.2, (1 + αγ − β2)g(∇ξX,U) = 0 for any X ∈ FU .

Following the same reasoning as in Case A we have no real hypersurfaces
satisfying our condition unless α = 1.

Let us now suppose α = 1. As GU �= {0}, there exists X ∈ GU

such that AX = λX and AφX = −λφX. Now From Lemma 4.3 we
get: i) λg(∇XφX,X) = 0, ii) λg(∇φXX,φX) = 0, iii) X(λ) = 0, iv)
(λ + γ − β2)(g(∇φXX,U) − g(∇XφX,U)) = 0.

Thus either λ = 0 or g(∇φXX,φX) = g(∇XφX,X) = 0. If λ = 0
the above equation iv) gives (γ − β2)(g(∇φXX,U) − g(∇XφX,U)) = 0.
Therefore as in Lemma 4.4 we obtain for any X ∈ GU such that AX = 0:
v) β(g(∇XφX,U)−g(∇φXX,U)) = 2, vi) γg(∇φXX,U) = γg(∇XφX,U).
From these last equations and equation iv) the case γ = β2 − 1 does not
occur. Similarly, if γ = 1 we obtain a contradiction. Thus there exists no
X ∈ GU such that AX = 0.

Take now X ∈ GU such that AX = λX, λ �= 0, from i) above
g(∇XφX,X) = g(∇φXX,φX) = 0. For such an X as in Lemma 4.5 we
get: vii) X(λ) = (φX)(λ) = 0, viii) −(φU)(λ)+(1−λ)g(∇φX φU, φX) = 0.
From equation iv), (λ + γ − β2)(g(∇φXX,U)− g(∇XφX,U)) = 0 for such
an X.

The possibility of being g(∇φXX,U) = g(∇XφX,U) = 0 gives a con-
tradiction as in Case B.

Now if λ + γ − β2 = 0, suppose that γ = β2 − 1. Then λ = 1, and
AφX = −φX. Thus −1 + γ − β2 = 0 which gives a contradiction.

Thus suppose λ + γ − β2 = 0 and γ = 1. Then λ = β2 − 1. If
we take in (3.1) X = φU , Y = U and the scalar product by U , as



On the Lie derivative of structure Jacobi operator . . . 281

(φU)(α) = (φU)(γ) = 0, we get (φU)(β) = 0. Thus (φU)(λ) = 0 and
from third and fourth equations in Lemma 3.3 we get βg(∇UφU,U) = 4
and 2g(∇UφU,U) = −β. Thus we have 8 = −β2, which is impossible.
Summing up we have

Proposition 4.5. Case C does not occur.

This finishes the proof of the Theorem. �
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