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On Hyers—Ulam stability of the generalized
Cauchy and Wilson equations

By ELQORACHI ELHOUCIEN (Agadir) and AKKOUCHI MOHAMED (Marrakech)

Abstract. Let G be a topological group, let u be a complex measure with
compact support and let o be a continuous involution of G. In this paper the
Hyers—Ulam stability of the functional inequalities

) /G faty)du(t) — g(x) f (y)ﬂ < (),

| [ setyautt) + | Fato@)dnd) - 269 < ),
G G

z,y € G, shall be investigated, where f,g : G — C and ¢ : G — RT are
continuous functions.

1. Introduction

In many studies concerning functional equations related to the Cauchy
equation: f(zy) = f(x)f(y), x,y € G, the main tool is a kind of stability
problem inspired by the famous problem proposed in 1940 by S. ULAM (see
[17]). More precisely, given a group G and a metric group H with metric
d, it is asked if for every function f : G — H, such that the function

Mathematics Subject Classification: 39B72.

Key words and phrases: topological group, complex measure, Cauchy equation, Wil-
son equation, d’Alembert equation, p-spherical function, Hyers—Ulam stability, super-
stability.



284 E. Elqorachi and M. Akkouchi

(x,y) — d(f(zy), f(z)f(y)) is bounded, there exists a homomorphism
X : G — H such that the function z —— d(f(z), x(x)) is bounded.

The first affirmative answer to Ulam’s question was given by D. H. Hy-
ERS in [10], under the assumption that G and H are Banach spaces.

After Hyers’s result a great number of papers on the subject have
been published, generalizing Ulam’s problem and Hyers’s result in various
directions. The interested reader should refer to [11] for an indepth account
on the subject of stability of functional equations.

In the present paper, we shall investigate the Hyers—Ulam stability of
the functional equations:

/G Flaty)dp(t) = g(x) £(y) (1.1)

and

/f(fb‘ty)du(t)Jr/ fxto(y))du(t) = 2f (x)g(y). (1.2)
G G

Throughout this paper, G will denote a topological group, 4 denote a
compactly supported measure on G and o denote a continuous involution
of G. This means that (o0 o 0)(z) = x and o(zy) = o(y)o(x), for all
z,y € G.

We say that p is o-invariant if (f o o,u) = (f,p) for all complex
continuous function f on G, where (f,u) = [ f(t)du(t).

A continuous mapping f,g : G — C will be called a solution of the
generalized Cauchy equation if it satisfies

/G flaty)du(t) = g(@) f(y), =y € G. (1.3)

A continuous function f: G — C is a p-spherical function if

| fatnin®) = 1@ 1), z.yeG. (1.4)
Classical examples of the integral equation (1.3) is Cauchy equation

flz+y)=f@)fly), zyeG (1.5)

and it is generalization

flz+y)=g@)f(y), z,yed. (1.6)
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Equation (1.2) is a generalization of d’Alembert’s functional equation

fle+y)+ flz—y) =2f(2)f(y), =zy€G, (1.7)
Wilson’s functional equation
fl@+y)+ fl@—y)=2f(2)9(y), x,y€G, (1.8)
and was studied by the authors in [7].
In this setting G is an abelian group, o(x) = —z and u = J.: Dirac

measure concentrated at the identity element of G.

BAKER, LAWRENCE and ZORZITTO [2] and BAKER [1] proved the
Hyers—Ulam stability of the functional equation (1.5) i.e., if the Cauchy
difference f(x +y) — f(z)f(y) of a complex-valued mapping f defined on
a normed space is bounded for all x,y € G, then either f is bounded
or f(x +y) = f(z)f(y), for all x,y € G. Such a phenomenon for some
functional equation is called superstability.

SZEKELYHIDI [14] and many others considered a generalized version of
the previous result [1] and [2], see for example the recent study by R. BA-
DORA [3] (stability of K-spherical functions), G. DOLINAR [4], R. GER and
P. SEMRL [8] (stability of multiplicative functions with values in semisim-
ple Banach algebra) and by S-M. JuNG [12] who considered the case when
the Cauchy difference is not bounded.

In [1], BAKER also found the superstability of equation (1.7). The
result has been extended by L. SZEKELYHIDI [15] and [16].

Our work is organized as follows.

In Section 2, we prove the Hyers—Ulam stability of the functional equa-
tion (1.1) (Theorem 2.2).

In Section 3, we study the Hyers—Ulam stability of equation (1.2),
where f satisfies the Kannappan type-condition:

//fZS:Ety du(t)dp(s //fzsyt:c du(t)du(s),

for all x,y,z € G (Theorem 3.2).

Let K be a compact subgroup of the group Aut(G) of all mappings
of G onto G that are automorphisms. Let dk be the normalized Haar
measure on K, and consider

/Kf(xk -y)dk = f(x)g(y), =,y€G, (1.9)
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where k - x denote the action of k € K on z € G.
The Hyers—Ulam stability of this equation was considered by BADORA
n [3]. Consider the group G = Gx4K: the semidirect product of G and K,
where the topology is the product topology and the group operation is
given by
(91, k1)(g2, k2) = (g1k1 - g2, k1k2), (1.10)

K, = {e} x K is a closed compact subgroup of G. So the above functional
equation is closely related to the following functional equation

f(zky)dk = f(x)g(y) (1.11)

K,

on é, and consequently BADORA’s Theorems (Theorem 1 and Theorem 3)
of [3] are special cases of the authors’s results.

2. Hyers—Ulam stability of the equation
Jo f(zty)dp(t) = g(z) f(y)

Theorem 2.1. Let ¢ : G — R be a continuous function. Let
f,9 : G — C be continuous functions such that

Méf@WWMU—Q@W@)SE@% (2.1)

for all x,y € G.
If f is unbounded, then g is a u-spherical function.

PROOF. Assume that the pair f, g satisfies the inequality (2.1), then
by using Fubini’s theorem ([9] (14.25) Theorem), we get

[ [ rtvssianeints) - | samanoso)] < [ o

!/ / flatysz)dp(t)dus) /f yt)dp(t)| < <(@) .

Hence we conclude that

1) [ atetmantt) ~ (@) | fwsdauts)| < @l + [ .
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Consequently we obtain
G| [ atatnin®) - s(ratv)]
<1 [ atatnan®) = (@) [ susz)auts)
oo | [ wssdauts) o)1)

< lg(x)le(y) + /Ge(flfty)d\u\(t) +e(@)]|pll-

Since f is unbounded, then we get

/Gg(wty)du(t) =g(r)g(y), =,yeq.

This completes the proof. ]

In particular we have the following corollary which generalizes the
result obtained by BAKER in [1]. The statement (ii) is proved in [5].

Corollary 2.1. Let o € C*. Let ¢ : G — RT be a continuous
function and let f : G — C be a continuous function such that

‘/Gf(xty)dﬂ(t) —af(x)f(y)| <e(z), (2.2)

for all x,y € G. Then,

(i) f is either bounded function, or af is a u-spherical function.

(i) Ife(x) = §, 6 € RT, then either |f(x)| < il !\;;llﬁ%&la\} x € G, or

af is a p-spherical function.

Lemma 2.1. Let o € C such that ||u| < |a|. Let a € G, ¢ € RT and
let f : G — C be a continuous function such that

yéfwmwmw—aﬂ@ <e (2.3)

for all x € G, then there exits exactly one solution F € C(G) of

/G Flate)du(t) = aF(x), (2.4)
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for all x € G such that F — f is bounded. F satisfies

€

Flz) = f@)| < (2.5)
| | laf =[]
for all x € GG.
PRrROOF. It follows from the inequality (2.3) that
/ T (ataya b~ @ S@) (2.6)
a llull 1722 i 2

for all x € G. Thus we find the new equation that

| [ statayiv(®) - pgta)| < . (27)

G

- f L, _ v g_ a I _e

for all z € G, where g = Tl V= T 0= Tl and ¢ = T

Notice that |3] > 1 and |Jv| < 1.
Now for any « € G and every n € N*, we define the function:

Gp(x) = ﬂ_"/ . / / glatia...ty_1atyx)dv(ty) ... dv(th—1)dv(ts)
G GJG
and we prove by induction the following inequality

n — 3%z 6/(1_‘ﬁ|n)
8"Gul) = ()] < =E0

For n =1, it is the inequality (2.7). For all positive integer n, it holds
‘ﬂn—i-lGn_H (x) . ﬂn—i-lg(x)‘
< ‘ﬁn+1Gn+1(x) - ﬁn+1Gn(x)‘ + ‘ﬁn+1Gn(x) - ﬁn+lg(x)’

<8G5 ) - 5716 )],

(2.8)

Since

8" Grga(z) = BTG ()]

= ’ /G/G . ./Gg(atlatg o lpprx)dr(ty)dr(ts) ... dv(tys1)
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- ﬂ/ / / glatiaty . ..atpz)dy(ty)dv(ts) ... dv(t,)
GJG G
< / . / ‘ / g(atiaty . ..atp1x)dv(ty) — Bglataa. .. atn+1x)‘
G G G

dlv|(te) ... d|v|(tn+1)-
In view of (2.7) and ||v|| < 1, we get
8" G () = B G (2)] < €
Which implies that

n n (1 - il
64 G @) - 5 g(a)] < ST,
18]
Consequently we get
6/

|Gr(x) — g(x)] < BT re G, neN. (2.9)

From the inequality (2.7), we obtain
|Grrr(2) = Gul)| < 187" Ve (2.10)

Since || > 1, hence (G, (z)) is a Cauchy sequence for each x € G and it
follows that there exists a limit function

Gulz) = nEl}_lm Gn(x). (2.11)
By (2.9) we obtain /
Gule) = 9(@)] < . (212)
for all x € G. In what follows we prove that
/ Gulatx)dv(t) = pGu(x), = €G. (2.13)

The convergence in (2.11) is uniform, then for all x € G

/G Gulatr)du(t) = Tim_ /G G (ata)du(t)

~ tm_ g /G /G /G /G glatyats . . atyatz)dv(t)du(ts) .. du(b,)dv(t)
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—ﬂngg_looﬂ (”H/ // (aty ...atpatyz)dv(ty) ... dv(t,)dv(t,41)
= lim_ G (2) = 0G,(

It follows that

=p" /G . /G Gulaty ... atpx)dv(ty)...dv(ty), (2.14)

for all z € G.

Now we will show that G, is the unique continuous solution of (2.13)
which satisfies (2.12). Let H, : G — C be another continuous mapping
which satisfies (2.13) as well as (2.12). In view of (2.9) and (2.14), we have

Gulw) = @) =[5 [ . [ Gulatr..aty)iv(e) .. dvit,)
_gn /G ...... /G Ho(aty ... atyz)dv(ty) . .. dv(t,)

< ‘ﬂ_"/G.../GGM(atl...atna:)dy(tl)...dz/(tn)
g /G ...... /G glaty ... atu)du(ty) ... dv(ty)

—a / ...... / glaty ...atyx)dv(ty) ... dv(ty)

6/
<A <w| w—l)’

for all x € G and all n € N*. Thus G|, = H,,.
Consequently F = ||u||G}, is the unique mapping which satisfies

/ F(atz)du(t) = aF(z)
G

and

F(@) — f@)] € s
ol =Tl

for all z € G. This completes the proof. O
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Remark 2.1. By adapting the proof used in Lemma 2.1, we obtain the
similarly results as in Lemma 2.1 for the functional equation.

/G Fata)du(t) = af(z), w€G. (2.15)

In the following theorem we shall investigate the stability of equation (1.1)
by using an idea from the paper [13] in which J. SCHWAIGER has proved
the stability of the functional equation of homogeneity:

F(y-z)=M(y)F(x), ze€X, vea, (2.16)

where G is a semigroup with unit, X # () is a set and - G x X — X is a
semigroup action of G on X.

Theorem 2.2. Let ¢ : G — R™ be an arbitrary continuous function.
Let f,g: G — C be continuous functions such that

[ stataute) - o010 < e(o) -

for all z,y € G.
Suppose that there is a € G such that

//f:ctasy dp(t)dp(s //fat:z:sy du(t)du(s), =,y € G

and |g(a)| > ||p||. Then there exists one solution F € C(G) of

| Fatndu(v) = @) 7w) (218)
such that F — f is bounded. F satisfies
z)— f(x 76((1)
|F(z) — fz)| < @] — Tl (2.19)

for all z,y € G.

PROOF. By putting z = a in (2.17), we get

‘ /Gf(atx)dﬂ(t) —g(a)f(z)| <e(a), (2.20)
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for all x € G. In view of Lemma 2.1, there exists a unique continuous
mapping F : G — C such that

/G Flatz)dp(t) = g(a) F(z) (2.21)
and (@)
e(a
| F(x) — f(z)] < M7 (2.22)
for all x € G.

Now we show that F is a solution of equation (2.18). From the proof
of Theorem 2.2, we have F(x) = ||u||G,(x), where

6ute) = o () [ [ gt - vttt
= Jim_Gu(@)

n—-+o0o

and v = £
Mol

|
For all x,y € G, we have

‘/G (xty)dv(t) ()G :’—
ul [l

| /G /G /G /G ﬁ(atlatQ...atnxty)du(tl)du(tg)...du(tn)du(t)

S L L [ panats- o)
)| /G/G.../G/GH‘fTH(xtatl...atny)dV(t)dll(tl)---dl/(tn)

N ‘ ]

HuH/ / /Grmu atiaty...atyy)dv(t)dv(ts) ... dv(ta)

g(a) _n/G.../G‘/Gﬁ(xtatl...atny)dl/(t)

_9@) I (atraty.. atny)‘d\l/\(tl) -djv|(tn)

[l el

—n

" e(x)

el

HMH
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This shows that

’/G (xty)dv(t) H(”)G()—>0,

when n goes to 400 and we obtain

/G (xty)dv(t ﬁG (y), (2.23)

for all z € G. Which proves that F is a solution of equation (2.18). This
establishes the theorem. O

Remark 2.2. Similarly to Theorem 2.2, we can easily proved the Hyers—
Ulam stability of the functional inequality

| [ ) - 1@ < <), 2y eG.
under the condition that there exists a € G such that
/ / f(xtasy)du(t)du(s / / f(xtysa)du(t)du(s), =,yeqG

and |g(a)| > [|ul|

3. Hyers—Ulam stability of the equation:
Ja f(xty)du(t) + [ f(xto(y))du(t) = 2f(x)g(y), =,y € G

Throughout this section f : G — C is assumed to be a continuous

function which satisfies the condition K(u) and p is a o-invariant measure
on G.

Theorem 3.1. Let ¢ : G — R™ be a continuous function. Let
f,9 : G — C be continuous functions such that

| [ i + [ fatowyin® -2 @ot)| <cw). 6D

for all x,y € G.
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If f is unbounded, then g is a solution of the generalized d’Alembert

functional equation
/ o(wty)du(t) + / glwto(y))du(t) = 29(x)g(y), (3.2)
G G

for all x,y € G.
PROOF. Let f, g satisfies (3.1), then for all x,y,z € G,

20| [ ateman®) + | atatow)in® - 29(a)s(w)
<| [ [ resmantsianty+ [ | resoto)antas)
—21(2) / o(ety)du(t)| + / / [ (st (y))dp(s)dpu(t)
+ [ | resytae)dnein) - 21 [ otwtotu)dut)
| [ resetmauine + | [ fesatom)aas)
=29t [ st +] [ [ rsytot)dnsau
+ || resoe@)dntduts) ~20) | fetola)du)

+2lg(y \]/fzsxdu /fzsa Jdu(s) — 21(2)g(x)]

In view of the condition K(u), we get
20| [ atets)aut) + [ otwtot)dn(t) = 20(a)ato)

< 25(y) |l + 2lg(w)le(x) + /G e (aty)dlpa|(t) + /G (ato(w)dul(t), (33)

for all z,y € G. Since f is unbounded then we obtain that g is a solution
of equation (3.2). This ends the proof. O
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The statement (ii) of the following corollary is proved in [6].

Corollary 3.1. Let a € C* and assume that a continuous function
f : G — C satisfies the inequality

| [ tatman® + [ fatot)dut) ~20@1w)] <. (34

for all x,y € G. Then

(i) f is either bounded, or af is a solution of equation (3.2).

ii) If e(y) = 9, then either |f(x)| < el +y ”“HQHMQ‘, r € G, oraf isa
2|l
solution of (3.2).

Theorem 3.2. Let ¢ : G — R be a continuous function. Let
f,g9: G — C be continuous functions which satisfies the inequality

| [ tatnduv) + [ satotnt) -2 @at)| < ). 6

for all x,y € G. Suppose furthermore that there exists a € G such that
lg(a)| > ||p|l. Then there exists exactly one solution F € C(G) of

/.F:L‘ty du(t) /]—'xto Vu(t) = 2F(2)g(y) (3.6)

such that F — f is bounded. F satisfies

e(a)

[ F(z) = f(z)] < M7

(3.7)

for all z,y € G.

Proor. With F(x) = %, v = ﬁ and by putting a in place of y,

inequality (3.5) yields

e(a)
Irales

‘/ F(xta)dv(t /F:z:ta Ndv(t) — BF(x)| < (3.8)

where 0 = “‘m).
Now for any x € G and every n € N, we define by induction the

following sequence

Gy (z) = /G Fata)dv(t) + / Pato(a))du(t),

G
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and

Gri1(x /G (xta)dv(t /G (xto(a))dv(t), forn>1. (3.9)

In order to prove the convergence of the function sequence = "G, (x), we
need to show by induction the following inequalities:

2"e(a)
lell*

|Gn+l(x) - ﬂGn( )| <

£(a)
12

(3.10)

|G (2) = 5" F(2)] < 2" 272 4 (BT, 21 (3.1

and

—(n+1) ) — 3" T E((I) i n
6 Gni1(z) = B7"Gn(2)] < 7||M||2|ﬁ‘(‘ﬁ|) : (3.12)

In view of (3.8) and (3.9), we have

G2 (z) — BG1(2)]

‘ / / (ztasa)dv(t)dv(s / / F(ztaso(a))dv(t)dv(s)
// (xto(a)sa)dv(t)dv(s // (zto(a)so(a))dv(t)dv(s)

—5/F:L‘tadu ﬁ/ (zto(a))dv(t ’//F:L‘tasadu t)dv(s)
// (xtaso(a))dv(t)dv(s ﬂ/ (zta)dv(t

+‘// (zto(a)sa)dv(t)dv(s //F:cto a)so(a))dv(t)dv(s)

_ﬂ/GF(a:ta(a))dy(t)‘ < 2|TM‘|‘|)2, since [|v|| < 1.

Now assume that (3.10) is true for same n > 1. For the case n + 1,

Gurale) — BCnsa (@) = | / G (ta)du(t) / G (o (a))du(t)
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2" (a) 2"t (a)
||/t||2 [ 4]

—ﬁ/G (wta)du(t ﬁ/G (ato(a))dv(t)| <

This proves the inequality (3.10).
In view of (3.8) the inequality (3.11) is trivial for n = 1. Now assume
that (3.11) holds for some n > 1. For the case n + 1,

|G () — ﬂ”“F(fL‘)\ < |Gny1(2) = BGn(2)| + 6] Gn () — " F(2)]

ﬁ(Hl(zuz” gl 272182 4 - +|A").

Which proves (3.11).
The left hand side of the inequality (3.12) can be written

167D G4 (&) = B Go)] = 181G () — AGn(2),

consequently from (3.10), we obtain (3.12).
Now by using (3.12), we deduce the convergence of the sequence
B~ "Gy (z) and we can define a new continuous mapping

27’1

Gu(xz) = lim p7"Gp(z), ze€G. (3.13)

n—-+4o0o
By definition
ﬁ—(nﬂ)gn+1 =" /ﬁ "Gy (xta)dv(t)+6~ /5 "Gp(xto(a))dv(t),
which implies that

/G (xta)dv(t /G (xto(a))dv(t), =€ G. (3.14)

In view of (3.11), we get

e(a)
|G (x) — F(z)] < , r€G. (3.15)
g 2[lpliClg (@)l = [l
Now we are going to show that G, is the unique continuous solution of
equation (3.14) and inequality (3.15). Let H,, be another continuous map-
ping which satisfies (3.14) as well as (3.15). The proof follows from the
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inequality

< (Y e
i) -0 < () Gy 09

which can be easily proved by induction on n = 0,1, ...
To conclude this proof, we show that G, (z) satisfies the equation

/G (xty)dv(t /G (ato(y))dv(t) = 2G,(x )ﬁ z,y € G. (3.17)

Thus we need to show by induction the inequality

‘/ﬂ "Gy (aty)dv(t /ﬂ "G(xto(y))dv(t) — 287 "Gz )%

conan :
<l (i) mvecnew 19

For n =1,

9(y)
Iﬁ\’/ G (aty)du(t /G1 (wto(y))dv(t) — 2G4 (z )H H

\ﬂl’//Fxtysa v (t)dv (s // (tyso(a)))dv(t)dv(s)
// (wto (y)sa)dv(t)dv(s // (wto(y)so(a))dv(t)du(s)

—2/F:L‘sadu ——Z/F:L‘sa ))dv(s )’
[ ] H I

W’//F:csaty Vv (t)dv (s // (zsato(y))dv(t)dv(s)

—2/F:L‘sadu( )||SJ||)’

+’//F:L‘sa Yty)d(t)du (s // (zso(a)to(y))dv(t)dv(s)

9(y)
—2/GF(:L‘sa(a))d1/(s)W

9
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since F' satisfies K(v).
In view of (3.5) and ||v|| < 1, we obtain

’/ﬂ LG (wty)du(t /ﬂ LGy (ato(y))dv(t) — 2871Gy (x )”L”)

1,e@) _ el c)
Bl lg(a)l Il

Which proves (3.18) for n = 1.
Now assume that (3.18) is true for some n > 1. For the case n + 1,

| / B0 Gy (aty)dv / BG4 (wto (y)du (t)
— 28" "G, 1 (x QT = m"//ﬁ "Gy (ztysa)dv(t)dy(s)

//ﬁ n G (wtyso(a))dv(t)du(s //ﬁ n G (wto (y)sa)du(t)d(s)

+ /G /G BTG (wto(y)so(a))dv(t)dy(s)

9(y)
—2/ B "Gy (zta)dv(t) == —2/ B "Gy (zto(y ))du()
||u|| [l
< 4] > ely) _ ( 4] >n+1 e(y)
Wl lg(a)l ) llul* \lg(a)] ]2
Which completes the proof of (3.18).
Consequently F(x) = ||u]|G.(x), v € G is the unique continuous func-
tion, which satisfies (3.6) and (3.7). This ends the proof. O

Remark 3.1. In Theorem 3.2. we can replace the condition that f
satisfies the condition K(u) by the weaker condition that there exists a € G
such that

lg(a)] > [l

//ffcsaty du(t)du(s //fwsyta dp(t)dp(s),

and
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/ / F(wso(a)ty)du(t)dp(s / / F(wsyto())du(t)du(s),

for all z,y € G.
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