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Coexistence problems for Hill’s equations
with three-step potentials

By KAZUSHI YOSHITOMI (Tokyo)

Abstract. We study the coexistence of two linearly independent, periodic
solutions of Hill’s equation with a three-step potential. We give a simple, neces-
sary and sufficient condition for the coexistence. Using this condition, we provide
a formula for the number of nontrivial joints of the Arnold tongue of a family of
Hill’s equations with three-step potentials.

1. Introduction

The purpose of this paper is to give a simple, necessary and suffi-
cient condition for Hill’s equation with a three-step potential to admit two
linearly independent, periodic solutions.

Given a subdivision

0 = t0 < t1 < t2 < t3 = 2π

of the interval [0, 2π], we put

t = (t1, t2) and si = ti − ti−1 for i = 1, 2, 3.

For a = (a1, a2, a3) ∈ R
3, let Q(a, t, · ) : R → R be a 2π-periodic step

function such that

Q(a, t, · ) = ai on [ti−1, ti) for i = 1, 2, 3.

Mathematics Subject Classification: 34L15, 34L40.
Key words and phrases: Hill’s equation, three-step potential, coexistence, monodromy
matrix.
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We are concerned with Hill’s equation of the form

−y′′(x) + Q(a, t, x)y(x) = λy(x) on R, y, y′ ∈ ACloc(R), (1)

where λ is a real parameter.
In order to formulate our claims, we recall from [5] some fundamental

results and terminologies in the theory of Hill’s equations. Let y1(a, t, λ, x)
and y2(a, t, λ, x) be the solutions of the equation (1) subject to the initial
conditions

y1(a, t, λ, 0) − 1 = y′1(a, t, λ, 0) = 0
and

y2(a, t, λ, 0) = y′2(a, t, λ, 0) − 1 = 0,

respectively. We introduce the discriminant of the equation (1):

D(a, t, λ) := y1(a, t, λ, 2π) + y′2(a, t, λ, 2π),

which is analytic in λ. Denoting by λj(a, t) the jth root of the equation
D(a, t, ·)2 −4 = 0 counted with multiplicity for each j ∈ N, we have by the
Liapounoff oscillation theorem (see [5, Theorem 2.1])

λ1(a, t) < λ2(a, t) ≤ λ3(a, t) < · · · < λ2k(a, t) ≤ λ2k+1(a, t) < · · · . (2)

This sequence also gives all the eigenvalues of (1) with the 4π-periodicity
condition y(· + 4π) = y(·) on R repeated according to multiplicity, while
the subsequence

λ1(a, t) < λ4(a, t) ≤ λ5(a, t) < · · · < λ4k(a, t) ≤ λ4k+1(a, t) < · · ·
provides all the eigenvalues of (1) with the 2π-periodicity condition re-
peated according to multiplicity. If the equation (1) admits two linearly
independent, periodic solutions of period 2π or 4π, we say that two such
solutions coexist (see [5, Section 7.1]). Such coexistence is equivalent to
the condition

λ = λ2k(a, t) = λ2k+1(a, t) for some k ∈ N = {1, 2, 3, . . . }.
The sequence (2) also characterizes the stability of the solutions of (1).

Whenever all solutions of (1) are bounded on R we say that they are stable;
otherwise we say that they are unstable. By the Liapounoff theorem, we
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see that the solutions of (1) are stable if and only if {λ} is an interior point
of the set ∞⋃

k=1

[λ2k−1(a, t), λ2k(a, t)].

We call (λ2k(a, t), λ2k+1(a, t)) the kth instability interval for k ∈ N. So the
coexistence is also equivalent to the absence of the instability interval.

We define

pi = pi(ai, λ) =
√

λ − ai, arg pi ∈
{

0,
π

2

}
for i = 1, 2, 3.

Our main result is the following claim.

Theorem 1. Let k ∈ N. Assume that am �= an for m �= n. Then the

statements (i) and (ii) below are equivalent.

(i) λ = λ2k(a, t) = λ2k+1(a, t).

(ii) s1p1(a1, λ) + s2p2(a2, λ) + s3p3(a3, λ) = kπ and sipi(ai, λ) ∈ πN for

i = 1, 2, 3.

Remark. For k ∈ N, we claim by Theorem 1 that the kth instability
interval is absent if and only if there exists λ ∈ R satisfying the state-
ment (ii). In particular, both the first instability interval and the second
instability interval are always present, provided that am �= an for m �= n.

Next we give an application of the above theorem. We consider the
family of Hill’s equations

−y′′(x) + βQ(a, t, x)y(x) = λy(x) on R, λ ∈ R,

indexed by β ∈ R. For k ∈ N, we define

Rk(a, t) = {(µ, β) ∈ R
2 | λ2k(βa, t) < µ < λ2k+1(βa, t)}

and

Pk(a, t) = {(µ, β) ∈ R
2 | µ = λ2k(βa, t) = λ2k+1(βa, t), β �= 0}.

The set Rk(a, t) is called the Arnord tongue or the instability region. The
elements of Pk(a, t) are called the resonance pockets, which are the non-
trivial joints of Rk(a, t). For a finite set K, we denote its cardinality by �K.
We note that �Pk(a, t) is equal to the number of bounded, connected com-
ponents of Rk(a, t). The following theorem gives a formula for �Pk(a, t).
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Theorem 2. Let k ∈ N. Suppose that am �= an for m �= n. Then it

holds that

�Pk(a, t) = �
{

(l1, l2, l3) ∈ N
3
∣∣∣ a2 − a3

s2
1

l21 +
a3 − a1

s2
2

l22 +
a1 − a2

s2
3

l23 = 0,

s2l1 �= s1l2, l1 + l2 + l3 = k
}

.

The coexistence problems for Hill’s equations with two-step potentials
have been studied in [2]–[4], and [6]. In order to review those results, we
introduce needed notations. Given 0 < κ < 2π and b = (b1, b2) ∈ R

2

with b1 �= b2, let W (b, κ, · ) : R → R be a 2π-periodic function such that
W (b, κ, · ) = b1 on [0, κ) and that W (b, κ, · ) = b2 on [κ, 2π). E. Meissner

[6] was the first to study the characteristic value problem

−z′′(x) = ν2W (b, κ, x)z(x) on R, ν > 0,

where b1, b2 > 0. He solved the coexistence problem for this equation in
the case when κ = π. Furthermore, H. Hochstadt [4] investigated this
problem for general κ. He proved that two linearly independent, periodic
solutions to this equation can coexist for some ν if and only if the number√

b2/b1 (2π − κ)/κ is rational. His method is based on a factorization
of the function ∆(ν) ± 2, where ∆(ν) stands for the discriminant of this
equation. Recently, Shaobo Gan and Meirong Zhang [2], [3] studied
the eigenvalue problem

−z′′(x) + W (b, κ, x)z(x) = νz(x) on R, ν ∈ R,

where b1, b2 ∈ R. They obtained a necessary and sufficient condition for
the coexistence (see [2, Theorem 2.3] and [3, Proposition 3.1]). They also
proved that the number of the resonance pockets in the nth instability
region of the family of equations

−z′′(x) + αW (b, κ, x)z(x) = νz(x) on R, ν ∈ R, α ∈ R

is given by 


n − 2 for
nκ

2π
∈ N,

n − 1 for
nκ

2π
/∈ N.
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Their method is based on a characterization of the eigenvalue by the rota-
tion number of the Prüfer transform of the solution.

Our idea to prove Theorem 1 is different from the ones in [2]–[4], and
[6]; we make effective use of the full components of the monodromy matrix.
This enables us to reduce the problem to a simple arithmetic.

2. Proof of theorems

By M(a, t, λ) we denote the monodromy matrix of (1):

M(a, t, λ) =
(

y1(a, t, λ, 2π) y2(a, t, λ, 2π)
y′1(a, t, λ, 2π) y′2(a, t, λ, 2π)

)
.

Using −y′′j (x) = (λ − ai)yj(x) on (ti−1, ti) for i = 1, 2, 3 and j = 1, 2, we
have, in the case when p1(a1, λ)p2(a2, λ)p3(a3, λ) �= 0,

y1(a, t, λ, 2π)
= cos s1p1 cos s2p2 cos s3p3 − p1

p2
sin s1p1 sin s2p2 cos s3p3

− p1

p3
sin s1p1 cos s2p2 sin s3p3 − p2

p3
cos s1p1 sin s2p2 sin s3p3, (3)

y′1(a, t, λ, 2π)
= −p1 sin s1p1 cos s2p2 cos s3p3 − p2 cos s1p1 sin s2p2 cos s3p3

− p3 cos s1p1 cos s2p2 sin s3p3 +
p1p3

p2
sin s1p1 sin s2p2 sin s3p3, (4)

y2(a, t, λ, 2π)

=
1
p1

sin s1p1 cos s2p2 cos s3p3 +
1
p2

cos s1p1 sin s2p2 cos s3p3

+
1
p3

cos s1p1 cos s2p2 sin s3p3 − p2

p1p3
sin s1p1 sin s2p2 sin s3p3, (5)

y′2(a, t, λ, 2π)
= cos s1p1 cos s2p2 cos s3p3 − p2

p1
sin s1p1 sin s2p2 cos s3p3

− p3

p1
sin s1p1 cos s2p2 sin s3p3 − p3

p2
cos s1p1 sin s2p2 sin s3p3. (6)
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Notice that the statement (i) in Theorem 1 is equivalent to the condition

M(a, t, λ) = (−1)k
(

1 0
0 1

)
and λ ∈ {λ2k(a, t), λ2k+1(a, t)} (7)

(see the proof of [5, Lemma 2.4]). Let us demonstrate Theorem 1.

Proof of Theorem 1. It suffices to show that (ii) in Theorem 1 and
(7) are equivalent.

Let us prove that (7) yields (ii). Assume that (7) holds. Our first task
is to deduce that sin s1p1 sin s2p2 sin s3p3 = 0 by contradiction. Suppose
that sin s1p1 sin s2p2 sin s3p3 �= 0. We put xi = cot sipi for i = 1, 2, 3.
Inserting (3) ∼ (6) into the equalities

y′1(a, t, λ, 2π) = 0, y2(a, t, λ, 2π) = 0, y′2(a, t, λ, 2π)−y1(a, t, λ, 2π) = 0,

and dividing those by sin s1p1 sin s2p2 sin s3p3, we obtain
p1p3

p2
− p1x2x3 − p2x1x3 − p3x1x2 = 0, (8)

− p2

p1p3
+

1
p1

x2x3 +
1
p2

x1x3 +
1
p3

x1x2 = 0, (9)

x3 = −(p2
1 − p2

3)p2

(p2
1 − p2

2)p3
x2 − (p2

2 − p2
3)p1

(p2
1 − p2

2)p3
x1. (10)

We deduce from (8) and (9) that

(−p1p
2
2 + p1p

2
3)x2x3 +

(
−p3

2 +
p2
1p

2
3

p2

)
x1x3 + (−p3p

2
2 + p2

1p3)x1x2 = 0. (11)

Plugging (10) into (11), we have

(p2
2−p2

3)(p
2
1−p2

3)p1p2x
2
2+2p2

1(p
2
2−p2

3)
2x1x2− p1(p2

1p
2
3 − p4

2)(p
2
2 − p2

3)
p2

x2
1 = 0

and hence

x2 =
{
−p1(p2

2 − p2
3)

p2(p2
1 − p2

3)
± p3(p2

1 − p2
2)

p2(p2
1 − p2

3)

}
x1. (12)

This together with (10) implies that

x3 = ∓x1. (13)
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Combining (8) with (12) and (13), we conclude that

x2
1 = −1.

This violates the fact that cot z �= ±√−1 for z ∈ C. Thus we get
sin s1p1 sin s2p2 sin s3p3 = 0.

Next we shall show that p1p2p3 �= 0. Let us first prove that p1 �= 0
by contradiction. Suppose that p1 = 0. Noting y′′j (x) = 0 on (t0, t1) for
j = 1, 2, we have

y1(a, t, λ, 2π) = cos s2p2 cos s3p3 − p2

p3
sin s2p2 sin s3p3, (14)

y′2(a, t, λ, 2π) = cos s2p2 cos s3p3 − p3

p2
sin s2p2 sin s3p3

− s1(p2 sin s2p2 cos s3p3 + p3 cos s2p2 sin s3p3), (15)

y′1(a, t, λ, 2π) = −p2 sin s2p2 cos s3p3 − p3 cos s2p2 sin s3p3, (16)

y2(a, t, λ, 2π) = s1 cos s2p2 cos s3p3 − s1p2

p3
sin s2p2 sin s3p3

+
1
p2

sin s2p2 cos s3p3 +
1
p3

cos s2p2 sin s3p3. (17)

Inserting (14) and (15) into y1(a, t, λ, 2π) − y′2(a, t, λ, 2π) = 0, and com-
bining that with (16) and y′1(a, t, λ, 2π) = 0, we obtain

p2
2 − p2

3

p2p3
sin s2p2 sin s3p3 = 0

and hence
sin s2p2 sin s3p3 = 0.

This together with y1(a, t, λ, 2π) = (−1)k and (14) implies that

cos s2p2 cos s3p3 = (−1)k

and thus sin s2p2 = sin s3p3 = 0. Therefore, we infer by (17) that

y2(a, t, λ, 2π) = s1(−1)k �= 0

which is a contradiction. Hence we have p1 �= 0. Similarly we get p2 �= 0
and p3 �= 0.
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Next we shall show that sin s1p1 = sin s2p2 = sin s3p3 = 0. Be-
cause sin s1p1 sin s2p2 sin s3p3 = 0, we have sin s1p1 = 0 or sin s2p2 = 0
or sin s3p3 = 0. We first consider the case that sin s1p1 = 0. By (3), (6),
and y1(a, t, λ, 2π) = y′2(a, t, λ, 2π) = ±1, we obtain

cos s2p2 cos s3p3 − p2

p3
sin s2p2 sin s3p3

= cos s2p2 cos s3p3 − p3

p2
sin s2p2 sin s3p3 = ±1.

Thus we have sin s1p1 = sin s2p2 = sin s3p3 = 0. This conclusion also
follows from sin s2p2 = 0 or sin s3p3 = 0 in a similar manner.

Because sin s1p1 = sin s2p2 = sin s3p3 = 0 and p1p2p3 �= 0, we have
sipi ∈ πN for i = 1, 2, 3. So we get

y1(a, t, λ, x) =




cos xp1 for x ∈ [0, t1),

cos(x − t1)p2 cos s1p1 for x ∈ [t1, t2),

cos(x − t2)p3 cos s2p2 cos s1p1 for x ∈ [t2, 2π).

Therefore we see that the number of zeros of y1(a, t, λ, ·) inside [0, 2π) is

(s1p1 + s2p2 + s3p3)/π.

Since

M(a, t, λ) = (−1)k
(

1 0
0 1

)
,

we infer that y1(a, t, λ, x) is a periodic solution of (1) of period 2π or 4π.
Because λ ∈ {λ2k(a, t), λ2k+1(a, t)}, the Haupt Theorem (see [1, Chap-
ter 8, Theorem 3.1]) implies that y1(a, t, λ, ·) has exactly k zeros in [0, 2π).
Thus it follows that (s1p1 + s2p2 + s3p3)/π = k. Hence we obtain (ii).

Finally we shall prove that (ii) implies (7). Suppose that (ii) holds.
By (3) ∼ (6) we have

M(a, t, λ) = (−1)k
(

1 0
0 1

)
.

As in the above observation, we see that y1(a, t, λ, x) is a periodic solution
of (1) of period 2π or 4π and that the number of zeros of y1(a, t, λ, ·) inside
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[0, 2π) is k. Thus the Haupt theorem again implies that

λ ∈ {λ2k(a, t), λ2k+1(a, t)}.
Hence we obtain (7). �

We are now in a position to demonstrate Theorem 2.

Proof of Theorem 2. Notice that sipi(βai, λ) ∈ πN if and only if
there exists mi ∈ N such that

λ − βai =
π2m2

i

s2
i

.

Thus we see by Theorem 1 that, for β ∈ R − {0}, the equality

λ2k(βa, t) = λ2k+1(βa, t)

holds if and only if there exist (l1, l2, l3) ∈ N
3 and λ ∈ R satisfying the

conditions (18) ∼ (21) below.

λ − βa1 =
π2l21
s2
1

. (18)

λ − βa2 =
π2l22
s2
2

. (19)

λ − βa3 =
π2l23
s2
3

. (20)

l1 + l2 + l3 = k. (21)

We find that the existence of such (l1, l2, l3) ∈ N
3 and λ ∈ R is unique,

since the function R � t 	→ t − βai ∈ R is strictly monotone increasing.
Both (18) and (19) hold if and only if both

β =
π2

a2 − a1

(
l21
s2
1

− l22
s2
2

)
and λ =

π2

a2 − a1

(
a2l

2
1

s2
1

− a1l
2
2

s2
2

)

are valid. Plugging these into (20) and β �= 0, we obtain

a2 − a3

s2
1

l21 +
a3 − a1

s2
2

l22 +
a1 − a2

s2
3

l23 = 0 and s2l1 �= s1l2,

respectively. Thus we get the assertion of Theorem 2. �
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Remark. For Hill’s equation with a four-step potential, there is no
analogy to Theorem 1. To see this we give a counterexample. We put

t0 = 0, t1 =
π

6
, t2 =

π

2
, t3 =

3
2
π, t4 = 2π,

sj = tj − tj−1, aj = − π2

4s2
j

for j = 1, 2, 3, 4.

Let V : R → R be a 2π-periodic function such that

V ( · ) = aj on [tj−1, tj) for j = 1, 2, 3, 4.

We consider the equation of the form

−y′′(x) + V (x)y(x) = 0 on R.

We define

Tj =

(
cos sj

√−aj
1√−aj

sin sj
√−aj

−√−aj sin sj
√−aj cos sj

√−aj

)
for j = 1, 2, 3, 4.

We notice that the equation (22) admits two linearly independent, periodic
solutions of period 2π, because its monodromy matrix is given by

T4T3T2T1 =




s2s4

s1s3
0

0
s1s3

s2s4


 =

(
1 0
0 1

)
.

However, we have

sj

√−aj =
π

2
/∈ πN for j = 1, 2, 3, 4.
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