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Uniformly noncreasy Orlicz spaces

By PAWE�L KOLWICZ (Poznań)

Abstract. The geometric properties which are considered are closely related
to the fixed point property (see [14] and [20]). Criteria in order that Orlicz spaces
are uniformly noncreasy are given. It is shown that uniform noncreaseness and
orthogonal uniform convexity are not comparable one to another in general. It
is also proved that uniformly monotone Köthe space with a uniformly monotone
dual is orthogonally uniformly convex and the converse is not true. It is noticed
that orthogonal uniform convexity is not self-dual property.

1. Introduction

Uniform rotundity and uniform smoothness of Banach spaces play an
essential role in the theory of Banach spaces and their numerous applica-
tions. In particular each of these properties guarantees normal structure
and reflexivity which in turn imply the fixed point property for nonex-
pansive mappings (see [7]). On the other hand, there are some methods
which allow us to establish the fixed point property for Banach spaces
without normal structure. One of them is uniform noncreaseness. It was
introduced by Prus in [20]. He has proved that it implies the fixed point
property both for a Banach space and its dual and it does not imply normal
structure (see [20]).
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Throughout this paper X is a real Banach space. As usual, S(X) and
B(X) stand for the unit sphere and the unit ball of X, respectively. Given
a functional x∗ ∈ S (X∗) and a scalar δ ∈ [0, 1] we set

S (x∗, δ) = {x ∈ B (X) : x∗ (x) ≥ 1 − δ} .

For any two functionals x∗, y∗ ∈ S (X∗) and a scalar δ ∈ [0, 1] we put

S (x∗, y∗, δ) = S (x∗, δ) ∩ S (y∗, δ) .

We say that a Banach space (X, ‖·‖X) has a crease, if there are two distinct
functionals x∗, y∗ ∈ S (X∗) with diam S (x∗, y∗, 0) > 0. This means that
the sphere S (X) contains a segment of positive length which lies on two dif-
ferent hyperplanes supporting the ball B (X). (X, ‖·‖X) is called noncreasy
(X ∈ (NC)) whenever S (X) has not creases, i.e. for every x∗, y∗ ∈ S (X∗)
with x∗ �= y∗ we have diam S (x∗, y∗, 0) = 0. Obviously all spaces with
dim X ≤ 2 are noncreasy.

It is clear that X ∈ (NC) whenever it is rotund or smooth (we refer
to [5] for definitions of rotundity and smoothness). Moreover, that impli-
cation can be reversed in Orlicz function spaces LΦ over nonatomic finite
measure space (see [4]).

Definition 1. A Banach space (X, ‖·‖X) is uniformly noncreasy
(X ∈ (UNC)) if for each ε > 0 there is a δ = δ (ε) > 0 such that
diam S (x∗, y∗, δ) ≤ ε, whenever x∗, y∗ ∈ S (X∗) and ‖x∗ − y∗‖X∗ ≥ ε.
We put diam ∅ = −∞.

Recall that X is uniformly convex (X ∈ (UC)), if for each ε > 0 there
is δ > 0 such that for any x, y ∈ S(X) the inequality ‖x − y‖X > ε implies
‖x + y‖X < 2 (1 − δ) (see [5]). X is uniformly smooth (X ∈ (US)), if for
each ε > 0 there is δ > 0 such that for any x ∈ S (X) and y with ‖y‖X ≤ δ

we have ‖x + y‖X + ‖x − y‖X < 2 + ε ‖y‖X (see [5]).
It is easy to see that each of these two properties ((UC), (US)) implies

uniform noncreaseness (see [20]).
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2. Orlicz spaces

In this section we present criteria for uniform noncreaseness of Orlicz
function spaces equipped with the Luxemburg and with the Orlicz norm.
We consider both the case of finite and infinite nonatomic measure space.
We start with some notations and definitions.

Let (T, Σ, µ) be a measure space with a σ-finite, complete nonatomic
measure µ. By L0 = L0(T ) we denote the set of all µ-equivalence classes
of real valued measurable functions defined on T . We say that Φ : R −→
[0,∞] is an Orlicz function, if Φ(0) = 0, Φ is a convex, even, left continuous
on [0,∞) and Φ is a function, which is not identically equal to zero and
infinity.

Let Φ be an Orlicz function, p be its right derivative and q be the right-
inverse function of p. Then we call Ψ (v) =

∫ |v|
0 q (s) ds the complementary

function of Φ. It is known that Ψ (v) = supu>0 {u |v| − Φ (u)} for every
v ∈ R. Moreover

uv = Φ (u) + Ψ (v) (1)

whenever v = p (u) or u = q (v).
The Orlicz function space LΦ is defined to be the set

LΦ =
{

x ∈ L0 : IΦ(cx) =
∫

T
Φ(cx(t))dµ < ∞ for some c > 0

}
.

This space is usually considered with the Luxemburg norm

‖x‖Φ = inf {ε > 0 : IΦ (x/ε) ≤ 1}
or with the equivalent Orlicz norm

‖x‖o
Φ = sup

{∣∣∣∣
∫

T
x(t)y(t)dµ

∣∣∣∣ : y ∈ LΨ, IΨ(y) ≤ 1
}

.

It is more convenient for our consideration to make use of the Amemiya
norm

‖x‖A
Φ = inf

{
1
k

(1 + IΦ (kx)) : k > 0
}

.

We have ‖x‖A
Φ = ‖x‖o

Φ for an arbitrary Orlicz function Φ (see [10]). De-
note LΦ = (LΦ, ‖·‖Φ) and Lo

Φ = (LΦ, ‖·‖o
Φ). If Ψ is finitely valued (or
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equivalently if limu→∞ Φ (u) /u = ∞), then for every x ∈ LΦ\ {0} we have
k∗∗ (x) < ∞ and

‖x‖o
Φ =

1
k

(
1 + IΦ(kx)

)
for any k ∈ K(x) = [k∗

x, k∗∗
x ] , where (2)

k∗
x = inf

{
k > 0 : IΨ (p(k|x|))≥ 1

}
and k∗∗

x = sup
{
k > 0 : IΨ (p(k|x|))≤ 1

}
(see [3]). We say that an Orlicz function Φ satisfies the ∆2-condition for
all u (for large u) if there is a constant k > 2 (there are u0 > 0 with
Φ (u0) < ∞ and k > 2) such that

Φ (2u) ≤ kΦ (u)

for every u ∈ R (for every |u| ≥ u0), respectively. We will use abbre-
viations Φ ∈ ∆a

2, Φ ∈ ∆l
2, if Φ satisfies the ∆2-condition for all u, for

large u, respectively. Note that if Ψ ∈ ∆l
2, then Ψ is finitely valued and

the condition (2) holds for each x ∈ LΦ\ {0}.
A function Φ is strictly convex (Φ ∈ (SC)) if Φ((u + v)/2) < (Φ(u) +

Φ(v))/2 for all u, v ∈ R, u �= v. Φ is uniformly convex for all arguments
[for large arguments] if for any ε > 0 there is a δ = δ (ε) > 0 [there exists
u0 > 0 such that for every ε > 0 there is a δ = δ (ε) > 0] such that

Φ
(

u + v

2

)
≤ (1 − δ)

Φ (u) + Φ (v)
2

for all u, v satisfying |u − v| ≥ ε max{u, v} [|u − v| ≥ ε max{u, v} and
u, v ∈ [u0,∞)

]
.

For more details we refer to [3] and [18].

Theorem 1. Assume that µ (T ) < ∞. The following assertions are

equivalent:

(i) An Orlicz space Lo
Φ (LΦ) is uniformly noncreasy.

(ii) Φ and Ψ satisfy the ∆2-condition for large u and one of the two con-

ditions is fulfilled:

(a) Φ is strictly convex and Φ is uniformly convex for large arguments.

(b) Ψ is strictly convex and Ψ is uniformly convex for large argu-

ments.

(iii) An Orlicz space Lo
Φ (LΦ) is uniformly convex or uniformly smooth.
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Proof. We will prove only the case of the Orlicz norm, because for
the Luxemburg norm the same ideas can be applicable.

(i) =⇒ (ii): If Lo
Φ ∈ (UNC), then Lo

Φ is reflexive (see [20]). Con-
sequently Φ ∈ ∆l

2 and Ψ ∈ ∆l
2, whence (Lo

Φ)∗ = LΨ (see [3]). Suppose
that both conditions (a) and (b) are not satisfied. We need to show that
Lo

Φ /∈ (UNC), i.e. there exist a number ε0 > 0 and sequences (x∗
n) , (y∗n) in

S (LΨ) such that

‖x∗
n − y∗n‖Ψ ≥ ε0 (3)

and

diam S (x∗
n, y∗n, 1/n) > ε0 (4)

for each n ∈ N.
We divide the proof into 4 parts.

A. Assume that Φ /∈ (SC) and Ψ /∈ (SC). Then Φ /∈ (SC) and p is
not continuous. Thus Lo

Φ /∈ (NC) by Theorem 3 in [4]. Note that the
similar arguments as in case B can be applied in the proof.

B. Suppose that Φ ∈ (SC), Ψ ∈ (SC) and Φ, Ψ are not uniformly
convex for large arguments. Then, by Lemma 1.17 in [3], there exist posi-
tive numbers ε1, ε2 and sequences (un) and (vn) of real numbers tending
to infinity such that

p ((1 + ε1) un) < (1 + 1/n)p (un) , (5)

q ((1 + ε2) vn) < (1 + 1/n) q (vn) . (6)

Note that Φ, Ψ ∈ ∆l
2, so Φ and Ψ are finitely valued. Hence, since vn → ∞

and un → ∞, without loss of generality we may assume that there are
disjoint measurable subsets T n

1 , T n
2 of T such that µ (T\ (T n

1 ∪ T n
2 )) >

µ(T )/2 and

Ψ [(1 + ε2) vn] µ (T n
1 ) = Ψ [p ((1 + ε1) un)] µ (T n

2 ) =
1
2

(7)

for each n ∈ N. We decompose each set T n
i (i = 1, 2) into two disjoint

subsets T n
i1 and T n

i2 with

µ (T n
i1) = µ (T n

i2) for i = 1, 2. (8)
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Take a0 such that Ψ (p(a0)) > max {2/µ(T ), 1}. For each n ∈ N there is a
measurable set T n

3 ⊂ T\ (T n
1 ∪ T n

2 ) with

Ψ [vn] µ (T n
11) + Ψ [(1 + ε2) vn] µ (T n

12) + Ψ [p (un)] µ (T n
21)

+Ψ [p ((1 + ε1) un)] µ (T n
22) + Ψ (p (a0)) µ (T n

3 ) = 1.
(9)

Put

kn = vnq(vn)µ (T n
11) + (1 + ε2)vnq ((1 + ε2) vn) µ (T n

12) + unp (un) µ (T n
21)

+ (1 + ε1) unp ((1 + ε1) un) µ (T n
22) + a0p (a0) µ (T n

3 ) (10)

and

xn = (q(vn)χT n
11

+ q((1 + ε2)vn)χT n
12

+ unχT n
21

+ (1 + ε1)unχT n
22

+ a0χT n
3

)/kn,

yn = (q(vn)χT n
11

+ q((1 + ε2)vn)χT n
12

+ (1 + ε1)unχT n
21

+ unχT n
22

+ a0χT n
3

)/kn,

x∗
n = vnχT n

11
+ (1 + ε2)vnχT n

12
+ p(un)χT n

21
+ p((1 + ε1)un)χT n

22
+ p(a0)χT n

3
,

y∗n = (1 + ε2)vnχT n
11

+ vnχT n
12

+ p(un)χT n
21

+ p((1 + ε1)un)χT n
22

+ p(a0)χT n
3
.

We will show that conditions (3) and (4) are satisfied by taking the above
defined sequences. First note that, by (8) and (9), IΨ(x∗

n) = IΨ(y∗n) = 1.
Hence x∗

n, y∗n ∈ S (LΨ) for each n ∈ N. Moreover, by Ψ ∈ ∆l
2, there exists

v0 > 0 and for α = max {2, 1 + ε2, 1/ε2} there is kα > 2 such that

Ψ (αv) ≤ kαΨ (v) (11)

for every |v| ≥ v0 (see [3]). Consequently Ψ (ε2v) ≥ βΨ (v) for each |v| ≥
v0/ε2, where β = 1/kα. Since vn → ∞, without loss of generality, we
assume that vn ≥ v0/ε2 for any n ∈ N. Hence, by (7) and (11),

IΨ

(
2k2

α (x∗
n − y∗n)

) ≥ 2k2
αΨ (ε2vn) µ (T n

1 ) ≥ 2k2
αβΨ (vn) µ (T n

1 )

≥ 2kαΨ ((1 + ε2) vn) βµ (T n
1 ) = 1.

(12)

Then
‖x∗

n − y∗n‖Ψ ≥ 1/2k2
α (13)

for all n ∈ N. Now we will show that xn, yn ∈ S (x∗
n, y∗n, 1/n). Note that

v = p (q (v)) for any v ≥ 0, since Ψ ∈ (SC), so q is strictly increasing.
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Hence IΨ (p (knxn)) = 1 for any n ∈ N, by (9). Thus, by (1), (2), (9) and
(10), we get

‖xn‖o
Φ =

1 + IΦ (knxn)
kn

=
1 + Φ (q (vn)) µ (T n

11) + Φ (q ((1 + ε2) vn)) µ (T n
12)

kn

+
Φ (un) µ (T n

21) + Φ ((1 + ε1) un) µ (T n
22) + Φ (a0) µ (T n

3 )
kn

=
{Ψ [vn] + Φ (q (vn))}µ (T n

11) + {Ψ [(1 + ε2) vn] + Φ (q ((1 + ε2) vn))}µ (T n
12)

kn

+
{Ψ [p(un)] + Φ(un)}µ(T n

21) + {Ψ [p ((1 + ε1)un)] + Φ ((1 + ε1)un)}µ(T n
22)

kn

+
{Ψ (p (a0)) + Φ (a0)}µ (T n

3 )
kn

= 1

for each n ∈ N. Similarly ‖yn‖o
Φ = 1 for every n ∈ N. Furthermore, by (10),

x∗
nxn = 1 for all n ∈ N. Moreover, the inequalities (6), (8) and (10) yield

y∗nxn =
(1 + ε2)vnq(vn)µ(T n

11) + vnq ((1 + ε2)vn) µ(T n
12) + unp(un)µ(T n

21)
kn

+
(1 + ε1) unp ((1 + ε1) un) µ (T n

22) + a0p (a0) µ (T n
3 )

kn

>
(1 + ε2)vnq ((1 + ε2)vn) µ(T n

11) + vnq(vn)µ(T n
12) + unp(un)µ(T n

21)
kn(1 + 1/n)

+
(1 + ε1) unp ((1 + ε1) un) µ (T n

22) + a0p (a0) µ (T n
3 )

kn

>
1

1 + 1/n
> 1 − 1/n

for each n ∈ N. Then xn ∈ S (x∗
n, y∗n, 1/n) for every n ∈ N. Analogously as

above, applying inequalities (5), (8) and (10), one can easily get x∗
nyn >

1− 1/n for every n ∈ N. Similarly, using now inequalities (5), (6), (8) and
(10), we obtain y∗nyn > 1−1/n for all n ∈ N. Thus yn ∈ S (x∗

n, y∗n, 1/n) for
every n ∈ N. To finish the proof we evaluate the norm ‖xn − yn‖o

Φ. From
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equality (7) we conclude Ψ−1
(

1
2µ(T n

2 )

)
= p((1 + ε1)un), whence

‖xn − yn‖o
Φ =

ε1un

kn
µ (T n

2 ) Ψ−1

(
1

µ (T n
2 )

)

≥ ε1un

kn
µ (T n

2 ) p ((1 + ε1) un) .

(14)

Applying equality (1) we deduce

(1 + ε1) unp ((1 + ε1) un) ≥ Ψ (p ((1 + ε1) un)) , n ∈ N. (15)

From Proposition 1.6 in [3] we conclude

1
2
vq

(
1
2
v

)
≤ Ψ (v) , v > 0. (16)

Then, applying (11), we get

(1 + ε2) vnq ((1 + ε2) vn) ≤ Ψ (2 (1 + ε2) vn) ≤ kαΨ ((1 + ε2) vn) ,

n ∈ N.
(17)

Note that µ (T n
3 ) < µ (T n

3 ) Ψ (p (a0)) ≤ 1/2, by (7), (8) and (9). Conse-
quently, by (7), (10), (15) and (17) we get

kn

(1 + ε1) unp ((1 + ε1) un) µ (T n
22)

≤ (1 + ε2) vnq ((1 + ε2) vn) µ (T n
1 ) + a0p (a0) µ (T n

3 )
(1 + ε1) unp ((1 + ε1) un) µ (T n

22)

+2 ≤ kαΨ ((1 + ε2) vn) µ (T n
1 ) + a0p (a0)

Ψ (p ((1 + ε1) un)) µ (T n
22)

+ 2 =
kα
2 + a0p (a0)

1
4

+ 2.

Denote λ = 2kα + 4a0p (a0) + 2. Hence the inequality (14) yields

‖xn − yn‖o
Φ ≥ ε1unp ((1 + ε1) un) µ (T n

2 )
λ (1 + ε1) unp ((1 + ε1) un) µ (T n

22)
>

2ε1

λ (1 + ε1)
.

Finally, denoting ε0 = min
{

2ε1
λ(1+ε1) , 1/2k2

α

}
, where 1/2k2

α is from (13), we
conclude that conditions (3) and (4) are satisfied.
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C. Suppose that Φ /∈ (SC), Ψ ∈ (SC) and Ψ is not uniformly convex
for large arguments. Hence p is constant in some interval [a, b], 0 < a < b

and there exist positive number ε2 and sequence (vn) of real numbers tend-
ing to infinity such that q ((1 + ε2) vn) < (1 + 1/n) q (vn) for each n. Then
we may step the same way as in case B by taking un = a, (1 + ε1) un = b,
n ∈ N and T n

2 = T2 of positive measure is chosen so that µ (T\T2) >

3µ (T ) /4. Next for each n ∈ N we take a set T n
1 disjoint with T2 such that

µ (T\ (T n
1 ∪ T2)) > µ (T ) /2 and Ψ[(1 + ε2)vn]µ(T n

1 ) = 1
2 . Note that the

second term in (7) disappears in this case. It may happen that Ψ ∈ (SC)
and Φ vanishes outside zero.

C.1. Suppose that p(a) = p(b) = 0. Then the third and fourth term
in (9), (10) and in formulas of x∗

n, y∗n disappear. However, the proof goes
the same way. Note only that ‖xn − yn‖o

Φ = b−a
kn

µ(T2)Ψ−1
(

1
µ(T2)

)
and one

can analogously apply inequality (17) to finish the proof.
C.2. If p (a) = p (b) > 0, the proof is analogous. We need only addi-

tionally assume that the set T2 is chosen to satisfy 0 < Ψ (p (b)) µ (T2) ≤
1/2.

D. Assume that Ψ /∈ (SC), Φ ∈ (SC) and Φ is not uniformly convex
for large arguments. Hence q is constant in an interval [c, d], 0 < c < d and
there exist positive number ε1 and sequence (un) of real numbers tending
to infinity such that p ((1 + ε1) un) < (1 + 1/n) p (un), n ∈ N. We consider
two cases.

D.1. Suppose that Ψ vanishes outside zero and q(c) = q(d) = Ψ(c) =
Ψ(d) = 0. Then we may step similarly as in case B with vn= c, (1+ ε2)vn= d,
n ∈ N and T n

1 = T1 is chosen so that 0 < µ(T1) < µ(T )/4. Then ‖x∗
n −

y∗n‖Ψ = ‖(d − c)χT1‖Ψ > 0. Clearly, the first term in (7), the first and
second term in (9), (10) and in formulas of xn, yn disappear.

D.2. Assume that Ψ vanishes only at zero. Then we assume that the
interval [c, d] is a structural affine interval of Ψ (i.e. Ψ is affine on [c, d] and
it is not affine on either [c − δ, d] nor [c, d + δ] for any δ > 0). Hence we
find vn < c such that q(d) < (1 + 1/n)q (vn) and p (q (vn)) = vn. Taking
T n

1 = T1, where 0 < Ψ (d) µ (T1) ≤ 1/2 and replacing (1 + ε2) vn by d

in (9), (10) and in the formulas for xn, yn, x∗
n, y∗n we may step similarly

as in case B. Then IΨ (s (x∗
n − y∗n)) ≥ sΨ (d − c) µ (T1) ≥ 1, where s =

max
{

1, (Ψ(d − c)µ(T1))−1
}

, so ‖x∗
n − y∗n‖Ψ ≥ 1/s. We do not need to
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use the ∆l
2 condition for Ψ in order to obtain the estimation of the norm

‖xn − yn‖o
Φ. We simply get

kn

(1 + ε1) unp ((1 + ε1) un) µ (T n
22)

≤ dq (d) µ (T1) + a0p (a0)
1/4

+ 2

and it is easy to finish the proof.

(ii) =⇒ (iii): By the assumptions we have Lo
Φ ∈ (UC) or LΨ ∈ (UC)

(see [11]). But (LΨ)∗ = Lo
Φ, because Ψ ∈ ∆l

2 (see [3]). Moreover, a Banach
space X ∈ (UC) iff X∗ ∈ (US) (see [5]). Thus Lo

Φ ∈ (UC) or Lo
Φ ∈ (US).

(iii) =⇒ (i): This follows immediately from [20]. �

Using the same methods as in the proof of Theorem 1, one can show
the respective result for an infinite nonatomic measure (the required proof
is even much simpler than in the case of finite measure). Namely

Theorem 2. Assume that µ(T ) = ∞. The following assertions are

equivalent:

(i) An Orlicz space Lo
Φ (LΦ) is uniformly noncreasy.

(ii) Φ and Ψ satisfy the ∆2-condition for all u and one of the two conditions

are fulfilled:

(a) Φ is uniformly convex for all arguments.

(b) Ψ is uniformly convex for all arguments.

(iii) An Orlicz space Lo
Φ (LΦ) is uniformly convex or uniformly smooth.

The sketch of the proof . Only the implication (i) =⇒ (ii) needs to be
discussed. The existence of sequences (un) and (vn) satisfying (5) and (6)
follows analogously. However, we have to consider three cases for each of
these sequences, namely un → 0, un → ∞ and un → u0 for some u0 > 0,
similarly for (vn). Hence we divide the proof into three cases.

I. If un → 0 or un → ∞, vn → 0 or vn → ∞ and Φ, Ψ ∈ (SC), we
follow analogously as in case B of Theorem 1.

II. If un → u0 for some u0 > 0, vn → 0 or vn → ∞, Ψ ∈ (SC), then Φ
is affine on the interval [u0, (1 + ε1) u0]. Since Φ ∈ ∆a

2, Φ vanishes only at
zero and consequently we step as in case C.2.

III. If vn → v0 for some v0 > 0, Φ ∈ (SC), the situation is analogous
to the case D.2.
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3. Köthe spaces

In this section we would like to draw a comparison between the uniform
noncreaseness and the orthogonal uniform convexity(each of them implies
the fixed point property). But first we recall the necessary terminology.

Let E = (E,≤, ‖ · ‖E) be a Banach function lattice over the measure
space (T, Σ, µ) (with a σ-finite and complete measure µ), where ≤ is semi-
order relation in the space L0 and (E, ‖·‖E) is a Banach function space, i.e.
E is linear subspace of L0, norm ‖ · ‖E is complete in E and the following
two conditions are satisfied:

(i) if x ∈ E, y ∈ L0, |y| ≤ |x| µ-a.e., then y ∈ E and ‖y‖E ≤ ‖x‖E ,

(ii) there exists function x in E that is positive on the whole T (see [17]).

We will call the space E the Köthe space. In particular, if we consider the
space E over a non-atomic measure µ, then we will say that E is a Köthe
function space. If we replace the measure space (T, Σ, µ) by a counting
measure space

(
N, 2N,m

)
, then we will say that E is a Köthe sequence

space.
A Köthe space E is said to be strictly monotone (E ∈ (SM)) if for

every 0 ≤ y ≤ x with y �= x we have ‖y‖E < ‖x‖E . We say that a Köthe
space E is uniformly monotone (E ∈ (UM)) if for every q ∈ (0, 1) there
exists p ∈ (0, 1) such that for all 0 ≤ y ≤ x satisfying ‖x‖E ≤ 1 and
‖y‖E ≥ q we have ‖x − y‖E ≤ 1 − p (see [1]).

A Köthe space E is called order continuous (E ∈ (OC)) if for every
x ∈ E and each sequence (xm) ∈ E such that 0 ≤ xm ≤ |x| and xm → 0
we have ‖xm‖E → 0 (see [17]).

The geometry of Banach spaces is strictly connected with the fixed
point theory (see [7]). The orthogonal uniform convexity is a geometric
property related to the fixed point property. It was introduced in [13]
during studies on property (β) of Rolewicz.

The notation r∨s = max {r, s} for any r, s ∈ R and A÷B = (A \ B)∪
(B \ A) for every A,B ∈ Σ will be used.

Definition 2. A Köthe space (E, ‖ · ‖E) is orthogonally uniformly con-
vex

(
E ∈ (

UC⊥))
, if for each ε > 0 there is δ = δ (ε) > 0 such that

for any x, y ∈ B(E) the inequality
∥∥xχAxy

∥∥
E
∨ ∥∥yχAxy

∥∥
E

≥ ε implies
‖(x + y)/2‖E ≤ 1 − δ, where Axy = suppx ÷ supp y.
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Obviously, if E ∈ (UC), then E ∈ (UC⊥). It is known that uniformly
convex Köthe spaces are uniformly monotone (see [9]). Moreover,

Lemma 1 (Lemma 3 in [13]). If E ∈ (
UC⊥)

, then E ∈ (UM).

The converse of Lemma 1 is not true as examples L1, l1 show.

It is known that orthogonal uniform convexity implies the fixed point
property (see [14]). It is also connected with property (β) (property (β)
has been introduced by Rolewicz during studies on well-posed problems

in optimization theory – see [19]). Namely, UC
(1)⇒ UC⊥ (2)⇒ β in every

Köthe sequence space, UC ⇒ β
(3)⇒ UC⊥ in every Köthe function space

and the converse of implications (1), (2) and (3) is not true in general (see
[13], [14] and [15]).

It can be deduced by Theorems 1, 2 and Theorem 4 from [14] that
UNC ⇒ UC⊥ in Orlicz function spaces with the Luxemburg norm. Fur-
thermore, the Example 1.10 from [8] of Orlicz function space shows that
this implication can not be reversed in general. However, one can pose a
natural question whether the implication UNC ⇒ UC⊥ can be extended
to all Köthe spaces. The next example shows that this is not the case.

Example 1. Let Xβ =
(
l2, ‖ · ‖), where ‖x‖ = max {‖x‖l2 , β‖x‖l∞} for

β ∈ (1,
√

2 ]. Then Xβ ∈ (UNC) by Theorem 4 from [20]. Let x = 1
β e1

and y = 1
β e1 +

√
1 − 1

β2 e2, where ei = (0, . . . , 0, 1, 0, . . . ) is the ith unit

vector. Then ‖x‖ = 1 and ‖y‖ = 1, by β
√

1 − 1
β2 ≤ 1. Since x ≤ y and

x �= y, so Xβ /∈ (SM). Thus Lemma 1 yields Xβ /∈ (
UC⊥)

.

The previous example suggests the following question. If a uniformly
noncreasy and uniformly monotone Köthe space is orthogonally uniformly
convex. However, this is also not true.

Example 2. Given Banach spaces X0 and X1, by (X0 × X1)∞ we de-
note the product X0×X1 with the norm ‖(x0, x1)‖∞ = max {‖x0‖ , ‖x1‖},
where x0 ∈ X0 and x1 ∈ X1. Analogously (X0 × X1)1 stands for the prod-
uct X0×X1 with the norm ‖(x0, x1)‖1 = ‖x0‖+‖x1‖. Take Y = (Z × Z)1,
where Z is a Köthe space which is both uniformly convex and uniformly
smooth. Then Y ∈ (UNC), by Proposition 1 in [20]. Note that Y is a
Köthe–Bochner space E (X) with X = Z and E = l12 (two-dimensional l1).
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Since E,X ∈ (UM), so Y ∈ (UM) (see [2]). On the other hand, since l12 /∈(
UC⊥)

and E,X are isometrically embedded into E(X), so Y /∈ (
UC⊥)

(see also [16]).

Note that for the space Y from the previous example we have Y ∗ =
E∗ (X∗) with E∗ = l∞2 . Since l∞2 /∈ (UM), so Y ∗ /∈ (UM). This suggests
the following

Question. Do conditions E,E∗ ∈ (UM) and E ∈ (UNC) imply
E ∈ (UC⊥)?

Theorem 3. Suppose that E, E∗ ∈ (UM). Then E ∈ (
UC⊥)

.

Proof. Assume for the contrary that E,E∗ ∈ (UM) and E /∈ (
UC⊥)

.
Then there are ε1 > 0 and sequences (xn) , (yn) in B (E) such that

‖xnχAn‖E ∨ ‖ynχAn‖E ≥ ε1 and ‖xn + yn‖E → 2, (18)

where An = supp xn ÷ suppyn. In view of the inequality ‖xn + yn‖E ≤
‖ |xn| + |yn| ‖E we may assume that xn, yn are nonnegative. Applying
Hahn–Banach Theorem we find a sequence (x∗

n)∞n=1 in S(E∗) with x∗
n((xn+

yn)/2) = ‖(xn + yn)/2‖E , n ∈ N. Applying (18) we conclude

x∗
nxn → 1 and x∗

nyn → 1. (19)

Recall that a Köthe dual E
′

of E is defined by

E
′

=
{

h ∈ L0 : ‖h‖E′ = sup
{∫

T
|h(t)g(t)| dµ : g ∈ E, ‖g‖E ≤ 1

}
< ∞

}
.

It is known that E
′

is a Banach function lattice. Recall that if E ∈ (UM),
then E ∈ (OC) (see Proposition 2.1 in [6]). Moreover E∗ = E

′
iff E ∈

(OC) (see [17]). Let A1
n = suppxn\ supp yn. In virtue of (18), without loss

of generality, passing to a subsequence, if necessary, we may assume that∥∥xnχA1
n

∥∥
E
≥ ε1 for any n ∈ N. Recall that E ∈ (UM) iff for any σ ∈ (0, 1)

there is ηE (σ) > 0 such that for any x ∈ E, x ≥ 0 with ‖x‖E = 1 and for
any A ∈ Σ

if ‖xχA‖E ≥ σ then
∥∥xχT\A

∥∥
E
≤ 1 − ηE (σ) (Theorem 6 in [9]). (20)

Consequently condition (20) with η1 = ηE (ε1) implies
∥∥xnχT\A1

n

∥∥
E

≤
1 − η1, whence

∣∣x∗
nxnχT\A1

n

∣∣ ≤ 1 − η1. Hence, by (19),
∣∣x∗

nxnχA1
n

∣∣ ≥ η1/2
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for sufficiently large n. Consequently∥∥x∗
nχA1

n

∥∥
E∗ ≥ η1/2 (21)

for infinitely many n ∈ N. Consequently, since E∗ ∈ (UM), again condi-
tion (20) with η2 = ηE∗ (η1/2) yields

∥∥x∗
nχT\A1

n

∥∥
E∗ ≤ 1 − η2 for infinitely

many n ∈ N. On the other hand, by (19),
∥∥x∗

nχT\A1
n

∥∥
E∗ ≥ x∗

nχT\A1
n
yn =

x∗
nyn → 1. This contradiction proves the theorem. �

Taking into account that every orthogonally uniformly convex Köthe
space is reflexive (Corollary 1 in [14]), applying Lemma 1 and Theorem 3,
we conclude

Corollary 1. E ∈ (UM) and E∗ ∈ (
UC⊥)

if and only if E∗ ∈ (UM)
and E ∈ (

UC⊥)
.

Note that uniform noncreaseness is self-dual property (i.e. X ∈ (UNC)
iff X∗ ∈ (UNC), see [20]).

Remark 1. Orthogonal uniform convexity is not self-dual property
(equivalently the converse of Theorem 3 is not true). Indeed, let E = lϕ be
the Musielak–Orlicz sequence space with the Luxemburg norm generated
by a Musielak–Orlicz function ϕ = (ϕi)

∞
i=1, where

ϕ1 (u) =




u/2 if 0 ≤ u ≤ 1,

1
4
u2 +

1
4

if u > 1
and

ϕi(u) = u2 for u ≥ 0, i = 2, 3, . . . .

One can compute a function ϕ∗ = (ϕ∗
i )∞i=1 which is complementary to

ϕ = (ϕi)
∞
i=1. Then

ϕ∗
1(v) =




0 if 0 ≤ v ≤ 1/2,

v2 − 1
4

if v > 1/2
and

ϕ∗
i (v) = v2 for v ≥ 0, i = 2, 3, . . . .

Hence ϕ and ϕ∗ satisfy the δ2-condition. It is also easy to check that
ϕ fulfills the condition (∗). Moreover, (ϕi)i≥2 is uniformly convex in 1-
neighborhood of zero. We refer to [12] to the respective definitions of
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conditions δ2, (∗) and uniform convexity of (ϕi). Then lϕ ∈ (
UC⊥)

by
Theorem 6 in [15]. Since ϕ ∈ δ2, E∗ = loϕ∗ (The Musielak–Orlicz space

ϕ∗ with the Orlicz norm). But one can easy show that loϕ∗ /∈ (SM). It
is enough to take x = (1/2e1 + 1/2e2) /k and y = (1/4e1 + 1/2e2) /k with
k = 5

4 . Then y ≤ x, y �= x and ‖x‖o
ϕ∗ = ‖y‖o

ϕ∗ = 1.
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thank Professor A. Pe�lczyński and Professor P. Mankiewicz for giving
inspiration to new studies.

We wish to thank an anonymous Referee for his valuable remarks
which led to substantial improvements of the paper.

References

[1] G. Birkhoff, Lattice Theory, Vol. XXV, American Mathematical Society, Provi-
dence, RI, 1967.

[2] J. Cerda, H. Hudzik and M. Masty�lo, Geometric properties of Köthe Bochner
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