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A polynomial extension of a problem of Diophantus

By KATALIN GYARMATI (Budapest)

Abstract. The following extension of a problem of Diophantus is studied:
For finite sets A,B of positive integers and a fixed polynomial p, how many pairs
(a, b) (a ∈ A, b ∈ B) can be given so that the product ab is “near” to p(x) for
some positive integer x.

1. Introduction

The Greek mathematician Diophantus of Alexandria noted that the
rational numbers 1

16 , 33
16 , 17

4 , and 105
16 have the following property: the

product of any two of them increased by 1 is a square of a rational number.
Later Fermat found a set of four positive integers with the above property:
{1, 3, 8, 120} (see [5]). A finite set A of integers is called a Diophantine n-
tuple if |A| = n and aa′+1 is a perfect square for all different elements a and
a′ of A. The first absolute upper bound for the size of Diophantine tuples
was given by A. Dujella [4], [6] and very recently he proved that there
is no Diophantine 6-tuple, and there are only finitely many Diophantine
5-tuples [7]. Yann Bugeaud and A. Dujella [2] extended the problem
for higher power.

In [3] the following related problem was studied: for an arbitrary set
A at most how many pairs (a, a′) exist with a, a′ ∈ A, a �= a′, aa′+1 = xn.
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It is clear that if the number of these pairs is less than |A|2 −|A| than this
implies that A is not a Diophantine |A|-tuple. Indeed, there we were able
to prove the following upper bound: For n ≥ 2, A,B ⊆ N, |A| ≥ |B| let

S = |{(a, b) : a ∈ A, b ∈ B ab + 1 = xn, x ∈ N}| ,
then

a) if n = 2 and A = B then S ≤ 0.8 |A|2,
b) if n = 3 then S ≤ 7.64 |A| |B|2/3

c) if n ≥ 4 then S ≤ 5.47 |A| |B|1/2.

In particular, if |A| = |B| then we obtain that the number of pairs (a, b)
such that ab + 1 is a k-th power for a fixed k ≥ 4 is ≤ 5.47 |A|3/2.

In the present paper we will study the case of general polynomials p(x)
in the place of xn, and give an upper bound for the number of pairs (a, b)
where ab is “around” p(x) for a positive integer x. (Another polynomial
extension of the problem was studied by A. Dujella and F. Luca [8])
This question was studied by H. Iwaniec and A. Sárközy [14] from the
opposite side. They proved that for all positive constant c1 there exists
a constant c2 (depending on c1) such that if A ⊆ {N,N + 1, . . . , 2N},
B ⊆ {N,N + 1, . . . , 2N} with |A| ≥ c1N , |B| ≥ c1N , then there exist
integers a, b, x with a ∈ A, b ∈ B and

∣∣ab − x2
∣∣ ≤ c2(x log x)1/2, so that

ab is “near square”. Wen-Guang Zhai [18] extended the problem to k

sequences and k-th powers.
When p(x) = cxk, there exist sets A and B (e.g. A = {yk : y ∈

N}, B = {czk : z ∈ N}) such that ab is always of the form of p(x), x ∈ N.
Therefore in this case it is not possible to give any non-trivial upper bound
for the number of the pairs. However, under certain conditions on p(x) we
will be able to give an upper bound.

Theorem 1. Let p(x) = rnxn+rmxm+· · ·+r0 ∈ R[x] be a polynomial

with rn > 0, 0 ≤ m ≤ n − 2, rm �= 0. Suppose that α ∈ Q, s ∈ Z with

s ≤ min{m − 2, n/2}, K ∈ R with K ≤ r
1/n
n /6 if s = n/2, A,B ⊆

{N,N + 1, . . . , 2N}, and let

S = |{(a, b) : a ∈ A, b ∈ B, |ab − p(x)| ≤ Kxs for an x with x + α ∈ N}| .
Then

S � |A| |B|1/2 + |B|
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always holds.

Throughout the paper we use the notations �,�,� and O in the
sense that the implied constant factor may depend only on the polynomial
p and the real numbers K and α defined in Theorem 1 and 2. More exactly
we say that f � g or f = O(g) if there exists a positive constant c3 such
that |f | < c3 |g|, and we say that f � g, if there exist two positive constants
c4 and c5 such that c4f ≤ g ≤ c5f , where the constants c3, c4, c5 depend
only on the polynomial p and the real numbers K and α, but nothing
else (these constants does not depend on the sets A and B or the integers
N and M where A ⊆ {N,N + 1, . . . , }, B ⊆ {M,M + 1, . . . }). Moreover,
throughout the paper c6, c7, c8 . . . will also denote positive constants whose
value may depend only on the polynomial p and the real numbers K and
α but nothing else.

The following two examples show that the conditions s ≤ n/2 and
A,B ⊆ [N,N + 1, . . . , 2N ] are necessary. First consider the case s > n/2.
Let y, x ∈ N, y2 = p(x) and A = B = {a : |a − y| ≤ cyε, a ∈ N}. Then for
a ∈ A, b ∈ B we have

|ab − p(x)| =
∣∣ab − y2

∣∣ ≤ c2y2ε + 2cy1+ε � xs

if ε is small enough and s > n/2. Thus

S = |A| |B| .
So, indeed, the condition s ≤ n/2 is necessary.

On the other hand assume that s ≤ n/2, v and 0 ≤ � ≤ v are fixed in-
tegers, p(x)∈Q[x], c6, c7 are positive constants, A = {p(x)/v : x∈N, c6 <

x < c7 (v/�)1/(n−s) , v | p(x)}, B = {v, v + 1, . . . , v + �}. If the constant c6

is large enough then p(x) � xn, and in this case for small enough constant
c7 we get S = |A| |B| and A ⊆ [1, 2, . . . v], B ⊆ [v, v + 1, . . . , 2v]. Thus in
Theorem 1 the condition A,B ⊆ [N,N + 1, . . . , 2N ] is also important. In
this example, it is very difficult question to give estimates for the size of A,
however the conjecture is that there exists a polynomial p for which the
cardinality of A is large. Considering the possible values of the polynomial
p(x) which are around ab in our example: x ∈ N and there exist a ∈ A,
b ∈ B such that |ab − p(x)| < Kxs, we see that the number of these x’s
is |A|. Thus the values of the polynomial p(x) with integer x, around a
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product ab, is much less than the number of all pairs (a, b) with a ∈ A,
b ∈ B which is |A| |B|. Generally, we will prove the following:

Theorem 2. Let p(x) = rnxn+rmxm+· · ·+r0 ∈ R[x] be a polynomial

with rn > 0, 0 ≤ m ≤ n − 2, rm �= 0. Suppose that α ∈ Q, s ∈ Z with

s ≤ min{m − 2, n/2}, K ∈ R with K ≤ r
1/n
n /6 if s = n/2, A,B ⊆ N, and

let

S′ = |{x : a ∈ A, b ∈ B, |ab − p(x)| ≤ Kxs for an x with x + α ∈ N}| .

If one of the following 3 conditions holds

a) A ⊆ {N,N + 1, . . . , 2N}, B ⊆ {M,M + 1, . . . , 2M},
b) m ≤ n − 3 and A ⊆ {N,N + 1, . . . , N2}, B ⊆ {M,M + 1, . . . ,M2},
c) n ≥ 4, m < n/αn, where αn = max

{
3n−2

2(n−3) ,
2(n−1)

n−2

}
, |A| ≥ |B|,

then S′ � |A| |B|1/2 + |B|.
Unfortunately we have not been able to prove an upper bound for every

polynomial without restrictions of the size of the sets A and B. However,
one of a) and b) holds for every polynomial, since all polynomials can be
written in the form rn(x+α)n +rn−2(x+α)n−2 +rn−3(x+α)n−3+ · · ·+r0.

In Corollary 1 we study the number of products ab which are of the
form of p(x) exactly, and this result will follow from the proofs of Theo-
rems 1 and 2.

Corollary 1. Suppose that the conditions of Theorem 2 hold and let

S = |{(a, b) : a ∈ A, b ∈ B, ab = p(x) for an x with x + α ∈ N}| .

Then we have

S � |A| |B|1/2 + |B| .

Throughout this paper, for a graph G, v(G) denotes the number of
the vertices, e(G) the number of the edges of G. Ck denotes the cycle of
length k, Kr,t is the complete bipartite graph with r and t vertices in its
classes.
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2. Lemmas

Theorems 1, 2 and Corollary 1 are based on graph theory. In the next
section we will define graphs whose vertices are the elements of A, B, and
two vertices a ∈ A, b ∈ B are joined if ab is around p(x) for an x + α ∈ N.
We will give an upper bound for the number of the edges using the fact
that these graphs do not contain “large” bipartite complete subgraph.

In this section, we study the case when the graph contains a cycle of
length 4. More exactly, we suppose that there exist 4 integers a, b, c, d as
described in Hypothesis 1.

Hypothesis 1. Let p(x) = rnxn +rmxm +rm−1x
m−1 + · · ·+r0 ∈ R[x]

be a polynomial with rn > 0, 0 ≤ m ≤ n− 2, rm �= 0 and let α ∈ Q, s ∈ Z

with s ≤ min{m − 2, n/2}, K ∈ R with K ≤ r
1/n
n /6 if s = n/2. Suppose

that there exist 4 integers a < b, c < d with

|ac − p(x)| ≤ Kxs, |ad − p(v)| ≤ Kvs,

|bc − p(z)| ≤ Kzs, |bd − p(y)| ≤ Kys,

for some x + α, y + α, z + α, v + α ∈ N.

Throughout this section we use the notation of Hypothesis 1. Using
that x + α, y + α, z + α, v + α are integers we will prove the following two
lemmas which are the main result of the section.

Lemma 1. There exist constants c8 > 1, c9 such that if a, b, c, d are

large enough (depending on p(x), K, α) and xy − vz �= 0 then we have

a) c8ac < bd if m = n − 2,
b) c9(ac)n−m−1 < bd if m ≤ n − 3.

Lemma 2. There exists a constant c10 such that if a, b, c, d are large

enough, xy − vz = 0 and one of the following 3 conditions holds

a) s < 0,
b) s < n/2, 2b > c and 2d > a,

c) s = n/2, K ≤ r
1/n
n /6, 2b > c and 2d > a,

then we have

c10(ac)m−s < bd.
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First we need estimates for the exact value of x, y, z, v.

Lemma 3. Let p(x) = rnxn +rmxm+rm−1x
m−1+ · · ·+r0 ∈ R[x] be a

polynomial with rn > 0, 0 ≤ m ≤ n−2, rm �= 0 and let K ∈ R, s ∈ Z with

s ≤ m. Then there exist a constant c11 and a−1, an−m−1, an−m, . . . , an−s−2

such that if y > c11, x > 0 and

|y − p(x)| < Kxs (1)

then we have

x = a−1y
1/n +

an−m−1

y(n−m−1)/n
+

an−m

y(n−m)/n
+ . . .

+
an−s−2

y(n−s−2)/n
+ O

(
1

y(n−s−1)/n

) (2)

with a−1 = 1

r
1/n
n

.

Proof of Lemma 3. If y is large enough then from (1) we get

x = O(y1/n). (3)

Then ∣∣∣∣∣x − y1/n

r
1/n
n

∣∣∣∣∣ =

∣∣∣xn − y
rn

∣∣∣∣∣∣xn−1 + xn−2 y1/n

r
1/n
n

+ · · · + y(n−1)/n

r
(n−1)/n
n

∣∣∣ ≤
|rnxn − y|
rnxn−1

. (4)

By the triangle-inequality we have

|rnxn − y| ≤ |rnxn − p(x)| + |p(x) − y| = O(xm) + O(xs) = O(xm).

From this, (3) and (4) we obtain∣∣∣∣∣x − y1/n

r
1/n
n

∣∣∣∣∣ = O

(
1

xn−m−1

)
= O

(
1

y(n−m−1)/n

)
. (5)

From the Taylor-formula, by induction on the number of the constants
(which is m − s + 1), it is easy to prove that there exist constants
a−1, an−m−1, . . . , an−s−2 such that if

x0 = a−1y
1/n +

an−m−1

y(n−m−1)/n
+

an−m

y(n−m)/n
+ · · · + an−s−2

y(n−s−2)/n
(6)



A polynomial extension of a problem of Diophantus 395

then

p(x0) = y + O(ys/n).

On the other hand if (1) holds then by (3) we have

p(x) = y + O(xs) = y + O(ys/n).

Using the Lagrange theorem we get

O(ys/n) = |p(x) − p(x0)| = p′(ξ) |x − x0| (7)

for some ξ ∈ [x, x0]. By (5) and (6) we have

ξ =
y1/n

r
1/n
n

+ O

(
1

y(n−m−1)/n

)
.

Thus p′(ξ) � y(n−1)/n. From (7) we obtain:

O(ys/n) � y(n−1)/n |x − x0| .

Then:

|x − x0| = O

(
1

y(n−s−1)/n

)

which completes the proof of Lemma 3. �

By Lemma 3 we have that there exist constants a−1, an−m−1, . . . ,

an−s−2 (which may depend on the coefficients of p(x)) such that

x = a−1(ac)1/n +
an−m−1

(ac)(n−m−1)/n
+

an−m

(ac)(n−m)/n
+ · · · + an−s−2

(ac)(n−s−2)/n

+ O

(
1

(ac)(n−s−1)/n

)
,

v = a−1(ad)1/n +
an−m−1

(ad)(n−m−1)/n
+

an−m

(ad)(n−m)/n
+ · · · + an−s−2

(ad)(n−s−2)/n

+ O

(
1

(ad)(n−s−1)/n

)
,
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z = a−1(bc)1/n +
an−m−1

(bc)(n−m−1)/n
+

an−m

(bc)(n−m)/n
+ · · · + an−s−2

(bc)(n−s−2)/n

+ O

(
1

(bc)(n−s−1)/n

)
,

y = a−1(bd)1/n +
an−m−1

(bd)(n−m−1)/n
+

an−m

(bd)(n−m)/n
+ · · · + an−s−2

(bd)(n−s−2)/n

+ O

(
1

(bd)(n−s−1)/n

)
. (8)

Thus

xy − vz =
∑

i<j∈{−1/n,(n−m−1)/n,
(n−m)/n,...,(n−s−2)/n}

aiaj

(
b−ia−j − b−ja−i

) (
d−ic−j − d−jc−i

)

+ O

(
(bd)1/n

(ac)(n−s−1)/n

)
.

Then we have

Lemma 4.

|xy − vz| �
(

b1/n

a(n−m−1)/n
− a1/n

b(n−m−1)/n

)(
d1/n

c(n−m−1)/n
− c1/n

d(n−m−1)/n

)

+
(bd)1/n

(ac)(n−s−1)/n
, (9)

and there exists a constant c12 such that

|xy − vz| �
(

b1/n

a(n−m−1)/n
− a1/n

b(n−m−1)/n

)(
d1/n

c(n−m−1)/n
− c1/n

d(n−m−1)/n

)

− c12
(bd)1/n

(ac)(n−s−1)/n
. (10)

Before proving Lemma 4, we remark that the main tool in the proofs
of Lemma 1 and Lemma 2 is the fact that xy − zv is a rational number.



A polynomial extension of a problem of Diophantus 397

More precisely, let α = r/q where r, q ∈ Z, (r, q) = 1. x, y, z, v ∈ N + α

therefore q2 |xy − vz| is an integer, however considering (9) we would
think that if a, b, c, d are large enough (depending on p(x), K, α), then
q2 |xy − vz| is usually smaller than 1.

Proof of Lemma 4. Using that a < b, by studying the derivatives
we obtain that the function x 	→ b−xa−j − b−ja−x in [−∞, j − 1/n] and
the function x 	→ b−ia−x − b−xa−i in [i + 1/n,∞] are decreasing. Thus
the largest number of the set {b−ia−j − b−ja−i : i < j ∈ {−1/n, (n−m−
1)/n, . . . , (n− s− 2)/n}} is b1/n

a(n−m−1)/n − a1/n

b(n−m−1)/n and the second largest

is b1/n

a(n−m)/n − a1/n

b(n−m)/n . So we have

|xy − vz|
= a−1an−m−1

(
b1/n

a(n−m−1)/n
− a1/n

b(n−m−1)/n

)(
d1/n

c(n−m−1)/n
− c1/n

d(n−m−1)/n

)

+ O

((
b1/n

a(n−m)/n
− a1/n

b(n−m)/n

)(
d1/n

c(n−m)/n
− c1/n

d(n−m)/n

))

+ O

(
(bd)1/n

(ac)(n−s−1)/n

)
. (11)

Next we claim that(
b1/n

a(n−m−1)/n
− a1/n

b(n−m−1)/n

)
≥ a1/n

2

(
b1/n

a(n−m)/n
− a1/n

b(n−m)/n

)
(12)

whence, since this statement is also true for c < d in place of a < b, Lem-
ma 4 follows trivially from (11). Let us see the proof of (12). Indeed, by
a < b we have

a1/n

2(b1/n − a1/n/2)
>
(a

b

)2/n ≥
(a

b

)(n−m+1)/n
,

which is equivalent with (12). Thus we have proved Lemma 4. �
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Proof of Lemma 1. By Lemma 4 we have

1 ≤ q2 |xy − vz|

�
(

b1/n

a(n−m−1)/n
− a1/n

b(n−m−1)/n

)(
d1/n

c(n−m−1)/n
− c1/n

d(n−m−1)/n

)

+
(bd)1/n

(ac)(n−s−1)/n
=

(bd)1/n

(ac)(n−m−1)/n
+

(ac)1/n

(bd)(n−m−1)/n

− (ad)1/n

(bc)(n−m−1)/n
− (bc)1/n

(ad)(n−m−1)/n
+

(bd)1/n

(ac)(n−s−1)/n
.

Since

(ac)1/n

(bd)(n−m−1)/n
≤ min

{
(ad)1/n

(bc)(n−m−1)/n
,

(bc)1/n

(ad)(n−m−1)/n

}
,

1
(abcd)(n−m−2)/2n

≤ max

{
(ad)1/n

(bc)(n−m−1)/n
,

(bc)1/n

(ad)(n−m−1)/n

}
,

we have

1 ≤ c13

(
(bd)1/n

(ac)(n−m−1)/n
− 1

(abcd)(n−m−2)/2n
+

(bd)1/n

(ac)(n−s−1)/n

)
.

for some constant c13. Thus if ac is large enough then

(ac)(n−m−1)/n + c13
(ac)(n−m)/n

(bd)(n−m−2)/2n
≤ c13(bd)1/n + O

(
(bd)1/n

(ac)(m−s)/n

)

≤ (c13 + 1/2) (bd)1/n.

Thus if m = n − 2 we get(
c13 + 1

c13 + 1/2

)n

ac ≤ bd,

and when m ≤ n − 3 we get

(ac)n−m−1 < (c13 + 1/2)n bd,

which completes the proof of Lemma 1. �
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Poof of Lemma 2. In order to prove Lemma 2 we need the following
lemma. �

Lemma 5. There exists a constant c14 such that if a, b, c,d are large

enough, c14(ac)m−s ≥ bd and xy − vz = 0, then {x, y} = {z, v}.
Proof of Lemma 5. By Lemma 4 there exists a constant c12 such

that for a < b, c < d we have

0 = |xy − vz|

�
(

b1/n

a(n−m−1)/n
− a1/n

b(n−m−1)/n

)(
d1/n

c(n−m−1)/n
− c1/n

d(n−m−1)/n

)

− c12
(bd)1/n

(ac)(n−s−1)/n

� 1
(ac)(n−m−1)/n

(b1/n − a1/n)(d1/n − c1/n) − c12
(bd)1/n

(ac)(n−s−1)/n
.

Since

|x + y − v − z| = (b1/n − a1/n)(d1/n − c1/n) + O

(
1

(ac)(n−m−1)/n

)

we obtain that there exists a constant c15 such that

0 = |xy − vz|

� 1
(ac)(n−m−1)/n

(
|x+ y− v− z| − c15

1
(ac)(n−m−1)/n

)

− c12
(bd)1/n

(ac)(n−s−1)/n
.

Whence by m ≤ n − 2, s ≤ m − 2 and bd ≤ c14(ac)m−s with suitable
constant c14 we obtain

q |x + y − v − z| < O

(
(bd)1/n

(ac)(m−s)/n

)
< 1.

q |x + y − v − z| is an integer so if a and c are large enough, we have

x + y − v − z = 0.
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xy = zv, x + y = z + v thus x, y and v, z are the roots of the same
polynomial of degree 2 which completes the proof of Lemma 5. �

Now we return to the proof of Lemma 2. Suppose that contrary to the
statement c14(ac)m−s ≥ bd. Then by Lemma 5 we have {x, y} = {z, v}.
By symmetry reasons we may suppose that x = v and y = z. By (8) we
have y = z = 1

r
1/n
n

(bc)1/n + O((bc)(n−m−1)/n), so

|bc − p(y)| < Kys <
2K

r
1/n
n

(bc)s/n,

|bd − p(y)| < Kys <
2K

r
1/n
n

(bc)s/n.

From the triangle-inequality

|b| ≤ |bd − bc| ≤ 4K

r
1/n
n

(bc)s/n. (13)

If s < 0 and b, c are large enough then |b| ≤ 1/2 which proves part a). In
order to prove parts b) and c) from (13) we obtain:

1 ≤ |d − c| ≤ 4K

r
1/n
n

(c

b

)(n−s)/n
c−(n−2s)/n. (14)

If s < n/2 and c is large enough we have

1 ≤ 1
2

(c

b

)(n−s)/n

which contradicts the condition 2b > c thus we have also proved part b).
Finally if s = n/2 and K ≤ r

1/n
n /6 then we have

1 ≤ 4K

r
1/n
n

(c

b

)1/2 ≤ 2
3

(c

b

)1/2

which completes the proof of Lemma 2.
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3. Completions of the proofs
of the theorems

Proof of Theorem 1. We cover the interval [N,N + 1, . . . , 2N ] by
disjoint subintervals of the form [z, c

1/2
16 z]. Then we have less than

�2 log 2/ log c16
 subintervals. Define the bipartite graph G in the following
way:

Consider two arbitrary subintervals I1=[z1, c
1/2
16 z1] and I2= [z2, c

1/2
16 z2].

Graph G has two classes, one contains as vertices the elements of A ∩ I1,
while the others contains the elements of B∩ I2. There is an edge between
the vertices a ∈ A ∩ I1 and c ∈ B ∩ I2 if and only if there exist x + α ∈ N

such that
|ac − p(x)| ≤ Kxs.

By Lemma 1 and Lemma 2 b) and c) if this graph contains a C4, whose
vertices are a, b, c, d, then in both cases xy − zv = 0 or xy − zv �= 0, we
have c16ac < bd for c16

def= min{c8, c9, c10}. But this contradicts a, b,∈ I1,
c, d ∈ I2 since c16ac ≥ c16z

2 ≥ bd. Thus this graph does not contain C4.
We will need the following lemma. �

Lemma 6. There exists a constant c17 such that if G(X,Y ) is a bi-

partite graph with |X| = m, |Y | = n without C4, then for the number of

the edges we have

e(G) ≤ c17mn1/2 + n.

Proof of Lemma 6. See in [9] and [10].
Thus by Lemma 6, G has less edges than |A| |B|1/2 + |B| which proves

the assertation for

|{(a, b) : a ∈ A ∩ I1, b ∈ B ∩ I2, |ab − p(x)| ≤ Kxs for an x + α ∈ N}|

We have at least �2 log 2/ log c16
 subintervals Ij and this completes the
proof. �

Proof of Theorem 2. If condition a) holds in Theorem 2 we cover
the intervals [N,N+1, . . . , 2N ], [M,M+1, . . . , 2M ] by disjoint subintervals
of the form [z, c

1/2
17 z]. When condition b) holds we cover the intervals
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[N,N +1, . . . , N2], [M,M +1, . . . ,M2] by disjoint subintervals of the form
[z, z3/2]. In case c) we have only two subintervals I1 = I2 = N. For given
subintervals I1, I2 we define the graph G as in the proof of Theorem 1.
We construct a graph G0 from G by removing certain edges of G so that
for each x such that there are a ∈ A, b ∈ B with

|ab − p(x)| ≤ Kxs. (15)

there will be exactly one edge (a, b) left with this property. Suppose again
G0 contains a C4, whose vertices are a, b, c, d. By Lemma 5 if xy−zv = 0,
then, since x, y, z,v are different numbers, thus we have c14(ac)m−s < bd.
Using this and Lemma 1 in case a) and b) we obtain that G0 does not
contain C4 so as in the proof of Theorem 1 we get the statement. �

Now consider the case c). We will prove that there exists a constant
r such that graph G0 does not contain a K2,r whose classes are {a, b} and
{d1, d2 . . . , dr} where a < b < d1 < · · · < dr.

adi = p(x) + O(xs), bdi = p(v) + O(vs).

Then by the triangle inequality we have

|bp(x) − ap(y)| = O(max{bxs, ays}),
|bxn − ayn| = O(max{bxm, aym}).

Lemma 7. If a, b and n are positive integers with n ≥ 3 and c is a

positive real number, then the inequality

|axn − byn| ≤ c

has at most one positive integral solution (x, y) with

max{|axn| , |byn|} > βncαn ,

where αn and βn are effectively computable positive constants satisfying

α3 = 9, αn = max
{

3n − 2
2(n − 3)

,
2(n − 1)
n − 2

}
for n ≥ 4

and

β3 = 1152.2, β4 = 98.53, βn < n2 for n ≥ 5.
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Proof of Lemma 7. This is Theorem 2.1 of [12].
By Lemma 7 there are only one x and y such that

max{|bxn| , |avn|} > βn (max{|bxm| , |avm|})αn .

When this does not hold:

xn ≤ max{xn, vn} < βnbαnxαnm or vn ≤ max{xn, vn} < βnaαnvαnm,

whence we get for all di with one exception:

di < max{adi, bdi} � max{xn, vn} < (βnbαn)n/(n−αnm) .

Let adi+1 = p(z)+O(zs), bdi+1 = p(y)+O(ys). Then a, b, di, di+1 form a
C4 in G0, and since x, y, z,v are different, by Lemma 5 if xy − zv = 0 we
have c14(adi)m−s < bdi+1. Using Lemma 1 we get c9(adi)n−m−1 < bdi+1.
Thus

c18(adi)min{m−s,n−m−1} < bdi+1

always holds so if b < di and a are large enough we have

d
min{m−s,n−m−1}
i < di+1.

Thus

d
(r−1)(min{m−s,n−m−1})
1 < dr−1 < (βnbαn)n/(n−αnm) < (βnd1)

n/(n−αnm)

which proves that the graph G0 does not contain K2,r in the case c). Using
the following lemma we will get the statement of Theorem 2. �

Lemma 8. Assume that G(X,Y ) is a bipartite graph with |X| = m ≤
|Y | = n, and the vertices are labeled by positive real numbers. Suppose

that G(X,Y ) does not contain a Kr,t subgraph G0 for which

G0 =

a1 a2 · · · ar

b1 b2 · · · bt
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with ai < bj for all 1 ≤ i ≤ r, 1 ≤ j ≤ t (where the a’s belong to V1 and

the b’s belong to V2 or vice versa). Then G has at most

e(G) ≤ 2(t − 1)1/rnm1−1/r + 2(r − 1)n

edges.

Proof of Lemma 8. See in [3]. �

Proof of Corollary 1. Consider the same graph G again (but we
do not remove the edges). Using Lemma 1 we can complete the proof of
the corollary in the same way as in Theorem 2. �

References

[1] B. Bollobás, Extremal Graph Theory, Academic Press, London – New York, 1978.

[2] Y. Bugeaud and A. Dujella, On a problem of Diophantus for higher powers,
Math. Proc. Cambridge Philos. Soc. 135 (2003), 1–10.

[3] Y. Bugeaud and K. Gyarmati, On generalizations of a problem of Diophantus,
(submitted).

[4] A. Dujella, An absolute bound for the size of Diophantine m-tuples, J. Number
Theory 89 (2001), 126–150.

[5] A. Dujella, On Diophantine quintuples, Acta Arith. 81 (1997), 69–79.

[6] A. Dujella, On the size of Diophantine m-tuples, Math. Proc. Cambridge Philos.
Soc. 132 (2002), 23–33.

[7] A. Dujella, There are only finitely many Diophantine quintuples, J. reine angew.
Math. 566 (2004), 183–214.

[8] A. Dujella and F. Luca, On a problem of Diophantus with polynomials, Rocky
Mountain J. Math. (to appear).
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[17] W. Sierpiński, A Selection of Problems in the Theory of Numbers, Pergamon
Press, 1964.

[18] Wen-Guang Zhai, On a multiplicative hybrid problem, Acta Arith. 71 (1995),
47–53.

KATALIN GYARMATI

DEPARTMENT OF ALGEBRA AND NUMBER THEORY
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