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A note on generalized inverses and
a block-rank equation

By DRAGANA S. CVETKOVIC-ILIC (Nis)

Abstract. In this paper we study the rank equation rank [4 £] = rank(A)
and find the necessary and sufficient conditions when X = A2 and X = A% are

the solutions of that equation. In both cases we give a explicit form of matrices
B and C.

1. Introduction

Let C™*™ denote the set of complex m x n matrices. I,, denotes the
unit matrix of order n. By A*, R(A), rank(A) and N(A) we denote the
conjugate transpose, the range, the rank and the null space of A € C™*™,
The symbol A~ stands for an arbitrary generalized inner inverse of A, i.e.
A~ satisfies AA~ A = A. By A we denote the Moore-Penrose inverse of A,
i.e. the unique matrix A’ satisfying

AATA = A, ATAAT = AT, (AAT)* = AAT, (ATA)* = ATA.

For A € C™" the smallest nonnegative integer k such that rank(A**+1) =
rank(A*) is called the index of A and denoted by ind(A). If A € C™*",
with ind(A) = k, then the matrix X € C™*™ which satisfies the following
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conditions

AFXA =A%, XAX = X, AX = XA,
is called the Drazin inverse of A and it is denoted by A¢. When ind(A) = 1
then the Drazin inverse A% is called the group inverse and it is denoted
by A#. Also, the matrix X which satisfies

AXA=A and XAX =X

is called the reflexive inverse of A and it is denoted by A1), For other
important properties of generalized inverses see [1] and [3].
In this paper we will consider the rank equation

rank [é )'é] — rank(A), (1)

for arbitrary A € C™*™. First, we give a necessary and sufficient condi-
tions such that X = A2 is the solution of equation (1) and all possible
matrices B and C' are described. As a corollary we obtain the result of
J. Gross [8] and N. THOME and Y. WEI [7]. Moreover, we consider when
X = A% is the solution of the equation (1), for an arbitrary matrix A with
ind(A) = k£ > 1 and we obtain some interesting corollaries.

2. Main results

We start this section with some well-known results. The following
lemma was proved in [4], [5] and [6].

Lemma 2.1. Let A€ C™*", Be C™*™ C € C™*™ and X € C™*™,
Then

rank [A

o )‘é] = rank(A) + rank(L) 4 rank(M) + rank(W),

where S = I, — A~A, L = CS, M = SB and W = (I, — LL™)(X —
CA™B)(Iy, — M~ M).

The following theorem, which is proved by J. GROSS [8], gives a char-
acterization of the existence of the solution of the equation (1) by means
of geometrical conditions.
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Theorem 2.1. Let A € C™*", B € C™*™ and C' € C"*™. Then there
exists a solution X € C™*™ of the equation (1) if and only if R(B) C R(A)
and R(C*) C R(A*), in which case X = CATB.

Notice that the conditions R(B) C R(A) and R(C*) C R(A*) are
equivalent to AATB = B and CA'A = C. Also, the matrix product CA~ B
is invariant with respect to the choice of generalized inverse A~ of A if and
only if R(B) C R(A) and R(C*) C R(A¥).

First we consider a necessary and sufficient conditions such that X =
A(:2) i5 the solution of the equation (1) and in this case we find the explicit
form for B and C.

Matrix A € C™*" such that rank(A) = r can be decomposed by

D 0

A:P[o 0

e 2
where P € O™ ™ Q € C™"™ and D € C™" are invertible matrices.
Given that decomposition arbitrary reflexive generalized inverse of A has
the following form

D! U
(1,2) — o1 —1
A @ [ 174 VDU] P ()

where U and V' are arbitrary matrices of suitable size (see [2]).
The following theorem gives a sufficient and necessary conditions such
that X = A(1?) is the solution of the equation (1).

Theorem 2.2. Let A€ C"™*", Be C™*™ (C' € ™" and X € C™*™
and let the matrix A and its reflexive generalized inverse be given by (2)
and (3) respectively. Then X = A®1:?) is the solution of the equation (1)
if and only if

DLt 0

DL (DLD)U] Pt and C=Q7! [ VL 0} ¢ W

B=P
[ 0 0
for some nonsingular matrix L € C"*".

PROOF. Suppose that X = A2 is the solution of the equation (1).
Then there exist matrices G € C™*™ and F € C™"*™ such that B = AG,
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C=FAand CA-B = AL2) Tet

N G1 GQ o Fl F2
QGP = [Gs GJ and QFP = [F3 FJ
Hence,
o o D 0 Gl GQ -1 DGI DGQ -1
poage [P V) [G G pp [P DG
and
_ | E| D 0 1 |FAD 0
C=FA=0Q [Fg FJ [O 0 @=@ 3D 0 @ (6)
Also,

A(1,2) — FAG = Q—l |:F1DG1 FIDG2:| P—l

DGy F3DGo
Now, from (3) we have that
FiDG, =D"', FDGy,=U, FDG, =V.

From the first equation we obtain that £}, (G; are invertible matrices and
FD = D7'G*. Now, DGy = F;'U = DG1DU and F3D = VG{'. If
we replace that in (5) and (6) and put G; = L, we obtain (4).

Now, suppose that (4) holds. Then AA~™B = B and C = CA™ A, for
generalized inner inverse A~ of A, which is given by

_ L [Dt 0] .
A:QI[O O]Pl.

So by Theorem 2.1 there exists a solution X = CA™ B of the equation (1).
By (4) we can easily check that X = CA~B = A1), O

Remark that when we consider the special reflexive inverse of A,

D' 0
A12) — -1 p1
T, ol P (7)

for U =V = 0, we obtain the ([7], Theorem 3).
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Corollary 2.1. Let A € C™*"™, B € C™*™ (C € C™" and X €
C™ ™ Let the matrix A and one its reflexive generalized inverse be given
by (2) and (7) respectively. Then X = A1) is the solution of the equation
(1) if and only if

DLt 0

DL O] Pl and CZQ—l[ . 0} 0. (8)

B=rP
[o 0

for some nonsingular matrix L € C"*".

Now, we consider the singular value decomposition of A € C™*™ such
that rank(A) =r

A:M[lo) 8] N, ()

where M € C™*™ and N € C™*™ are unitary and D € C"*" is a real posi-
tive definite diagonal matrix. By Theorem 2.2 we obtain ([8], Theorem 2).

Corollary 2.2. Let A € C™*"™, B € C™™ (C € C™" and X €
C™™._ Let the matrix A be given by (9). Then X = AT is the solution of
the equation (1) if and only if

D71 0o
0 0

DL 0

B=M
[0 0

}M* and C:N[ ]N*, (10)

for some nonsingular matrix L € C™*".

PRrROOF. Taking P = M and Q = N* in (2), we obtain that the matrix
A has the representation (9) and in that case AT = N [Dal 0] M*, which
has the form (7). Hence, the result follows from Corollary 2.1. O

In the rest of the paper, we consider the following question: When
X = A% is the solution of the equation (1)?

First, let A € C™*™ and ind(A) = 1. Using the Jordan canonical form
of A, there exist nonsingular matrices P € C™*"™ and D € C"*" such that

A=P [10) 8} pPL (11)

We obtain the result of N. THOME and Y. WEI ([7], Theorem 2).
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Theorem 2.3. Let A € C™*" with ind(A) = 1 and rank(A) = r be
given by (11) and B,C, X € C™". Then X = A% is the solution of the
equation (1) if and only if

DL 0

0 0 (12)

B=rP
[ 0o 0

—17-1
]P‘l and C:P[D L O}P‘l,

for some nonsingular matrix L € C"*".

PROOF. If the matrix A is given by (11), then A% = P[D" 0] P71,
Hence, the result follows from Corollary 2.1 taking Q = P~! and noticing
that A% is given by (7). O

Now, we consider a more general case when A € C™*" is such that
ind(A) = k > 1 and rank(A) = r. Then the matrix A can be written as

M 0
A=p! P 1
oo (13)
where P € C"*™ M € C"*" are nonsingular matrices and N € C'(n—")*(n—r)

is nilpotent, that is N¥ = 0. In this case

M=t 0

Al =p! P.
K
Theorem 2.4. Let A € C™"*", with index (A) = k, be represented by
(13) and B,C,X € C™".Then X = A? is the solution of the equation
(1) if and only if there exist G1,Fy € C™%", Go,Fy € C"™("=") Gy, Fy €

C=)%" and Gy, Fy € C=)*(n=7) guch that

MGy, MG M F,N
_ —1 1 2 _ —1 1 2
B=P [NGS NGJPandC’_P [FSM F4N}P (14)
and
FIMGy + F;NGs = M1,
MGy + Fo NGy =0,
(15)

MGy + F,NG3 =0,
FsMGy + F4NG4 = 0.



A note on generalized inverses and a block-rank equation 423

PROOF. Suppose that X = A? is the solution of the equation (1).
From Theorem 2.1 we have that R(B) C R(A) and R(C*) C R(AY),
so there exist matrices G and F such that B = AG and C = FA and
A? = CATB. Let

— Gl GQ —1 F1 F2
PGP~ = d PFpP!'= .
G [GS G4:| an [Fg F4:|
It follows that
M 0][G) G L [MG, MG,
B=p! P=Pr P
[0 N] [Gg en | NG3; NG,
and i i
B RB|l[M 0], ,.4|[FiM FEN
c=r [Fg Fyl |0 N_P_P FsM FyN P.

Since the matrix A has the form (13), it follows that

-1 —1
Al — p1 [M O]P and Af = p7! [M O]P.

0 0 0 Nt
Hence,
M1 0
Ad=pt P

"
_p! (MM FBN] [M~Y 0 MGy MGy p
- \FsM FyN|| 0 NTf||[NGs NGy
_ p-1 -FlMGl + FsNG3 FiMGy+ FoNGy p
a _F3MG1 4+ FuNG3s FsMGo+ FuNG4| ™

We obtain the following system

FIMGy+ F,NG3 =M1,
FIMGy + F>;NG, =0,
F3MGy + FyNG3 =0,
F3MGo+ FyNG, = 0.
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Conversely, suppose that the matrices B and C satisfied (14). Then
we see that AATB = B and C = CA'A. From Theorem 2.1 we have that
there exists a solution X = CA'B of the equation (1). Now, from the
system (15) it follows that CATB = A%, so X = A% is the solution of the
equation (1). O

Notice that Theorem 2.4 is a generalization of Theorem 2.3.

Now, we state some interesting results.

Theorem 2.5. Let A € C™*", with ind(A) = k has the form (13), let
p,m,n be positive integers and m,n > k. Then X = A¢ is the solution of
the equation

AP A"

rank [Am Y

} = rank(AP), (16)

if and only if M™*"=P = M1,

PROOF. Suppose that X = A? is the solution of the equation (16).
Then A? = A™(AP)~ A™. Hence,

-1
p1 [M 0] P

0 0
e P [ e [5)

ie. Mmtn—p = M1,

On the contrary, suppose that M™*"~P = M~1. First, we show that
there exists a solution X of the equation (16), i.e. that R(A™) C R(AP)
and N(AP) C N(A™).

If y € R(A™), then there exists x such that y = A"z, i.e.

y=P! [M Zl] , Where Px = [Zl] .
0 Z2
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Now,

)= P MP 0] [MP—)z |
0 NP 0

implying that y = APz’, where 2/ = P~} [M(pan)zl}. Hence, R(A™) C

R(AP) and analogously N(AP) C N(A™). Using the same computation as

in the first part, we obtain that X = A% is the solution of the equation (16).

O

Remark 1. Notice that Theorem 2.5 is also valid if we put f(n) and
g(m) instead of n,m, where f, g are arbitrary positive functions.

Corollary 2.3. Let A € C™*", with ind(A) = k has the form (13),
let p, m, n be positive integers such that m,n > k and m+n = p — 1.
Then X = A? is the solution of the equation (16).

Corollary 2.4. Let A € C™ ", then

AQI+L) Al

rank [ Al Ad

} = rank A(ZZ'H),

for arbitrary integer | > ind(A).
Corollary 2.5. Let A € C"*" and ind(A) = 1, then

A3 A 3
rank [A A#] = rank(A~).
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