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A note on generalized inverses and
a block-rank equation

By DRAGANA S. CVETKOVIĆ-ILIĆ (Nǐs)

Abstract. In this paper we study the rank equation rank [ A B
C X ] = rank(A)

and find the necessary and sufficient conditions when X = A(1,2) and X = Ad are
the solutions of that equation. In both cases we give a explicit form of matrices
B and C.

1. Introduction

Let Cm×n denote the set of complex m × n matrices. In denotes the
unit matrix of order n. By A∗, R(A), rank(A) and N(A) we denote the
conjugate transpose, the range, the rank and the null space of A ∈ Cn×m.
The symbol A− stands for an arbitrary generalized inner inverse of A, i.e.
A− satisfies AA−A = A. By A† we denote the Moore–Penrose inverse of A,
i.e. the unique matrix A† satisfying

AA†A = A, A†AA† = A†, (AA†)∗ = AA†, (A†A)∗ = A†A.

For A ∈ Cn×n the smallest nonnegative integer k such that rank(Ak+1) =
rank(Ak) is called the index of A and denoted by ind(A). If A ∈ Cn×n,
with ind(A) = k, then the matrix X ∈ Cn×n which satisfies the following
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conditions
AkXA = Ak, XAX = X, AX = XA,

is called the Drazin inverse of A and it is denoted by Ad. When ind(A) = 1
then the Drazin inverse Ad is called the group inverse and it is denoted
by A#. Also, the matrix X which satisfies

AXA = A and XAX = X

is called the reflexive inverse of A and it is denoted by A(1,2). For other
important properties of generalized inverses see [1] and [3].

In this paper we will consider the rank equation

rank
[
A B

C X

]
= rank(A), (1)

for arbitrary A ∈ Cn×n. First, we give a necessary and sufficient condi-
tions such that X = A(1,2) is the solution of equation (1) and all possible
matrices B and C are described. As a corollary we obtain the result of
J. Gross [8] and N. Thome and Y. Wei [7]. Moreover, we consider when
X = Ad is the solution of the equation (1), for an arbitrary matrix A with
ind(A) = k ≥ 1 and we obtain some interesting corollaries.

2. Main results

We start this section with some well-known results. The following
lemma was proved in [4], [5] and [6].

Lemma 2.1. Let A ∈ Cn×n, B ∈ Cn×m, C ∈ Cm×n and X ∈ Cm×m.

Then

rank
[
A B

C X

]
= rank(A) + rank(L) + rank(M) + rank(W ),

where S = In − A−A, L = CS, M = SB and W = (Im − LL−)(X −
CA−B)(Im − M−M).

The following theorem, which is proved by J. Gross [8], gives a char-
acterization of the existence of the solution of the equation (1) by means
of geometrical conditions.
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Theorem 2.1. Let A ∈ Cm×n, B ∈ Cm×m and C ∈ Cn×n. Then there

exists a solution X ∈ Cn×m of the equation (1) if and only if R(B) ⊆ R(A)
and R(C∗) ⊆ R(A∗), in which case X = CA†B.

Notice that the conditions R(B) ⊆ R(A) and R(C∗) ⊆ R(A∗) are
equivalent to AA†B = B and CA†A = C. Also, the matrix product CA−B

is invariant with respect to the choice of generalized inverse A− of A if and
only if R(B) ⊆ R(A) and R(C∗) ⊆ R(A∗).

First we consider a necessary and sufficient conditions such that X =
A(1,2) is the solution of the equation (1) and in this case we find the explicit
form for B and C.

Matrix A ∈ Cm×n such that rank(A) = r can be decomposed by

A = P

[
D 0
0 0

]
Q, (2)

where P ∈ Cm×m, Q ∈ Cn×n and D ∈ Cr×r are invertible matrices.
Given that decomposition arbitrary reflexive generalized inverse of A has
the following form

A(1,2) = Q−1

[
D−1 U

V V DU

]
P−1 (3)

where U and V are arbitrary matrices of suitable size (see [2]).
The following theorem gives a sufficient and necessary conditions such

that X = A(1,2) is the solution of the equation (1).

Theorem 2.2. Let A ∈ Cm×n, B ∈ Cm×m C ∈ Cn×n and X ∈ Cn×m

and let the matrix A and its reflexive generalized inverse be given by (2)
and (3) respectively. Then X = A(1,2) is the solution of the equation (1)
if and only if

B = P

[
DL (DLD)U
0 0

]
P−1 and C = Q−1

[
D−1L−1 0
V L−1 0

]
Q (4)

for some nonsingular matrix L ∈ Cr×r.

Proof. Suppose that X = A(1,2) is the solution of the equation (1).
Then there exist matrices G ∈ Cn×m and F ∈ Cn×m such that B = AG,
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C = FA and CA−B = A(1,2). Let

QGP =
[
G1 G2

G3 G4

]
and QFP =

[
F1 F2

F3 F4

]
.

Hence,

B = AG = P

[
D 0
0 0

] [
G1 G2

G3 G4

]
P−1 = P

[
DG1 DG2

0 0

]
P−1 (5)

and

C = FA = Q−1

[
F1 F2

F3 F4

] [
D 0
0 0

]
Q = Q−1

[
F1D 0
F3D 0

]
Q. (6)

Also,

A(1,2) = FAG = Q−1

[
F1DG1 F1DG2

F3DG1 F3DG2

]
P−1.

Now, from (3) we have that

F1DG1 = D−1, F1DG2 = U, F3DG1 = V.

From the first equation we obtain that F1, G1 are invertible matrices and
F1D = D−1G−1

1 . Now, DG2 = F−1
1 U = DG1DU and F3D = V G−1

1 . If
we replace that in (5) and (6) and put G1 = L, we obtain (4).

Now, suppose that (4) holds. Then AA−B = B and C = CA−A, for
generalized inner inverse A− of A, which is given by

A− = Q−1

[
D−1 0

0 0

]
P−1.

So by Theorem 2.1 there exists a solution X = CA−B of the equation (1).
By (4) we can easily check that X = CA−B = A(1,2). �

Remark that when we consider the special reflexive inverse of A,

A(1,2) = Q−1

[
D−1 0

0 0

]
P−1, (7)

for U = V = 0, we obtain the ([7], Theorem 3).
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Corollary 2.1. Let A ∈ Cm×n, B ∈ Cm×m, C ∈ Cn×n and X ∈
Cn×m. Let the matrix A and one its reflexive generalized inverse be given

by (2) and (7) respectively. Then X = A(1,2) is the solution of the equation

(1) if and only if

B = P

[
DL 0
0 0

]
P−1 and C = Q−1

[
D−1L−1 0

0 0

]
Q, (8)

for some nonsingular matrix L ∈ Cr×r.

Now, we consider the singular value decomposition of A ∈ Cm×n such
that rank(A) = r

A = M

[
D 0
0 0

]
N∗, (9)

where M ∈ Cm×m and N ∈ Cn×n are unitary and D ∈ Cr×r is a real posi-
tive definite diagonal matrix. By Theorem 2.2 we obtain ([8], Theorem 2).

Corollary 2.2. Let A ∈ Cm×n, B ∈ Cm×m, C ∈ Cn×n and X ∈
Cn×m. Let the matrix A be given by (9). Then X = A† is the solution of

the equation (1) if and only if

B = M

[
DL 0
0 0

]
M∗ and C = N

[
D−1L−1 0

0 0

]
N∗, (10)

for some nonsingular matrix L ∈ Cr×r.

Proof. Taking P = M and Q = N∗ in (2), we obtain that the matrix
A has the representation (9) and in that case A† = N

[
D−1 0

0 0

]
M∗, which

has the form (7). Hence, the result follows from Corollary 2.1. �

In the rest of the paper, we consider the following question: When
X = Ad is the solution of the equation (1)?

First, let A ∈ Cn×n and ind(A) = 1. Using the Jordan canonical form
of A, there exist nonsingular matrices P ∈ Cn×n and D ∈ Cr×r such that

A = P

[
D 0
0 0

]
P−1. (11)

We obtain the result of N. Thome and Y. Wei ([7], Theorem 2).
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Theorem 2.3. Let A ∈ Cn×n with ind(A) = 1 and rank(A) = r be

given by (11) and B,C,X ∈ Cn×n. Then X = A# is the solution of the

equation (1) if and only if

B = P

[
DL 0
0 0

]
P−1 and C = P

[
D−1L−1 0

0 0

]
P−1, (12)

for some nonsingular matrix L ∈ Cr×r.

Proof. If the matrix A is given by (11), then A# = P
[

D−1 0
0 0

]
P−1.

Hence, the result follows from Corollary 2.1 taking Q = P−1 and noticing
that A# is given by (7). �

Now, we consider a more general case when A ∈ Cn×n is such that
ind(A) = k ≥ 1 and rank(A) = r. Then the matrix A can be written as

A = P−1

[
M 0
0 N

]
P, (13)

where P ∈ Cn×n, M ∈Cr×r are nonsingular matrices and N ∈C(n−r)×(n−r)

is nilpotent, that is Nk = 0. In this case

Ad = P−1

[
M−1 0

0 0

]
P.

Theorem 2.4. Let A ∈ Cn×n, with index (A) = k, be represented by

(13) and B,C,X ∈ Cn×n.Then X = Ad is the solution of the equation

(1) if and only if there exist G1, F1 ∈ Cr×r, G2, F2 ∈ Cr×(n−r), G3, F3 ∈
C(n−r)×r and G4, F4 ∈ C(n−r)×(n−r) such that

B = P−1

[
MG1 MG2

NG3 NG4

]
P and C = P−1

[
F1M F2N

F3M F4N

]
P (14)

and
F1MG1 + F2NG3 = M−1,

F1MG2 + F2NG4 = 0,

F3MG1 + F4NG3 = 0,

F3MG2 + F4NG4 = 0.

(15)
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Proof. Suppose that X = Ad is the solution of the equation (1).
From Theorem 2.1 we have that R(B) ⊆ R(A) and R(C∗) ⊆ R(A∗),
so there exist matrices G and F such that B = AG and C = FA and
Ad = CA†B. Let

PGP−1 =
[
G1 G2

G3 G4

]
and PFP−1 =

[
F1 F2

F3 F4

]
.

It follows that

B = P−1

[
M 0
0 N

] [
G1 G2

G3 G4

]
P = P−1

[
MG1 MG2

NG3 NG4

]
P

and

C = P−1

[
F1 F2

F3 F4

] [
M 0
0 N

]
P = P−1

[
F1M F2N

F3M F4N

]
P.

Since the matrix A has the form (13), it follows that

Ad = P−1

[
M−1 0

0 0

]
P and A† = P−1

[
M−1 0

0 N †

]
P.

Hence,

Ad = P−1

[
M−1 0

0 0

]
P

= P−1

[
F1M F2N

F3M F4N

] [
M−1 0

0 N †

] [
MG1 MG2

NG3 NG4

]
P

= P−1

[
F1MG1 + F2NG3 F1MG2 + F2NG4

F3MG1 + F4NG3 F3MG2 + F4NG4

]
P.

We obtain the following system

F1MG1 + F2NG3 = M−1,

F1MG2 + F2NG4 = 0,

F3MG1 + F4NG3 = 0,

F3MG2 + F4NG4 = 0.
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Conversely, suppose that the matrices B and C satisfied (14). Then
we see that AA†B = B and C = CA†A. From Theorem 2.1 we have that
there exists a solution X = CA†B of the equation (1). Now, from the
system (15) it follows that CA†B = Ad, so X = Ad is the solution of the
equation (1). �

Notice that Theorem 2.4 is a generalization of Theorem 2.3.

Now, we state some interesting results.

Theorem 2.5. Let A ∈ Cn×n, with ind(A) = k has the form (13), let

p,m, n be positive integers and m,n ≥ k. Then X = Ad is the solution of

the equation

rank
[

Ap An

Am X

]
= rank(Ap), (16)

if and only if Mm+n−p = M−1.

Proof. Suppose that X = Ad is the solution of the equation (16).
Then Ad = Am(Ap)−An. Hence,

P−1

[
M−1 0

0 0

]
P

= P−1

[
Mm 0
0 0

] [
M−p 0

0 (Np)−

] [
Mn 0
0 0

]
P

= P−1

[
M (m+n−p) 0

0 0

]
P,

i.e. Mm+n−p = M−1.
On the contrary, suppose that Mm+n−p = M−1. First, we show that

there exists a solution X of the equation (16), i.e. that R(An) ⊆ R(Ap)
and N(Ap) ⊆ N(Am).

If y ∈ R(An), then there exists x such that y = Anx, i.e.

y = P−1

[
Mnz1

0

]
, where Px =

[
z1

z2

]
.
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Now,

y = P−1

[
Mp 0
0 Np

] [
M (p−n)z1

0

]
,

implying that y = Apx′, where x′ = P−1
[

M (p−n)z1
0

]
. Hence, R(An) ⊆

R(Ap) and analogously N(Ap) ⊆ N(Am). Using the same computation as
in the first part, we obtain that X = Ad is the solution of the equation (16).

�

Remark 1. Notice that Theorem 2.5 is also valid if we put f(n) and
g(m) instead of n,m, where f, g are arbitrary positive functions.

Corollary 2.3. Let A ∈ Cn×n, with ind(A) = k has the form (13),
let p, m, n be positive integers such that m,n ≥ k and m + n = p − 1.
Then X = Ad is the solution of the equation (16).

Corollary 2.4. Let A ∈ Cn×n, then

rank
[
A(2l+1) Al

Al Ad

]
= rankA(2l+1),

for arbitrary integer l ≥ ind(A).

Corollary 2.5. Let A ∈ Cn×n and ind(A) = 1, then

rank
[
A3 A

A A#

]
= rank(A3).
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