Publ. Math. Debrecen
66/3-4 (2005), 407-416

On harmonic sequences

By LI-XIA DAI (Nanjing) and YONG-GAO CHEN (Nanjing)

Abstract

A sequence $\left\{n_{1}, \ldots, n_{k}\right\}$ of positive integers is called harmonic if there exist k integers a_{1}, \ldots, a_{k} such that for every integer b there exists at most one i with $b \equiv a_{i}\left(\bmod n_{i}\right)$. In this paper, for $k \leq 14$, we prove that if $\left\{n_{1}, \ldots, n_{k}\right\}$ is harmonic with $\left(n_{i}, n_{j}\right) \leq k$ for all $1 \leq i<\bar{j} \leq k$, then $\left(n_{i}, n_{j}\right)=k$ for all $1 \leq i<j \leq k$.

1. Introduction

For two integers a, n, let $a(\bmod n)=\{a+n t: t \in Z\}$. Let n_{1}, \ldots, n_{k} be k positive integers and a_{1}, \ldots, a_{k} be k integers. It is well known that if $\left(n_{i}, n_{j}\right) \mid a_{i}-a_{j}$ for all $1 \leq i<j \leq k$, then the system of congruences

$$
x \equiv a_{i} \quad\left(\bmod n_{i}\right), \quad i=1, \ldots, k
$$

has solutions. That is,

$$
\bigcap_{i=1}^{k} a_{i} \quad\left(\bmod n_{i}\right) \neq \phi
$$

When are $\left\{a_{i}\left(\bmod n_{i}\right)\right\}_{i=1}^{k}$ disjoint, that is,

$$
a_{i} \quad\left(\bmod n_{i}\right) \cap a_{j} \quad\left(\bmod n_{j}\right)=\phi, \quad \text { for all } 1 \leq i<j \leq k ?
$$

[^0]A sequence $\left\{n_{1}, \ldots, n_{k}\right\}$ of positive integers is called harmonic if there exist k integers a_{1}, \ldots, a_{k} such that $\left\{a_{i}\left(\bmod n_{i}\right)\right\}_{i=1}^{k}$ are disjoint, that is, $a_{i}\left(\bmod n_{i}\right) \cap a_{j}\left(\bmod n_{j}\right)=\phi$, for all $1 \leq i<j \leq k$. In 1982, A. P. HuHN and L. Megyesi [3] proved that if all $\left(n_{i}, n_{j}\right)>1$ and $\left(n_{i}, n_{j}\right)(1 \leq i<$ $j \leq k)$ are distinct, then $\left\{n_{i}\right\}_{i=1}^{k}$ is harmonic. Z. W. Sun [5] improved this by proving that if the number of pairs $\{i, j\}$ with $1 \leq i<j \leq k$ and $\left(n_{i}, n_{j}\right)=d$ is less than $\sqrt{(d+7) / 8}$ for all $d \leq 2^{k-2}$, then $\left\{n_{i}\right\}_{i=1}^{k}$ is harmonic. Y. G. Chen [1] proved that if the number of pairs $\{i, j\}$ with $1 \leq i<j \leq k$ and $\left(n_{i}, n_{j}\right) \leq d$ is less than $\frac{1}{8}\left(d^{2}+d\right)+\frac{1}{2}$ for all $d \leq 2 k-2$, then $\left\{n_{i}\right\}_{i=1}^{k}$ is harmonic. Y. G. Chen [2] proved that if the number of pairs $\{i, j\}$ with $1 \leq i<j \leq k$ and $\left(n_{i}, n_{j}\right) \leq d$ is less than d for all $d \leq k-1$, then $\left\{n_{i}\right\}_{i=1}^{k}$ is harmonic. The following conjecture appeared in M. R. Sun [4].

Conjecture. If $\left\{n_{i}\right\}_{i=1}^{k}$ is harmonic with $\left(n_{i}, n_{j}\right) \leq k$ for all $1 \leq i<$ $j \leq k$, then $\left(n_{i}, n_{j}\right)=k$ for all $1 \leq i<j \leq k$.
M. R. Sun [4] proved that the conjecture is true for $2 \leq k \leq 7$. In this paper, we prove that the conjecture is true for $8 \leq k \leq 14$.

Theorem. Let $8 \leq k \leq 14$. If $\left\{n_{i}\right\}_{i=1}^{k}$ is harmonic with $\left(n_{i}, n_{j}\right) \leq k$ for all $1 \leq i<j \leq k$, then $\left(n_{i}, n_{j}\right)=k$ for all $1 \leq i<j \leq k$.

Remark. For given k, by $\left(n_{i}, n_{j}\right) \leq k$ and Lemma 1 in Section 2 we may assume that every prime power divisor of n_{i} is less than k. Hence each n_{i} can take only finitely many possible values. We may also assume that $0 \leq a_{i}<n_{i}$. Thus we change the problem into finite calculation. But it has many troubles except for several small k.

2. Preliminary lemmas

Lemma 1. $a(\bmod m) \cap b(\bmod n)=\phi$ if and only if $(m, n) \nmid a-b$.
Proof is clear. Thus, if $\left\{n_{i}\right\}_{i=1}^{k}$ is harmonic, then $\left(n_{i}, n_{j}\right)>1$ for all i, j.

Lemma 2 (M. R. Sun [4]). Let $l \geq 3$. If the conjecture is true for all $2 \leq k \leq l-1$ and $\left\{n_{i}\right\}_{i=1}^{l}$ is a harmonic sequence with $\left(n_{i}, n_{j}\right) \leq l$ for all $1 \leq i<j \leq l$, then there are at least three integers of n_{1}, \ldots, n_{l} which are divisible by l.

Proof. Suppose that there are at most two integers of n_{1}, \ldots, n_{l} which are divisible by l. Without loss of generality, we may assume that $l \nmid n_{i}(1 \leq i \leq l-2)$. Then $\left(n_{i}, n_{j}\right) \leq l-1$ for all $1 \leq i<j \leq l$ and $1 \leq i \leq l-2$. Since the conjecture is true for $k=l-1$, by considering $\left\{n_{i}\right\}_{i=1}^{l-1}$ and $\left\{n_{i}\right\}_{i=1, i \neq l-1}^{l}$, we have $\left(n_{i}, n_{j}\right)=l-1$ for all $1 \leq i<j \leq l$ and $1 \leq i \leq l-2$. Thus $l-1 \mid n_{l-1}$ and $l-1 \mid n_{l}$. By $\left(n_{l-1}, n_{l}\right) \leq l$ we have $\left(n_{l-1}, n_{l}\right)=l-1$. Hence $\left(n_{i}, n_{j}\right)=l-1$ for all $1 \leq i<j \leq l$. Since $\left\{n_{i}\right\}_{i=1}^{l}$ is a harmonic sequence, by Lemma 1 , there exist l integers a_{1}, \ldots, a_{l} such that $\left(n_{i}, n_{j}\right) \nmid a_{i}-a_{j}$ for all $1 \leq i<j \leq l$, that is, a_{1}, \ldots, a_{l} are incongruent each other modulo $l-1$, a contradiction. This completes the proof of Lemma 2.

Lemma 3. Let $d \geq 2,\left\{n_{i}\right\}_{i=1}^{d h}$ be a harmonic sequence with $\left(n_{i}, n_{j}\right) \leq$ $d h$ for all $1 \leq i<j \leq d h-r$ and $h \mid n_{i}$ for $1 \leq i \leq d h-r$, and let $a_{1}, \ldots, a_{d h-r}$ be integers with $\left(n_{i}, n_{j}\right) \nmid a_{i}-a_{j}$ for all $1 \leq i<j \leq d h-r$. If the conjecture is true for all $2 \leq k \leq d+1$, then there are at least $h-r$ residue classes modulo h in each of which there are exactly d integers of $a_{1}, \ldots, a_{d h-r}$ and $d h \mid n_{i}$ when a_{i} are in these $h-r$ residue classes. Thus $d h \mid n_{i}$ for at least $d(h-r)$ of $i \in\{1, \ldots, d h-r\}$.

Proof. If there are $d+1$ integers of $a_{1}, \ldots, a_{d h-r}$ in the same residue class modulo h, say $a_{i_{j}}=h b_{i_{j}}+s, j=1, \ldots, d+1$, then, by $\left(n_{i_{u}}, n_{i_{v}}\right) \nmid$ $a_{i_{u}}-a_{i_{v}}$ we have

$$
\left(\frac{n_{i_{u}}}{h}, \frac{n_{i_{v}}}{h}\right) \nmid b_{i_{u}}-b_{i_{v}}
$$

for all $1 \leq u<v \leq d+1$. Thus $\left\{\frac{n_{i_{j}}}{h}\right\}_{j=1}^{d+1}$ is harmonic. $\operatorname{By}\left(\frac{n_{i_{u}}}{h}, \frac{n_{i_{v}}}{h}\right) \leq d$ for all $1 \leq u<v \leq d+1$ and the conjecture being true for $k=d+1$, we have $\left(\frac{n_{i_{u}}}{h}, \frac{n_{i_{v}}}{h}\right)=d+1$ for all $1 \leq u<v \leq d+1$, a contradiction with $\left(\frac{n_{i_{u}}}{h}, \frac{n_{i v}}{h}\right) \leq d$. Hence there are at most d integers of $a_{1}, \ldots, a_{d h-r}$ in each residue class modulo h. By $(h-r-1) d+(r+1)(d-1)<d h-r$, there
exist at least $h-r$ residue classes modulo h in each of which there are exactly d integers of $a_{1}, \ldots, a_{d h-r}$.

Let $a_{w_{j}}=h b_{w_{j}}+t, j=1, \ldots, d$, then, by $\left(n_{w_{u}}, n_{w_{v}}\right) \nmid a_{w_{u}}-a_{w_{v}}$ we have

$$
\left(\frac{n_{w_{u}}}{h}, \frac{n_{w_{v}}}{h}\right) \nmid b_{w_{u}}-b_{w_{v}}
$$

for all $1 \leq u<v \leq d$. Thus $\left\{\frac{n_{w_{j}}}{h}\right\}_{j=1}^{d}$ is harmonic. By $\left(\frac{n_{w_{u}}}{h}, \frac{n_{w_{v}}}{h}\right) \leq d$ for all $1 \leq u<v \leq d$ and the conjecture being true for $k=d$, we have $\left(\frac{n_{i_{u}}}{h}, \frac{n_{i_{v}}}{h}\right)=d$ for all $1 \leq u<v \leq d$. Hence $d h \mid n_{i}$ for at least $(h-r) d$ of $i \in\{1, \ldots, d h-r\}$. This completes the proof of Lemma 3.

Lemma 4. Let p be a prime with $p \mid l+1$. If the conjecture is true for all $2 \leq k \leq l,\left\{n_{i}\right\}_{i=1}^{l+1}$ is harmonic with $\left(n_{i}, n_{j}\right) \leq l+1$ for all $1 \leq i<j \leq l+1$ and $p \mid n_{i}$ for all $1 \leq i \leq l+1$, then $\left(n_{i}, n_{j}\right)=l+1$ for all $1 \leq i<j \leq l+1$.

Proof follows from Lemma 3 immediately.
Lemma 5. Let $\left\{n_{i}\right\}_{i=1}^{k}$ be harmonic with $\left(n_{i}, n_{j}\right) \leq k$ for all $1 \leq i<$ $j \leq k$. If $k\left|n_{1}, \ldots, k\right| n_{t}$, then, either $\left(n_{i}, k\right)>1$ for all $1 \leq i \leq k$ or $t \leq \pi(k)-\omega(k)$, where $\pi(k)$ and $\omega(k)$ denote the number of primes not exceeding k and the number of distinct prime factors of k respectively. Furthermore, if $\left(n_{j}, k\right)=1$, then n_{j} has at least t distinct prime factors which are less than k.

Proof. Assume that $\left(n_{i_{0}}, k\right)=1$ for some i_{0}. Since $\left(n_{i}, n_{j}\right) \leq k$ for all $1 \leq i<j \leq t$, we have $\left(\frac{n_{i}}{k}, \frac{n_{j}}{k}\right)=1$ for all $1 \leq i<j \leq t$. By $k \geq\left(n_{i_{0}}, \frac{n_{i}}{k}\right)=\left(n_{i_{0}}, n_{i}\right)>1$ for all $1 \leq i \leq t$, we have $n_{i_{0}}$ has at least t distinct prime factors which are less than k. Noting that $\left(n_{i_{0}}, k\right)=1$, we have $t \leq \omega\left(n_{i_{0}}\right) \leq \pi(k)-\omega(k)$. This completes the proof of Lemma 5 .

Lemma 6. Let d be a positive odd integer with $d \geq 3$ and r a positive integer. If the conjecture is true for $k<2 d$ and $\left\{n_{i}\right\}_{i=1}^{2 d}$ is harmonic with $\left(n_{i}, n_{j}\right) \leq 2 d$ for all $1 \leq i<j \leq 2 d$ such that $2 \mid n_{i}$ for $1 \leq i \leq 2 d-r$ and $2 \nmid n_{j}, d \mid n_{j}$ for $2 d-r+1 \leq j \leq 2 d$, then $r \geq 2$.

Proof. Let $a_{1}, \ldots, a_{2 d}$ be integers with $\left(n_{i}, n_{j}\right) \nmid a_{i}-a_{j}$ for all $1 \leq$ $i<j \leq 2 d$. If $r=1$, then by Lemma 3 there are d integers of $a_{1}, \ldots, a_{2 d-1}$
which are in the same residue class modulo 2 , say a_{1}, \ldots, a_{d}, and $2 d \mid n_{i}$ for $1 \leq i \leq d$. Since $d \mid n_{2 d}$ and $2 d \nmid n_{2 d}$, we have $\left(n_{2 d}, n_{i}\right)=d$ by $\left(n_{2 d}, n_{i}\right) \leq 2 d$ for $1 \leq i \leq d$. Thus $a_{i} \not \equiv a_{2 d}(\bmod d)$ for $1 \leq i \leq d$. That is, $a_{i}(1 \leq i \leq d)$ are in $d-1$ residue classes modulo d. Hence there are two integers of $a_{i}(1 \leq i \leq d)$ which are congruent modulo $2 d$, a contradiction. This completes the proof of Lemma 6.

Lemma 7. Let p be an old prime and r, s be positive integers. Suppose that the conjecture is true for all $2 \leq k<2 p$ and $\left\{n_{i}\right\}_{i=1}^{2 p}$ is harmonic with $\left(n_{i}, n_{j}\right) \leq 2 p$ for all $1 \leq i<j \leq 2 p$,

$$
\begin{gathered}
2\left|n_{i}, p \nmid n_{i}(1 \leq i \leq s), \quad 2 p\right| n_{j}(s+1 \leq j \leq 2 p-r), \\
p \mid n_{u}, 2 \nmid n_{u}(2 p-r+1 \leq u \leq 2 p) .
\end{gathered}
$$

Then each $n_{i}(1 \leq i \leq s)$ has at least $\max \{r, p-s+r-1\}+1$ distinct prime factors which are less than $2 p$ and

$$
\max \{r, p-s+r-1\} \leq \pi(2 p)-2
$$

Proof. By $\left(n_{u}, n_{u^{\prime}}\right) \leq 2 p$ we have $\left(n_{u}, n_{u^{\prime}}\right)=p$ for $2 p-r+1 \leq$ $u<u^{\prime} \leq 2 p$. Hence, all a_{u} are incongruent modulo p and then $r \leq p$. Since $\left(n_{j}, n_{u}\right)=p$, we have that all a_{j} are in at most $p-r$ residue classes modulo p. Given $1 \leq i \leq s$. If there are $p-r+2$ of n_{j} which have no prime factors of n_{i} beyond 2 , then there are $p-r+1$ of n_{j} with $4 \nmid n_{j}$ which have no prime factors of n_{i} beyond 2 . For these n_{j}, we have $\left(n_{i}, n_{j}\right)=2$ and then $a_{j} \not \equiv a_{i}(\bmod 2)$. Thus, these corresponding a_{j} are congruent modulo 2 . Since these a_{j} are in at most $p-r$ residue classes modulo p, there exist j, j^{\prime} with $a_{j} \equiv a_{j^{\prime}}(\bmod 2 p)$, a contradiction. Hence there are at most $p-r+1$ of n_{j} which have no prime factors of n_{i} beyond 2. By $\left(n_{i}, n_{u}\right)>1,2 \nmid\left(n_{i}, n_{u}\right)$ and $p \nmid\left(n_{i}, n_{u}\right)$, we have that each n_{u} has at least one prime factor of n_{i} beyond 2 . Since

$$
\left(\frac{n_{j}}{p}, \frac{n_{j^{\prime}}}{p}\right)=2,\left(\frac{n_{u}}{p}, \frac{n_{u^{\prime}}}{p}\right)=1,\left(\frac{n_{j}}{p}, \frac{n_{u}}{p}\right)=1
$$

we have that each n_{i} has at least $r+\max \{0,2 p-r-s-(p-r+1)\}+1=$ $\max \{r, p-s+r-1\}+1$ distinct prime factors which are less than $2 p$ and
then

$$
\max \{r, p-s+r-1\} \leq \pi(2 p)-2 .
$$

This completes the proof of Lemma 7.

3. Proof of the theorem

Let $\left\{n_{i}\right\}_{i=1}^{k}$ be a harmonic sequence with $\left(n_{i}, n_{j}\right) \leq k$ for all $1 \leq i<$ $j \leq k$. Let a_{1}, \ldots, a_{k} be integers with $\left(n_{i}, n_{j}\right) \nmid a_{i}-a_{j}$ for all $1 \leq i<j \leq k$. For $k \geq 3$, by Lemma 2, we may assume that $k\left|n_{1}, k\right| n_{2}$ and $k \mid n_{3}$. It is enough to prove that $k \mid n_{i}$ for all i. For $d \geq 2$, let

$$
A_{d}=\left\{i: 1 \leq i \leq k, d \mid n_{i}\right\}
$$

and

$$
\overline{A_{d}}=\left\{i: 1 \leq i \leq k, d \nmid n_{i}\right\} .
$$

By Lemma 4 we may assume that $\left|\overline{A_{d}}\right| \geq 1$ and $\left|A_{d}\right| \leq k-1$.
For $2 \leq k \leq 7$, M. R. Sun [4] proved that the conjecture is true. In fact, the cases $k=2,3$ are clear.

Case $k=4$: By Lemma 5 we have $\left(4, n_{i}\right)>1$. Thus $2 \mid n_{i}(1 \leq i \leq 4)$. Then, by Lemma 4 we obtain a proof.

Case $k=5$: By Lemma 5 we have $5 \mid n_{i}(1 \leq i \leq 5)$.
Case $k=6$: By Lemma 5 we have $\left(6, n_{i}\right)>1(i=4,5,6)$. By Lemmas 4 and 6 we may assume that $2 \nmid n_{4}, 2 \nmid n_{5}$ and $3 \nmid n_{6}$. By Lemma 7 we have $\max \{2,3-1+2-1\} \leq \pi(6)-2$, a contradiction.

Case $k=7$: If there are four of n_{i} which are divisible by 7 , then by Lemma 5 we have $7 \mid n_{i}$ for all $1 \leq i \leq 7$. Now assume that $7 \nmid n_{i}$ $(4 \leq i \leq 7)$. By Lemma 5 each of $n_{i}(4 \leq i \leq 7)$ has at least three distinct prime factors which are less than 7 . This means that $30 \mid n_{i}(4 \leq i \leq 7)$, a contradiction with $\left(n_{i}, n_{j}\right) \leq 7$.

Case $k=8$: By Lemma 5 we know that if $2 \nmid n_{i}$, then n_{i} has at least three prime factors which are less than 8 . Hence n_{i} must be divisible by 3 , 5 and 7 . Thus there are at most one n_{i} with $2 \nmid n_{i}$. By Lemma 3 there are
at least four of n_{i} with $8 \mid n_{i}$. By $4>\pi(8)-\omega(8)$ and Lemma 5 we have $2 \mid n_{i}$ for all $1 \leq i \leq 8$. By Lemma 4 we have $8 \mid n_{i}$ for all i.

Case $k=9$: By Lemma 5 we know that if $3 \nmid n_{i}$, then n_{i} has at least three prime factors which are less than 9 . Hence n_{i} must be divisible by 2 , 5 and 7 . Thus there are at most one n_{i} with $3 \nmid n_{i}$. By Lemma 3 there are at least six of n_{i} with $9 \mid n_{i}$. By $6>\pi(9)-\omega(9)$ and Lemma 5 we have $3 \mid n_{i}$ for all $1 \leq i \leq 9$. By Lemma 4 we have $9 \mid n_{i}$ for all i.

Case $k=10$: By $3>\pi(10)-\omega(10)$ and Lemma 5 we have $\left(10, n_{i}\right)>1$ for all i. By Lemmas 4 and 6 we have $s \geq 1, r \geq 2$, where r, s are as in Lemma 7. By Lemma 7 we have that if $5 \nmid n_{i}$, then n_{i} has at least 3 distinct prime factors which are less than 10 and thus $42 \mid n_{i}$. Hence $s=1$. By Lemma 7, $5-1+r-1 \leq \pi(10)-2$, a contradiction.

Case $k=11$: By Lemma 5 , if $i \in \overline{A_{11}}$, then n_{i} must be divisible by at least three of $2,3,5$ and 7 . Noting that $\left(n_{i}, n_{j}\right) \leq 11$, we have $\left|\overline{A_{11}}\right| \leq 4$. That is, $\left|A_{11}\right| \geq 7$. By Lemma 5 we have $\left|A_{11}\right|=11$.

Case $k=12$: Subcase 12.1: $\left|A_{2} \cup A_{3}\right| \leq 11$. If $i \notin A_{2} \cup A_{3}$ and $j \in A_{3}$, then $\left(n_{i}, n_{j}\right)=5,7,11$. Since $\left|A_{3}\right| \geq 3$ and each of 5,7 and 11 divides at most one of n_{j} with $j \in A_{3}$ by $\left(n_{j}, n_{j^{\prime}}\right) \leq 12$, we have $A_{3}=\{1,2,3\}$ and n_{i} must be divisible by $5 \times 7 \times 11$. Thus $\left|A_{2} \cup A_{3}\right|=11$. By $\{1,2,3\} \subseteq A_{2}$ we have $\left|A_{2}\right|=11$. By Lemma 3 we have $\left|A_{12}\right| \geq 6$. This contradicts with $\left|A_{3}\right|=3$.

Subcase 12.2: $\left|A_{2} \cup A_{3}\right|=12$ and $\left|A_{2}\right|=11$. By Lemma 3, without loss of generality, we may assume that $a_{i}(1 \leq i \leq 6)$ are in one residue class modulo 2 and $12 \mid n_{i}(1 \leq i \leq 6)$. Since $\left|A_{9} \cap A_{2}\right| \leq 1$, we may assume that $9 \nmid n_{i}(1 \leq i \leq 5)$. Let $j \notin A_{2}$. Then $\left(n_{i}, n_{j}\right)=3(1 \leq i \leq 5)$. Thus $a_{i} \not \equiv a_{j}(\bmod 3)(1 \leq i \leq 5)$. That is, $a_{i}(1 \leq i \leq 5)$ are in two residue classes modulo 3 . Hence $a_{i}(1 \leq i \leq 5)$ are in four residue classes modulo 12, a contradiction.

Subcase 12.3: $\left|A_{2} \cup A_{3}\right|=12$ and $\left|A_{3}\right|=11$. By Lemma 3, without loss of generality, we may assume that $a_{i}(1 \leq i \leq 8)$ are in two residue classes modulo 3 and $12 \mid n_{i}(1 \leq i \leq 8)$. Since $\left|A_{3} \cap A_{8}\right| \leq 1$ and $\left|A_{3} \cap A_{5}\right| \leq 1$, we may assume that $8 \nmid n_{i}\left(1 \leq i \leq 8, i \neq i_{0}\right)$ and $5 \nmid n_{i}\left(1 \leq i \leq 8, i \neq j_{0}\right)$.

Let $j \notin A_{3}$. If $4 \nmid n_{j}$, then $\left(n_{i}, n_{j}\right)=2\left(1 \leq i \leq 8, i \neq j_{0}\right)$. Thus $a_{i} \not \equiv a_{j}$ $(\bmod 2)\left(1 \leq i \leq 8, i \neq j_{0}\right)$. That is, $a_{i}\left(1 \leq i \leq 8, i \neq j_{0}\right)$ are in one residue class modulo 2 . Hence $a_{i}\left(1 \leq i \leq 8, i \neq j_{0}\right)$ are in four residue classes modulo 12 , a contradiction. If $4 \mid n_{j}$, then $\left(n_{i}, n_{j}\right)=4$ $\left(1 \leq i \leq 8, i \neq i_{0}\right)$. Thus $a_{i} \not \equiv a_{j}(\bmod 4)\left(1 \leq i \leq 8, i \neq i_{0}\right)$. That is, $a_{i}\left(1 \leq i \leq 8, i \neq i_{0}\right)$ are in three residue classes modulo 4 . Hence a_{i} $\left(1 \leq i \leq 8, i \neq i_{0}\right)$ are in six residue classes modulo 12 , a contradiction.

Subcase 12.4: $\left|A_{2} \cup A_{3}\right|=12,\left|A_{2}\right| \leq 10$ and $\left|A_{3}\right| \leq 10$. For $i \notin A_{2}$ and $j \notin A_{3}$, we have $\left(n_{i}, n_{j}\right)=5,7,11$ and $i \in A_{3}, j \in A_{2}$. Since each of 5 , 7 and 11 divides at most one of n_{i} with $i \in A_{3}$, we have that if $\left|\overline{A_{2}}\right| \geq 3$, then n_{j} must be divisible by $5 \times 7 \times 11$, a contradiction with $\left|\overline{A_{3}}\right| \geq 2$ and $\left(n_{j}, n_{j^{\prime}}\right) \leq 12$. Hence $\left|\overline{A_{2}}\right|=2$. Thus n_{j} must be divisible by at least two of $5,7,11$. Since for $j, j^{\prime} \notin A_{3},\left(n_{j}, n_{j^{\prime}}\right) \leq 12$, we have $\left|\overline{A_{3}}\right|=2$. Without loss of generality, we may assume that

$$
\left.\begin{array}{llll}
6 \mid n_{i}(1 \leq i \leq 8), & 2 \mid n_{9}, & 2 \mid n_{10}, & 3 \nmid n_{9}, \\
3 \nmid n_{10}, & 2 \nmid n_{11}, & 2 \nmid n_{12}, & 3 \mid n_{11},
\end{array} 3\right|_{12} .
$$

By $\left(n_{i}, n_{j}\right)=5,7$ and $11(i=9,10 ; j=11,12)$, without loss of generality, we may assume that $5 \times 7\left|n_{9}, 5 \times 11\right| n_{10}, 5 \mid n_{11}$ and $7 \times 11 \mid n_{12}$. Further, we may assume that $4 \nmid n_{9}$. Thus

$$
\left(n_{i}, 5 \times 7 \times 11\right)=1, \quad\left(n_{i}, n_{9}\right)=2 \quad(1 \leq i \leq 8)
$$

So $a_{i} \not \equiv a_{9}(\bmod 2)(1 \leq i \leq 8)$. Hence there are $1 \leq i<i^{\prime} \leq 8$ with $a_{i} \equiv a_{i^{\prime}}(\bmod 12)$, a contradiction.

Case $k=13$: By Lemma 5, for $i \notin A_{13}, n_{i}$ must be divisible by at least three of $2,3,5,7$ and 11. Since $\left|A_{77}\right| \leq 1,\left|A_{55}\right| \leq 1$ and $\left|A_{35}\right| \leq 1$, we have $\left|\overline{A_{13}}\right| \leq 6$. Thus $\left|A_{13}\right| \geq 7$. By Lemma 5 we have $13 \mid n_{i}$ for all i.

Case $k=14$: Subcase 14.1: $\left|\overline{A_{2}} \bigcap \overline{A_{7}}\right| \geq 2$. We may assume that $\left(n_{13}, 14\right)=1,\left(n_{14}, 14\right)=1$. By Lemma 5 we have that n_{13}, n_{14} must be divisible by at least three of $3,5,11$ and 13 . Thus $\left(n_{13}, n_{14}\right) \geq 15$. This contradicts with $\left(n_{13}, n_{14}\right) \leq 14$.

Subcase 14.2: $\left|\overline{A_{2}} \bigcap \overline{A_{7}}\right|=1$. We may assume that $\left(n_{14}, 14\right)=1$, $\left(n_{i}, 14\right)>1,1 \leq i \leq 13$, then $\left(n_{i}, n_{14}\right)=3,5,9,11$ and $13(1 \leq i \leq 13)$.

If 7 divides five of n_{i} with $1 \leq i \leq 13$, then one of $3,5,11$ and 13 must divide at least two of the five integers. Thus the largest common divisor of the two integers is not less than 21, a contradiction. So $\left|A_{7}\right| \leq$ 4. By Lemma 2 there are at least three n_{i} with $i \in A_{7}$ which must be divisible by 2 . Thus there are at least twelve even integers in n_{1}, \ldots, n_{13}. If n_{1}, \ldots, n_{13} are all even integers, then by Lemma 3 we know that 14 must divide at least seven integers in n_{1}, \ldots, n_{13}, a contradiction. Now we may assume that

$$
14\left|n_{i}(i=1,2,3), 7\right| n_{4}, 2 \nmid n_{4}, 2 \mid n_{j}, 7 \nmid n_{j}(5 \leq j \leq 13) .
$$

Since $\left(n_{14}, n_{i}\right)=3,5,9,11,13(1 \leq i \leq 4)$ and each of $3,5,11$ and 13 divides at most one of n_{1}, n_{2}, n_{3} and n_{4} otherwise $\left(n_{i}, n_{j}\right) \geq 21$ for some $i \neq j$, we have that $3 \times 5 \times 11 \times 13 \mid n_{14}$ and may assume that $p_{i} \mid n_{i}$ ($i=1,2,3,4$), where p_{1}, p_{2}, p_{3} and p_{4} is a permutation of $3,5,11$ and 13 . By $\left(n_{4}, n_{i}\right)=3,5,9,11$ and $13(5 \leq i \leq 13)$, we have $p_{4} \mid n_{i}(5 \leq i \leq 13)$. Thus $\left(p_{1} p_{2} p_{3}, n_{i}\right)=1(5 \leq i \leq 13)$ otherwise $\left(n_{i}, n_{14}\right) \geq 15$. Since at most one of n_{1}, n_{2} and n_{3} is divisible by 4 , we may assume that $4 \nmid n_{1}$. Then $\left(n_{i}, n_{1}\right)=2$ and $a_{i} \not \equiv a_{1}(\bmod 2)(5 \leq i \leq 13)$. Let $a_{i}=2 b_{i}+a_{1}+1$ ($5 \leq i \leq 13$). Then

$$
\left(\frac{n_{i}}{2}, \frac{n_{j}}{2}\right) \nmid b_{i}-b_{j}, \quad\left(\frac{n_{i}}{2}, \frac{n_{j}}{2}\right) \leq 7, \quad 5 \leq i<j \leq 13 .
$$

This contradicts Case $k=9$.
Subcase 14.3: $\left|\overline{A_{2}} \cap \overline{A_{7}}\right|=0$. That is $\left(n_{i}, 14\right)>1,1 \leq i \leq 14$. Let

$$
\begin{gathered}
2\left|n_{i}, 7 \nmid n_{i}(1 \leq i \leq s), \quad 14\right| n_{j}(s+1 \leq j \leq 14-r), \\
7 \mid n_{u}, 2 \nmid n_{u}(15-r \leq u \leq 14) .
\end{gathered}
$$

By Lemma 4 we may assume that $s \geq 1$ and $r \geq 1$. By Lemma 2 we have $s+r \leq 11$. By Lemma 7, each $n_{i}(1 \leq i \leq s)$ must be divisible by at least $\max \{r, 6-s+r\}$ of $3,5,11$ and 13 , and $\max \{r, 6-s+r\} \leq 4$. By Lemma 6 we have $r \geq 2$. Thus $s \geq 2+r \geq 4$. Since each of 11 and 13 divides at most one of n_{1}, \ldots, n_{s}, there are at least two of n_{1}, \ldots, n_{s} which must be divisible by 3×5, a contradiction. This completes the proof of Case $k=14$.

References

[1] Y. G. Chen, On m-Harmonic Sequences, Discrete Math. 162 (1996), 273-280.
[2] Y. G. Chen, A Theorem on Harmonic Sequences, Discrete Math. 186 (1998), 287-288.
[3] A. P. Huhn and L. Megyesi, On disjoint residue classes, Discrete Math. 41 (1982), 327-330.
[4] M. R. Sun, A Note on Harmonic Sequences, J. Nanjing Normal Univ. 4 (2002), 31-35.
[5] Z. W. Sun, On disjoint residue classes, Discrete Math. 104 (1992), 321-326.

LI-XIA DAI
DEPARTMENT OF MATHEMATICS
NANJING NORMAL UNIVERSITY
NANJING 210097
CHINA

YONG-GAO CHEN
DEPARTMENT OF MATHEMATICS
NANJING NORMAL UNIVERSITY
NANJING 210097
CHINA
E-mail: ygchen@pine.njnu.edu.cn
(Received August 19, 2003; revised January 21, 2004)

[^0]: Mathematics Subject Classification: 11A07, 11B25.
 Key words and phrases: covering systems, odd numbers, sums of prime powers. Supported by the National Natural Science Foundation of China, Grant No. 10171046 and the Teaching and Research Award Program for Outstanding Young Teachers in Nanjing Normal University.

