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On the convergence of inexact Newton-like methods

By IOANNIS K. ARGYROS (Lawton)

Abstract. We provide a general theorem for the convergence of inexact Newton-
like methods under Yamamoto-type assumptions. Our results extend and improve sev-
eral situations already in the literature.

I. Introduction

We consider the inexact Newton-like method
(1) Tn+l = Tn + Yn, A(Ccn)yn = _(F(xn) + G(xn)) +r, n=>0

for some zy € U(zg,R), R > 0, to approximate a solution z* of the
equation

(2) F(z) +G(z) =0, in U(xo, R).

Here A(x), F, G denote operators defined on the closed ball U(zg, R) with
center x and radius R, of a Banach space E with values in a Banach space

E, whereas r, are suitable points in E. The operator A(z)(-) is linear and
approximates the Fréchet derivative of F' at x € U(xo, R). We will assume
that for any =,y € U(xo,r) C U(xo, R) with 0 < |[x —y|| < R—r,

3) F'(z+tx—y)) — A@)| < Bi(r, |z — 2ol + tlly — ), ¢t € [0,1]

and

(4) |G(z) = G(y)|| < Ba(r, |z —y|).

The functions By(r,r’) and Bs(r,r’) defined on [0, R] x [0, R] and
[0, R] x [0, R —r] are respectively nonnegative, continuous and nondecreas-
ing functions of two variables. Moreover B is linear in the second variable.
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Note that the Newton method, the modified Newton method and the
secant method are special cases of (1) with A(x,) = F'(z,), A(x,) =
F'(z0) and A(z,,) = S(xn, zn—1) respectively.

If we take

(5) w(r')+c¢, ce€l0,1]
and
(6) e(r'),

where w, e are nonnegative, nondecreasing functions on [0, R—r], to be the
right hand sides of (3) and (4) respectively, then we obtain the Zabrejko-
Nguen-type assumptions considered by CHEN and YAMAMOTO [2]. They
provided sufficient conditions for the convergence of the sequence {z,},
n > 0 generated by (1) to solution z* of equation (2), when r, =0, n > 0.

MORET [5] also studied (1), when G = 0 and condition (5) is satisfied.
Further work on this subject but for even more special cases than the ones
considered by the above authors can be found in [1], [3], [4], [5], [6], [7],
8], [9], [10].

In this paper we will derive a criterion for controlling the residuals
r, in such a way that the convergence of the sequence {z,}, n > 0 to a
solution x* of equation (2) is ensured.

We believe that conditions of the form (3)—(4) are useful not only
because we can treat a wider range of problems than before, but it turns
out that under natural assumptions we can find better error bounds on
the distances ||z, —x*||, n > 0.

II. Convergence Theorems

Throughout the paper the notation || - || will stand both for norms
in F (or in E) and also for the induced operator norms L(F, E), where
L(E, E) denotes the space of bounded linear operators from E to E.

We will need the following proposition.

Proposition. Leta > 1,0 >0,0< u<1,0<p < R, s> 0 be real
constants such that the equation

(1) o(t) == ao [/O Bi(R,p+0)d0 + Ba(R,t)| —t(1 — ) +5=0

has the solutions in the interval [0, R) and let us denote by t* the least of

them.
Let v > 0, u! > 0 such that

(8) v(1—p)— (1 —u') 0.
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Then, for every s' satisfying
9) 0<s'<w {a (/ Bl(R,p+0)d0+B2(R,S)) —i—s,u}
0

and for every p' such that
(10) 0<p' <p+s,

the equation
t
(11) @(t) := avo [/ Bi(R, p* + 0)d0 + By(R, t)] —t(l—pH)+s'=0
0

has nonnegative solutions and at least one of them, denoted by t**, lies in
the interval [st,t* — s].

PrOOF. We first observe that since ¢(t*) = 0 and 0 < p < 1, we
obtain from (7) that s < ¢*. We will show that

(12) ot (t* — ) <0.
Using (7)—(11), we obtain

Pt~ s)

t*—s
= avo [/ Bi(R, p' 4 0)d0 + Bo(R, t* — s)] — (" —5)(1 — pt) + s
0

<w [aa (/t Bi(R,p+ 6)d0 + Ba(R,t*) — Ba(R, s))

+ o0 (/08 Bi(R,p+ 0)df + Ba(R, s)> + sy — (t*v_s)(l —ul)}
<w [aa (/t Bl(R,p+9)d9—|—B2(R,t*)) —t*(1—p)+s
0

+t*(1—u)—s+su—@:}—_s)(1—u1)}

(1—p")

B
v

<ol =9 [(1- ) -

by (8). Moreover, by (11) it follows immediately that ¢!(s!) > 0. Hence,
by the above inequality and (12) (!(¢) has nonnegative real roots and for
the least of them t**, it is

st <t <t* —s.
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Furthermore, from (11) we get pu! < 1.
That completes the proof of the proposition.

We can now prove the following result.

Theorem 1. Let {s,}, {un}, {on}, n > 0 be real sequences, with
Sn >0, up >0, 0, > 0. Let {p,} be a sequence on [0, R), with py = 0
and

(13) Prnt+1 < Z 55, n > 0.
7=0,1,2,... ,n

Suppose that 1 — ug > 0 and that, for a given constant a > 1, the function

(14) gDo(t) = aop |:/O Bl (R, £0 + 9)d9 + Bg(R, t):| — t(l — uo) + So

has roots on [0, R).
Assume that for every n > 0 the following conditions are satisfied

(15) Sn+1 S Un |:0-n (/ Bl (Ra Pn + e)de + B2<R7 Sn)) + Snun:| )
0

(16) Vn(1 = pin) — (1 — ppy1) <0,

On+1
where v,, = +

on
Then,
(a) for every n > 0, the equation

t
(17)  pn(t) == avpo, U Bi(R,pp +0)d0 + Bo(R,t)| — t(1 — pin) + sp,
0
has solutions in [0, R) and, denoting by t} the least of them, we have
(18) Y osi <ty
j=n,...,00

(b) Let {x,}, n > 0 be a sequence in a Banach space such that
|Tn+1 — nl| < sn. Then, it converges and denoting its limit by z*, the
error bounds

(19) % — | <t
and
(20) 2" = @[] < &, — sn

are true for all n > 0.
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(c) If there exists hy € [0, R) such that

(21) wo(ho) <0,
then ¢y (t) has roots on [0, R).

PROOF. (a) We use induction on n. Let us assume that for some
n>0,1—pu, >0, ¢,(t) has roots on [0, R) and ¢} is the least of them.
This is true for n = 0. Then, by (13), (15), (16) and the proposition, by
setting s = s, s! = Sn4ls b= In, ut = tn+1 and v = vy, it follows that
t,, 1 exists, with

Sn+1 S t:;_|_1 S t, — Sn

and 1 — pp41 > 0.
That completes the induction and proves (a).
(b) This part follows easily from part (a).
(c) Using (21), we deduce immediately that ¢o(t) has roots on [0, R).
That completes the proof of theorem.

We can now prove the main result.

Theorem 2. Let (1) hold. Assume that for sy > 0,09 > 0,0 < pg <1
and a > 1, (21) is true. Then, the function ¢q(t) defined by (14) has roots
on [0, R). Denote by t{ the least of them and suppose that

(22) to < Ro < R.

Let s, > 0, p, > 0, 0, > 0, n > 0 be such that liminfo, > 0 asn — oo
and condition (15) is true for all n > 0.
Assume that, for all n > 0, it is

(23) [ynll < sn < onl|F(25) + G(20)||
and
nSn
24 < :
(24) ] < £2

n

Then the sequence {x,}, n > 0 generated by (1) remains in U(xq,t}) and
converges to a solution x* of equation (2). Moreover, the error bounds
(19) and (20) are true for all n > 0, where t}, is the least root in [0, R) of
the function ¢, (t) defined by (17), with p,, = ||z, — x¢l|, n > 0.

Proor. The existence of ¢} is guaranteed by (21). Let us assume
that z,, tp+1 € U(zo,t]). We will show that for every n > 0, condition
(15) is true. Since |lyo|| < so, this is true for n = 0.

Using the identity
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F(zns1) + Gans1) = /0 [F' (20 + tHTns1 — Tn)) — A(zn)|(Tny1 — zn)dt
+ (G(zpt1 — G(zy)) + 1n,

(3), (4), (23), (24), setting p, = ||xn — 0| and by taking norms in the
above identity we get

$nt+1 < Ont1|[F(Tnt1) + G(@nt1)|
<, [an (/ ’ Bi(R, p, + 0)d0 + Ba(R, sn)) + snun}
0

which shows (15) for all n > 0.

The hypothesis (b) of Theorem 1 can now easily be verified by in-
duction and thus, by (18) and (23), the sequence {z,}, n > 0 remains
in U(xo,t}), converges to z* and (19) and (20) hold. Finally, from the
inequality

1 (2n) + G(@n)ll < [[A(zn) = F (@o)[[lynll + 1E" (@o) [ lynll + llrnll,

(3), (24) and the continuity of F' and G, as liminfo,, > 0 and s,, — 0, as
n — oo it follows that F(z*) + G(x*) = 0.
That completes the proof of the theorem.

Remark. (a) In the special case when B and Bs are given (5) and
(6) respectively, then our results can be reduced to the ones obtained by

MORET [5, p. 359] (when G = 0).
(b) Let G = 0 and define the functions ¢ (t), @, (t) by

Qo(t) = CLO'()/O (t — 0)]{?(9>d0 — t(l — ,u()) + S0,

t
on(t) = avnan/ (t — ) k(pn + 0)dO — t(1 — p) + Sp,
0

where k is a nondecreasing function on [0, R] such that

1F"(z) = F'()| < k(r)llz —yll, =,y € Ulxo,r) (r< Ro).
Assume that By can be chosen in such a way that
(25) pn(t) < @n(t),  n=0.

Then under the hypotheses of Theorem 2 above and Proposition 1 in
[5, p. 359], using (25) we can show

lo =@l <t <mg, n >0

and
|z* — zppr]] <t — sp <M, — Sp, n >0
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where by m;, we denote the least solutions of the equations

@n(t) =0, n>0in[0,R).

References

[1] P.T. BROWN, A local convergence theory for inexact-Newton finite-difference pro-
jection methods, SIAM J. Numer. Anal. 24 (1987), 407-437.

[2] X. CHEN and T. YamaMm0TO, Convergence domains of certain iterative methods
for solving nonlinear equations, Numer. Funct. Anal. and Optimiz. 10, (1 and 2)
(1989), 37-48.

[3] R.S. DEMBO and S.C. EISENHART and T. STEIHAUG, Inexact Newton methods,
SIAM J. Numer. Anal. 19 (1982), 400-408.

[4] M.A. KrAasNOSEL’SKII and Y.B. RUTICKII, Some approximate methods of solving
nonlinear equations based on linearization, Soviet Math. Dokl. 2 (1961), 1542-1546.

[65] I. MorET, A Kantorovich-type theorem for inexact Newton methods, Numer.
Funct. Anal. and Optimiz. 10, (3 and 4) (1989), 351-365.

[6] F.A. PoTrA and V. PTAK, Nondiscrete induction and iterative processes, Pitman
Advanced Publishing Program, London, 1984.

[7] A.H. SHERMAN, On Newton-iterative methods for the solution of systems of equa-
tions, STAM J. Number. Anal. 15 (1978), 755-771.

[8] P.P. ZaBrEJKO and D.F. NGUEN, The majorant method in the theory of New-
ton-Kantorovich approximations and the Ptak error estimates, Numer. Funct. Anal.
and Optimiz. 9 (1987), 671-684.

[9] T. YAMAMOTO, A note on a posterior error bound of Zabrejko and Nguen for
Zincenko’s iteration, Numer. Funct. Anal. and Optimiz. 9 (1987), 987-994.

[10] T.J. YPMA, Local convergence of inexact Newton methods, SIAM J. Numer. Anal.
21 (1984), 583-590.

IOANNIS K. ARGYROS
DEPARTMENT OF MATHEMATICS
CAMERON UNIVERSITY
LAWTON, OK 73505

(Received September 15, 1991; revised March 30, 1992)



