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On harmonic sequences

By LI-XIA DAI (Nanjing) and YONG-GAO CHEN (Nanjing)

Abstract. A sequence {n1, . . . , nk} of positive integers is called harmonic
if there exist k integers a1, . . . , ak such that for every integer b there exists at
most one i with b ≡ ai (mod ni). In this paper, for k ≤ 14, we prove that if
{n1, . . . , nk} is harmonic with (ni, nj) ≤ k for all 1 ≤ i < j ≤ k, then (ni, nj) = k
for all 1 ≤ i < j ≤ k.

1. Introduction

For two integers a, n, let a (mod n) = {a+nt : t ∈ Z}. Let n1, . . . , nk

be k positive integers and a1, . . . , ak be k integers. It is well known that if
(ni, nj) | ai − aj for all 1 ≤ i < j ≤ k, then the system of congruences

x ≡ ai (mod ni), i = 1, . . . , k

has solutions. That is,
k⋂

i=1

ai (mod ni) �= φ.

When are {ai (mod ni)}k
i=1 disjoint, that is,

ai (mod ni) ∩ aj (mod nj) = φ, for all 1 ≤ i < j ≤ k ?
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A sequence {n1, . . . , nk} of positive integers is called harmonic if there
exist k integers a1, . . . , ak such that {ai (mod ni)}k

i=1 are disjoint, that is,
ai (mod ni)∩aj (mod nj) = φ, for all 1 ≤ i < j ≤ k. In 1982, A. P. Huhn

and L. Megyesi [3] proved that if all (ni, nj) > 1 and (ni, nj) (1 ≤ i <

j ≤ k) are distinct, then {ni}k
i=1 is harmonic. Z. W. Sun [5] improved

this by proving that if the number of pairs {i, j} with 1 ≤ i < j ≤ k

and (ni, nj) = d is less than
√

(d + 7)/8 for all d ≤ 2k−2, then {ni}k
i=1 is

harmonic. Y. G. Chen [1] proved that if the number of pairs {i, j} with
1 ≤ i < j ≤ k and (ni, nj) ≤ d is less than 1

8(d2 + d) + 1
2 for all d ≤ 2k− 2,

then {ni}k
i=1 is harmonic. Y. G. Chen [2] proved that if the number of

pairs {i, j} with 1 ≤ i < j ≤ k and (ni, nj) ≤ d is less than d for all
d ≤ k− 1, then {ni}k

i=1 is harmonic. The following conjecture appeared in
M. R. Sun [4].

Conjecture. If {ni}k
i=1 is harmonic with (ni, nj) ≤ k for all 1 ≤ i <

j ≤ k, then (ni, nj) = k for all 1 ≤ i < j ≤ k.

M. R. Sun [4] proved that the conjecture is true for 2 ≤ k ≤ 7. In
this paper, we prove that the conjecture is true for 8 ≤ k ≤ 14.

Theorem. Let 8 ≤ k ≤ 14. If {ni}k
i=1 is harmonic with (ni, nj) ≤ k

for all 1 ≤ i < j ≤ k, then (ni, nj) = k for all 1 ≤ i < j ≤ k.

Remark. For given k, by (ni, nj) ≤ k and Lemma 1 in Section 2 we
may assume that every prime power divisor of ni is less than k. Hence
each ni can take only finitely many possible values. We may also assume
that 0 ≤ ai < ni. Thus we change the problem into finite calculation. But
it has many troubles except for several small k.

2. Preliminary lemmas

Lemma 1. a (mod m) ∩ b (mod n) = φ if and only if (m,n) � a − b.

Proof is clear. Thus, if {ni}k
i=1 is harmonic, then (ni, nj) > 1

for all i, j.
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Lemma 2 (M. R. Sun [4]). Let l ≥ 3. If the conjecture is true for

all 2 ≤ k ≤ l − 1 and {ni}l
i=1 is a harmonic sequence with (ni, nj) ≤ l for

all 1 ≤ i < j ≤ l, then there are at least three integers of n1, . . . , nl which

are divisible by l.

Proof. Suppose that there are at most two integers of n1, . . . , nl

which are divisible by l. Without loss of generality, we may assume that
l � ni(1 ≤ i ≤ l − 2). Then (ni, nj) ≤ l − 1 for all 1 ≤ i < j ≤ l and
1 ≤ i ≤ l − 2. Since the conjecture is true for k = l − 1, by considering
{ni}l−1

i=1 and {ni}l
i=1,i�=l−1, we have (ni, nj) = l − 1 for all 1 ≤ i < j ≤ l

and 1 ≤ i ≤ l − 2. Thus l − 1 | nl−1 and l − 1 | nl. By (nl−1, nl) ≤ l

we have (nl−1, nl) = l − 1. Hence (ni, nj) = l − 1 for all 1 ≤ i < j ≤ l.
Since {ni}l

i=1 is a harmonic sequence, by Lemma 1, there exist l integers
a1, . . . , al such that (ni, nj) � ai −aj for all 1 ≤ i < j ≤ l, that is, a1, . . . , al

are incongruent each other modulo l − 1, a contradiction. This completes
the proof of Lemma 2. �

Lemma 3. Let d ≥ 2, {ni}dh
i=1 be a harmonic sequence with (ni, nj) ≤

dh for all 1 ≤ i < j ≤ dh − r and h | ni for 1 ≤ i ≤ dh − r, and let

a1, . . . , adh−r be integers with (ni, nj) � ai − aj for all 1 ≤ i < j ≤ dh − r.

If the conjecture is true for all 2 ≤ k ≤ d + 1, then there are at least h− r

residue classes modulo h in each of which there are exactly d integers of

a1, . . . , adh−r and dh | ni when ai are in these h − r residue classes. Thus

dh | ni for at least d(h − r) of i ∈ {1, . . . , dh − r}.

Proof. If there are d+1 integers of a1, . . . , adh−r in the same residue
class modulo h, say aij = hbij + s, j = 1, . . . , d + 1, then, by (niu , niv) �

aiu − aiv we have (niu

h
,

niv

h

)
� biu − biv

for all 1 ≤ u < v ≤ d + 1. Thus
{nij

h

}d+1

j=1
is harmonic. By (niu

h ,
niv
h ) ≤ d

for all 1 ≤ u < v ≤ d + 1 and the conjecture being true for k = d + 1, we
have (niu

h ,
niv
h ) = d + 1 for all 1 ≤ u < v ≤ d + 1, a contradiction with

(niu
h ,

niv
h ) ≤ d. Hence there are at most d integers of a1, . . . , adh−r in each

residue class modulo h. By (h − r − 1)d + (r + 1)(d − 1) < dh − r, there
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exist at least h − r residue classes modulo h in each of which there are
exactly d integers of a1, . . . , adh−r.

Let awj = hbwj + t, j = 1, . . . , d, then, by (nwu, nwv) � awu − awv we
have (nwu

h
,

nwv

h

)
� bwu − bwv

for all 1 ≤ u < v ≤ d. Thus
{nwj

h

}d

j=1
is harmonic. By (nwu

h , nwv
h ) ≤ d

for all 1 ≤ u < v ≤ d and the conjecture being true for k = d, we have
(niu

h ,
niv
h ) = d for all 1 ≤ u < v ≤ d. Hence dh | ni for at least (h − r)d of

i ∈ {1, . . . , dh − r}. This completes the proof of Lemma 3. �

Lemma 4. Let p be a prime with p | l + 1. If the conjecture is

true for all 2 ≤ k ≤ l, {ni}l+1
i=1 is harmonic with (ni, nj) ≤ l + 1 for all

1 ≤ i < j ≤ l + 1 and p | ni for all 1 ≤ i ≤ l + 1, then (ni, nj) = l + 1 for

all 1 ≤ i < j ≤ l + 1.

Proof follows from Lemma 3 immediately.

Lemma 5. Let {ni}k
i=1 be harmonic with (ni, nj) ≤ k for all 1 ≤ i <

j ≤ k. If k | n1, . . . , k | nt, then, either (ni, k) > 1 for all 1 ≤ i ≤ k or

t ≤ π(k) − ω(k), where π(k) and ω(k) denote the number of primes not

exceeding k and the number of distinct prime factors of k respectively.

Furthermore, if (nj, k) = 1, then nj has at least t distinct prime factors

which are less than k.

Proof. Assume that (ni0, k) = 1 for some i0. Since (ni, nj) ≤ k for
all 1 ≤ i < j ≤ t, we have (ni

k ,
nj

k ) = 1 for all 1 ≤ i < j ≤ t. By
k ≥ (ni0,

ni
k ) = (ni0, ni) > 1 for all 1 ≤ i ≤ t, we have ni0 has at least t

distinct prime factors which are less than k. Noting that (ni0 , k) = 1, we
have t ≤ ω(ni0) ≤ π(k)−ω(k). This completes the proof of Lemma 5. �

Lemma 6. Let d be a positive odd integer with d ≥ 3 and r a positive

integer. If the conjecture is true for k < 2d and {ni}2d
i=1 is harmonic with

(ni, nj) ≤ 2d for all 1 ≤ i < j ≤ 2d such that 2 | ni for 1 ≤ i ≤ 2d − r and

2 � nj, d | nj for 2d − r + 1 ≤ j ≤ 2d, then r ≥ 2.

Proof. Let a1, . . . , a2d be integers with (ni, nj) � ai − aj for all 1 ≤
i < j ≤ 2d. If r = 1, then by Lemma 3 there are d integers of a1, . . . , a2d−1
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which are in the same residue class modulo 2, say a1, . . . , ad, and 2d | ni

for 1 ≤ i ≤ d. Since d | n2d and 2d � n2d, we have (n2d, ni) = d by
(n2d, ni) ≤ 2d for 1 ≤ i ≤ d. Thus ai �≡ a2d (mod d) for 1 ≤ i ≤ d. That
is, ai (1 ≤ i ≤ d) are in d−1 residue classes modulo d. Hence there are two
integers of ai (1 ≤ i ≤ d) which are congruent modulo 2d, a contradiction.
This completes the proof of Lemma 6. �

Lemma 7. Let p be an old prime and r, s be positive integers. Sup-

pose that the conjecture is true for all 2 ≤ k < 2p and {ni}2p
i=1 is harmonic

with (ni, nj) ≤ 2p for all 1 ≤ i < j ≤ 2p,

2 | ni, p � ni (1 ≤ i ≤ s), 2p | nj(s + 1 ≤ j ≤ 2p − r),

p | nu, 2 � nu(2p − r + 1 ≤ u ≤ 2p).

Then each ni (1 ≤ i ≤ s) has at least max{r, p − s + r − 1} + 1 distinct

prime factors which are less than 2p and

max{r, p − s + r − 1} ≤ π(2p) − 2.

Proof. By (nu, nu′) ≤ 2p we have (nu, nu′) = p for 2p − r + 1 ≤
u < u′ ≤ 2p. Hence, all au are incongruent modulo p and then r ≤ p.
Since (nj, nu) = p, we have that all aj are in at most p − r residue classes
modulo p. Given 1 ≤ i ≤ s. If there are p−r+2 of nj which have no prime
factors of ni beyond 2, then there are p − r + 1 of nj with 4 � nj which
have no prime factors of ni beyond 2. For these nj, we have (ni, nj) = 2
and then aj �≡ ai (mod 2). Thus, these corresponding aj are congruent
modulo 2. Since these aj are in at most p − r residue classes modulo p,
there exist j, j′ with aj ≡ aj′ (mod 2p) , a contradiction. Hence there are
at most p − r + 1 of nj which have no prime factors of ni beyond 2. By
(ni, nu) > 1, 2 � (ni, nu) and p � (ni, nu), we have that each nu has at least
one prime factor of ni beyond 2. Since

(
nj

p
,
nj ′

p

)
= 2,

(
nu

p
,
nu′

p

)
= 1,

(
nj

p
,
nu

p

)
= 1,

we have that each ni has at least r +max{0, 2p− r− s− (p− r +1)}+1 =
max{r, p− s + r− 1}+ 1 distinct prime factors which are less than 2p and
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then
max{r, p − s + r − 1} ≤ π(2p) − 2.

This completes the proof of Lemma 7. �

3. Proof of the theorem

Let {ni}k
i=1 be a harmonic sequence with (ni, nj) ≤ k for all 1 ≤ i <

j ≤ k. Let a1, . . . , ak be integers with (ni, nj) � ai−aj for all 1 ≤ i < j ≤ k.
For k ≥ 3, by Lemma 2, we may assume that k | n1, k | n2 and k | n3. It
is enough to prove that k | ni for all i. For d ≥ 2, let

Ad = {i : 1 ≤ i ≤ k, d | ni}

and
Ad = {i : 1 ≤ i ≤ k, d � ni}.

By Lemma 4 we may assume that |Ad| ≥ 1 and |Ad| ≤ k − 1.
For 2 ≤ k ≤ 7, M. R. Sun [4] proved that the conjecture is true. In

fact, the cases k = 2, 3 are clear.

Case k = 4: By Lemma 5 we have (4, ni) > 1. Thus 2 | ni (1 ≤ i ≤ 4).
Then, by Lemma 4 we obtain a proof.

Case k = 5: By Lemma 5 we have 5 | ni (1 ≤ i ≤ 5).

Case k = 6: By Lemma 5 we have (6, ni) > 1 (i = 4, 5, 6). By Lem-
mas 4 and 6 we may assume that 2 � n4, 2 � n5 and 3 � n6. By Lemma 7
we have max{2, 3 − 1 + 2 − 1} ≤ π(6) − 2, a contradiction.

Case k = 7: If there are four of ni which are divisible by 7, then
by Lemma 5 we have 7 | ni for all 1 ≤ i ≤ 7. Now assume that 7 � ni

(4 ≤ i ≤ 7). By Lemma 5 each of ni (4 ≤ i ≤ 7) has at least three distinct
prime factors which are less than 7. This means that 30 | ni (4 ≤ i ≤ 7),
a contradiction with (ni, nj) ≤ 7.

Case k = 8: By Lemma 5 we know that if 2 � ni, then ni has at least
three prime factors which are less than 8. Hence ni must be divisible by 3,
5 and 7. Thus there are at most one ni with 2 � ni. By Lemma 3 there are
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at least four of ni with 8 | ni. By 4 > π(8) − ω(8) and Lemma 5 we have
2 | ni for all 1 ≤ i ≤ 8. By Lemma 4 we have 8 | ni for all i.

Case k = 9: By Lemma 5 we know that if 3 � ni, then ni has at least
three prime factors which are less than 9. Hence ni must be divisible by 2,
5 and 7. Thus there are at most one ni with 3 � ni. By Lemma 3 there are
at least six of ni with 9 | ni. By 6 > π(9) − ω(9) and Lemma 5 we have
3 | ni for all 1 ≤ i ≤ 9. By Lemma 4 we have 9 | ni for all i.

Case k = 10: By 3 > π(10)−ω(10) and Lemma 5 we have (10, ni) > 1
for all i. By Lemmas 4 and 6 we have s ≥ 1, r ≥ 2, where r, s are as
in Lemma 7. By Lemma 7 we have that if 5 � ni, then ni has at least 3
distinct prime factors which are less than 10 and thus 42 | ni. Hence s = 1.
By Lemma 7, 5 − 1 + r − 1 ≤ π(10) − 2, a contradiction.

Case k = 11: By Lemma 5, if i ∈ A11, then ni must be divisible by at
least three of 2, 3, 5 and 7. Noting that (ni, nj) ≤ 11, we have |A11| ≤ 4.
That is, |A11| ≥ 7. By Lemma 5 we have |A11| = 11.

Case k = 12: Subcase 12.1: |A2 ∪A3| ≤ 11. If i /∈ A2 ∪A3 and j ∈ A3,
then (ni, nj) = 5, 7, 11. Since |A3| ≥ 3 and each of 5, 7 and 11 divides at
most one of nj with j ∈ A3 by (nj, nj′) ≤ 12, we have A3 = {1, 2, 3} and
ni must be divisible by 5× 7× 11. Thus |A2 ∪A3| = 11. By {1, 2, 3} ⊆ A2

we have |A2| = 11. By Lemma 3 we have |A12| ≥ 6. This contradicts with
|A3| = 3.

Subcase 12.2: |A2 ∪ A3| = 12 and |A2| = 11. By Lemma 3, without
loss of generality, we may assume that ai (1 ≤ i ≤ 6) are in one residue
class modulo 2 and 12 | ni (1 ≤ i ≤ 6). Since |A9 ∩ A2| ≤ 1, we may
assume that 9 � ni (1 ≤ i ≤ 5). Let j /∈ A2. Then (ni, nj) = 3 (1 ≤ i ≤ 5).
Thus ai �≡ aj (mod 3) (1 ≤ i ≤ 5). That is, ai (1 ≤ i ≤ 5) are in two
residue classes modulo 3. Hence ai (1 ≤ i ≤ 5) are in four residue classes
modulo 12, a contradiction.

Subcase 12.3: |A2∪A3| = 12 and |A3| = 11. By Lemma 3, without loss
of generality, we may assume that ai (1 ≤ i ≤ 8) are in two residue classes
modulo 3 and 12 | ni (1 ≤ i ≤ 8). Since |A3∩A8| ≤ 1 and |A3∩A5| ≤ 1, we
may assume that 8 � ni (1 ≤ i ≤ 8, i �= i0) and 5 � ni (1 ≤ i ≤ 8, i �= j0).
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Let j /∈ A3. If 4 � nj, then (ni, nj) = 2 (1 ≤ i ≤ 8, i �= j0). Thus ai �≡ aj

(mod 2) (1 ≤ i ≤ 8, i �= j0). That is, ai (1 ≤ i ≤ 8, i �= j0) are in
one residue class modulo 2. Hence ai (1 ≤ i ≤ 8, i �= j0) are in four
residue classes modulo 12, a contradiction. If 4 | nj, then (ni, nj) = 4
(1 ≤ i ≤ 8, i �= i0). Thus ai �≡ aj (mod 4) (1 ≤ i ≤ 8, i �= i0). That
is, ai (1 ≤ i ≤ 8, i �= i0) are in three residue classes modulo 4. Hence ai

(1 ≤ i ≤ 8, i �= i0) are in six residue classes modulo 12, a contradiction.

Subcase 12.4: |A2 ∪ A3| = 12, |A2| ≤ 10 and |A3| ≤ 10. For i /∈ A2

and j /∈ A3, we have (ni, nj) = 5, 7, 11 and i ∈ A3, j ∈ A2. Since each of 5,
7 and 11 divides at most one of ni with i ∈ A3, we have that if |A2| ≥ 3,
then nj must be divisible by 5× 7× 11, a contradiction with |A3| ≥ 2 and
(nj, nj′) ≤ 12. Hence |A2| = 2. Thus nj must be divisible by at least two
of 5, 7, 11. Since for j, j′ /∈ A3, (nj, nj′) ≤ 12, we have |A3| = 2. Without
loss of generality, we may assume that

6 | ni (1 ≤ i ≤ 8), 2 | n9, 2 | n10, 3 � n9,

3 � n10, 2 � n11, 2 � n12, 3 | n11, 3 |12 .

By (ni, nj) = 5, 7 and 11 (i = 9, 10; j = 11, 12), without loss of generality,
we may assume that 5 × 7 | n9, 5 × 11 | n10, 5 | n11 and 7 × 11 | n12.
Further, we may assume that 4 � n9. Thus

(ni, 5 × 7 × 11) = 1, (ni, n9) = 2 (1 ≤ i ≤ 8).

So ai �≡ a9 (mod 2) (1 ≤ i ≤ 8). Hence there are 1 ≤ i < i′ ≤ 8 with
ai ≡ ai′ (mod 12), a contradiction.

Case k = 13: By Lemma 5, for i /∈ A13, ni must be divisible by at
least three of 2, 3, 5, 7 and 11. Since |A77| ≤ 1, |A55| ≤ 1 and |A35| ≤ 1,
we have |A13| ≤ 6. Thus |A13| ≥ 7. By Lemma 5 we have 13 | ni for all i.

Case k = 14: Subcase 14.1: |A2
⋂

A7| ≥ 2. We may assume that
(n13, 14) = 1, (n14, 14) = 1. By Lemma 5 we have that n13, n14 must be
divisible by at least three of 3, 5, 11 and 13. Thus (n13, n14) ≥ 15. This
contradicts with (n13, n14) ≤ 14.

Subcase 14.2: |A2
⋂

A7| = 1. We may assume that (n14, 14) = 1,
(ni, 14) > 1, 1 ≤ i ≤ 13, then (ni, n14) = 3, 5, 9, 11 and 13 (1 ≤ i ≤ 13).
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If 7 divides five of ni with 1 ≤ i ≤ 13, then one of 3, 5, 11 and 13
must divide at least two of the five integers. Thus the largest common
divisor of the two integers is not less than 21, a contradiction. So |A7| ≤
4. By Lemma 2 there are at least three ni with i ∈ A7 which must be
divisible by 2. Thus there are at least twelve even integers in n1, . . . , n13.
If n1, . . . , n13 are all even integers, then by Lemma 3 we know that 14 must
divide at least seven integers in n1, . . . , n13, a contradiction. Now we may
assume that

14 | ni (i = 1, 2, 3), 7 | n4, 2 � n4, 2|nj , 7 � nj (5 ≤ j ≤ 13).

Since (n14, ni) = 3, 5, 9, 11, 13 (1 ≤ i ≤ 4) and each of 3, 5, 11 and 13
divides at most one of n1, n2, n3 and n4 otherwise (ni, nj) ≥ 21 for some
i �= j, we have that 3 × 5 × 11 × 13 | n14 and may assume that pi | ni

(i = 1, 2, 3, 4), where p1, p2, p3 and p4 is a permutation of 3, 5, 11 and 13.
By (n4, ni) = 3, 5, 9, 11 and 13 (5 ≤ i ≤ 13), we have p4 | ni (5 ≤ i ≤ 13).
Thus (p1p2p3, ni) = 1 (5 ≤ i ≤ 13) otherwise (ni, n14) ≥ 15. Since at most
one of n1, n2 and n3 is divisible by 4, we may assume that 4 � n1. Then
(ni, n1) = 2 and ai �≡ a1 (mod 2) (5 ≤ i ≤ 13). Let ai = 2bi + a1 + 1
(5 ≤ i ≤ 13). Then

(ni

2
,
nj

2

)
� bi − bj ,

(ni

2
,
nj

2

)
≤ 7, 5 ≤ i < j ≤ 13.

This contradicts Case k = 9.

Subcase 14.3: |A2
⋂

A7| = 0. That is (ni, 14) > 1, 1 ≤ i ≤ 14. Let

2 | ni, 7 � ni (1 ≤ i ≤ s), 14 | nj (s + 1 ≤ j ≤ 14 − r),

7 | nu, 2 � nu (15 − r ≤ u ≤ 14).

By Lemma 4 we may assume that s ≥ 1 and r ≥ 1. By Lemma 2 we have
s + r ≤ 11. By Lemma 7, each ni (1 ≤ i ≤ s) must be divisible by at
least max{r, 6 − s + r} of 3, 5, 11 and 13, and max{r, 6 − s + r} ≤ 4. By
Lemma 6 we have r ≥ 2. Thus s ≥ 2 + r ≥ 4. Since each of 11 and 13
divides at most one of n1, . . . , ns, there are at least two of n1, . . . , ns which
must be divisible by 3 × 5, a contradiction. This completes the proof of
Case k = 14.
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