Publ. Math. Debrecen
66/3-4 (2005), 427-437

Coexistence problems for Hill’s equations
with three-step potentials

By KAZUSHI YOSHITOMI (Tokyo)

Abstract. We study the coexistence of two linearly independent, periodic
solutions of Hill’'s equation with a three-step potential. We give a simple, neces-
sary and sufficient condition for the coexistence. Using this condition, we provide
a formula for the number of nontrivial joints of the Arnold tongue of a family of
Hill’s equations with three-step potentials.

1. Introduction

The purpose of this paper is to give a simple, necessary and suffi-
cient condition for Hill’s equation with a three-step potential to admit two
linearly independent, periodic solutions.

Given a subdivision

0=t <ti <to<ts3=2m
of the interval [0, 27], we put
t=(t1,t2) and s;=t; —t;—qy fori=1,23.

For a = (a1,as,a3) € R3, let Q(a,t,-) : R — R be a 27-periodic step
function such that

Q(a,t,-)=a; on [ti_1,t;) fori=1,23.

Mathematics Subject Classification: 34L15, 34140.
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We are concerned with Hill’s equation of the form
—"(x) + Q(a,t,x)y(x) = My(z) on R, y,y" € ACie(R), (1)

where ) is a real parameter.

In order to formulate our claims, we recall from [5] some fundamental
results and terminologies in the theory of Hill’s equations. Let y;(a,t, A, x)
and ys(a,t, \,x) be the solutions of the equation (1) subject to the initial
conditions

y1(a,t,\,0) — 1 =vi(a,t,A\,0) =0
and
ya(a,t, X\, 0) = yh(a,t,\,0) — 1 =0,

respectively. We introduce the discriminant of the equation (1):
D(a,t,\) :=yi(a,t, \,27) + yh(a,t, A\, 27),

which is analytic in A. Denoting by A;(a,t) the jth root of the equation
D(a,t,-)? —4 = 0 counted with multiplicity for each j € N, we have by the
Liapounoff oscillation theorem (see [5, Theorem 2.1])

Al(a,t) < )\g(a,t) < Ag(a,t) <0 < )\gk(a,t) < )\2k+1(a,t) <L - (2)

This sequence also gives all the eigenvalues of (1) with the 4m-periodicity
condition y(- + 47) = y(-) on R repeated according to multiplicity, while
the subsequence

A1(a,t) < Mla,t) < As(a,t) < -+ < Agg(a,t) < Aggeg1(a,t) < ---

provides all the eigenvalues of (1) with the 27r-periodicity condition re-
peated according to multiplicity. If the equation (1) admits two linearly
independent, periodic solutions of period 27 or 47, we say that two such
solutions coexist (see [5, Section 7.1]). Such coexistence is equivalent to
the condition

A = Xog(a,t) = Aogy1(a,t) for some ke N={1,2,3,... }.

The sequence (2) also characterizes the stability of the solutions of (1).
Whenever all solutions of (1) are bounded on R we say that they are stable;
otherwise we say that they are unstable. By the Liapounoff theorem, we
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see that the solutions of (1) are stable if and only if {A} is an interior point
of the set

[A2k—1(a,t), Aok (a,t)].

(@G:

k=1

We call (Ao (a,t), Aogr1(a,t)) the kth instability interval for k£ € N. So the
coexistence is also equivalent to the absence of the instability interval.
We define

pi = pi(aj, \) = /X —a;, argp; € {O, g} fori=1,2,3.
Our main result is the following claim.

Theorem 1. Let k € N. Assume that a,, # a, for m # n. Then the

statements (i) and (ii) below are equivalent.

(1) A= As(a,t) = Apr1(a, t).

(ii) sip1(ag, A) + s2p2(az, \) + ssps(as, \) = kn and s;p;(a;, \) € 7N for
i=1,2,3.

Remark. For k € N, we claim by Theorem 1 that the kth instability
interval is absent if and only if there exists A € R satisfying the state-
ment (ii). In particular, both the first instability interval and the second
instability interval are always present, provided that a,, # a, for m # n.

Next we give an application of the above theorem. We consider the
family of Hill’s equations

—y"(z) + BQ(a,t, 2)y(x) = Ay(z) on R, X €R,
indexed by 8 € R. For k € N, we define
Ry(a,t) = {(1, B) € R* | Aap(Ba,t) < p < Agps1(Ba,t)}

and

Py(a,t) = {(u, B) € R?* | = Ao (Ba,t) = Xa11(Ba, t), B # 0}.

The set Ry(a,t) is called the Arnord tongue or the instability region. The
elements of Py(a,t) are called the resonance pockets, which are the non-
trivial joints of Ry(a,t). For a finite set K, we denote its cardinality by $K.
We note that §Py(a,t) is equal to the number of bounded, connected com-
ponents of Ry (a,t). The following theorem gives a formula for §Px(a,t).
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Theorem 2. Let k € N. Suppose that a,, # a, for m # n. Then it
holds that
2 — a3 12 az —a 12 ap — az

_ 3|4
tth(a,t) = ﬁ{(ll, lg, l3) eN S% 1+ S% 2 8%

soly # s1la, I1 + 1o+ 13 = k‘}

3=0,

The coexistence problems for Hill’s equations with two-step potentials
have been studied in [2]-[4], and [6]. In order to review those results, we
introduce needed notations. Given 0 < k < 27 and b = (by,bg) € R?
with by # b, let W(b,k,-) : R — R be a 2m-periodic function such that
W(b,k,-) = b1 on [0,k) and that W (b, k,-) = be on [k, 27). E. MEISSNER
[6] was the first to study the characteristic value problem

—"(z) = V*W(b,k,z)z(x) on R, v >0,

where b1,b > 0. He solved the coexistence problem for this equation in
the case when x = w. Furthermore, H. HOCHSTADT [4] investigated this
problem for general x. He proved that two linearly independent, periodic
solutions to this equation can coexist for some v if and only if the number
\/b2/b1 (2 — K)/k is rational. His method is based on a factorization
of the function A(v) &+ 2, where A(v) stands for the discriminant of this
equation. Recently, SHAOBO GAN and MEIRONG ZHANG [2], [3] studied
the eigenvalue problem

—2"(z) + W(b,k,z)z(x) =vz(z) on R, veR,

where b1,bs € R. They obtained a necessary and sufficient condition for
the coexistence (see [2, Theorem 2.3] and [3, Proposition 3.1]). They also
proved that the number of the resonance pockets in the nth instability
region of the family of equations

—2"(x)+ aW (b, k,x)z2(x) =vz(z) on R, veER, a €R

is given by

n—2 forﬁeN,
2

n—1 forﬁgéN.
2m
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Their method is based on a characterization of the eigenvalue by the rota-
tion number of the Priifer transform of the solution.

Our idea to prove Theorem 1 is different from the ones in [2]-[4], and
[6]; we make effective use of the full components of the monodromy matrix.
This enables us to reduce the problem to a simple arithmetic.

2. Proof of theorems

By M(a,t,\) we denote the monodromy matrix of (1):

yi(a,t, A, 2m) yz(a,t,A,%))

M =
@)= (Vo et

Using —y7(z) = (A — a;)y;(x) on (ti-1,t;) for i = 1,2,3 and j = 1,2, we
have, in the case when pj (a1, A)pa(az, A)ps(as, \) # 0,

y1(a,t, A, 2m)
1 . .
= COS S1P1 COS S9P2 COS S3P3 — p— SIN S1pP1 SN SoP2 COS S3P3
P2
b1 . . P2 . .
— — S §1P1 COS SoP9o S1N S3P3 — — COS S1P1 Sl S9P2 S1N S3P3, (3)
p3 p3

yi(a,t,\, 2m)

= —D1 sin S§1P1 COS SoPg COS S3P3 — P2 COS S1P1 sin S9P2 COS S3P3

. pbips . . .
— P3 COS S1P1 COS SoP2 SIN S3P3 + —— SIN S1P1 SIN S9P2 SIN S3P3, (4)
D2

ya(a,t, A, 2m)

. 1 .
= — SIN $11 COS S2P2 COS S3P3 + — COS S1P1 SN S9P9 COS S3P3
p1 D2

. b2 . . .
+ — COS $1p1 COS Sop2 SIN S3P3 — Sin S1p1 SN SoP9 S1N S3P3, (5)
p3 3

ys(a,t, A, 2m)

D2 . .
= COS S1P1 COS S22 COS S3P3 — — Sin S1P1 Sin SoP2 COS S3P3
p1

3 . . b3 . .
— — SI §1P1 COS SoP9o SN S3P3 — — COS S1P71 Sl S9P2 SII S3P3. (6)
Y41 p2
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Notice that the statement (i) in Theorem 1 is equivalent to the condition

M(a,t, ) = (1) (é ?) and A€ Daon(at), Awsi(a, )} (7)

(see the proof of [5, Lemma 2.4]). Let us demonstrate Theorem 1.

PROOF OF THEOREM 1. It suffices to show that (ii) in Theorem 1 and
(7) are equivalent.

Let us prove that (7) yields (ii). Assume that (7) holds. Our first task
is to deduce that sin s1p; sin sops sin sgp3 = 0 by contradiction. Suppose
that sinsip;sinsaoposinsspy # 0. We put x; = cots;p; for ¢ = 1,2,3.
Inserting (3) ~ (6) into the equalities

yll(aata)\727r) = 07 3/2(@775,)\7277) = 07 yé(a,t,)\,27r)—yl(a,t,)\,ZW) = Oa

and dividing those by sin s1p1 sin sopo sin s3p3, we obtain

p1p3

oy P1T2T3 — Pax1x3 — P3T1T2 = 0, (8)
1 1

_ P2 + —x9x3 + —x173+ —x172 = 0, (9)

pip3  Dp1 b2 p3
2,2 2 .2

s = _(p% p;)pzx2 B (pg pg)plxl_ (10)

(pf — p3)p3 (p? — p3)p3

We deduce from (8) and (9) that

2. 2
Pip
(—p1p3 + p1p3) w3 + <—p§ + —]1)23>w11r3 + (—p3p3 + pips)rize = 0. (11)

Plugging (10) into (11), we have

2,2 4 2 .2
L N
and hence ) ) ) )
2y — {_pl(pg —3) , P3(pi —pz)}xl' (12)
2 2 2 2
p2(pt —p3)  p2(pi — P3)

This together with (10) implies that

r3 = Fx1. (13)
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Combining (8) with (12) and (13), we conclude that

x% =—-1

This violates the fact that cotz # #+/—1 for z € C. Thus we get
sin s1p; sin sop92 sin s3ps = 0.

Next we shall show that pipops # 0. Let us first prove that p; # 0
by contradiction. Suppose that p; = 0. Noting yj(z) = 0 on (¢o,t1) for
j =1,2, we have

y1(a,t, X, 2m) = cos Sgpg COS S3p3 — P2 gin Sopo Sin S3p3, (14)
p3

yh(a,t, A, 2m) = cos sopy COS S3p3 — 3 gin Sopo Sin S3p3
P2
— 51(p2 sin s9pg oS s3p3 + P3 COS Sap2 Sin S3p3), (15)

yi(a,t,\, 2m) = —pa sin sapa COS S3p3 — P3 COS Sop2 Sin S3p3, (16)

S1p2 . .
ya(a,t, \,2m) = 81 COS Sapa COS S3P3 — sin sopo Sin s3ps3

1 1
+ — sin Sops COS S3p3 + — COS Sop2 Sin S3ps3. (17)
P2 p3

Inserting (14) and (15) into yi(a,t, A, 27) — yh(a,t, A, 2m) = 0, and com-
bining that with (16) and y}(a,t, A, 27) = 0, we obtain

p3 — p3

p2p3

sin sop9 sin sgpg = 0

and hence
sin sop9 sin sgp3 = 0.

This together with yi(a,t,\,21) = (—1)* and (14) implies that
COS S99 COS $3P3 = (—1)k
and thus sin s9ps = sin sgpg = 0. Therefore, we infer by (17) that
ya(a, t,\, 2m) = s1(—=1)F #£0

which is a contradiction. Hence we have p; # 0. Similarly we get ps £ 0
and p3 # 0.
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Next we shall show that sins;p; = sinsops = sinsgps = 0. Be-
cause sin sipp sin sopo sinsgps = 0, we have sins;p; = 0 or sinsspy = 0
or sin sgps = 0. We first consider the case that sinsip; = 0. By (3), (6),
and y1(a,t, A, 27) = yh(a,t, \,27) = £1, we obtain

p2 . .
COS S9P2 COS S3P3 — — Sl S9P2 SIN S3P3
p3

p3 . .
= COS SoP9 COS S3P3 — — Sin SoP9 sin sgp3 = £1.
P2

Thus we have sinsip; = sinssps = sinszpg = 0. This conclusion also
follows from sin sgps = 0 or sin sgp3 = 0 in a similar manner.

Because sin s1p; = sin sops = sinsgps = 0 and p1pops # 0, we have
sip; € N for ¢t = 1,2,3. So we get

COS TP1 for x € [0,1),
yi(a,t,\,x) = < cos(x — t1)p2 cos $1p1 for x € [t1,t2),

cos(x — ta)ps cos sapa cos s1p1 for x € [tg, 2m).
Therefore we see that the number of zeros of y1(a,t, A, -) inside [0, 27) is

(s1p1 + S2p2 + s3p3) /.

Since

M(a,t,\) = (=1)F ((1) 2) ,

we infer that yi(a,t, A\, x) is a periodic solution of (1) of period 27 or 4.
Because A\ € {Aar(a,t), Aakyi1(a,t)}, the Haupt Theorem (see [1, Chap-
ter 8, Theorem 3.1]) implies that y;(a,t, A, -) has exactly k zeros in [0, 27).
Thus it follows that (s1p1 + s2p2 + s3p3)/m = k. Hence we obtain (ii).

Finally we shall prove that (ii) implies (7). Suppose that (ii) holds.
By (3) ~ (6) we have

M(a,t,)) = (1) <(1) ?) .

As in the above observation, we see that yi(a,t, A, x) is a periodic solution
of (1) of period 27 or 47 and that the number of zeros of y;(a, t, A, -) inside
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[0,27) is k. Thus the Haupt theorem again implies that
A€ {\ak(a,t), Aogy1(a,t)}.
Hence we obtain (7). O
We are now in a position to demonstrate Theorem 2.

PROOF OF THEOREM 2. Notice that s;p;(fa;, A) € 7N if and only if
there exists m; € N such that
2,2
A — Ba; = =0
S

%

Thus we see by Theorem 1 that, for 8 € R — {0}, the equality

Aok (Ba,t) = Aagr1(Ba,t)

holds if and only if there exist (I1,l2,l3) € N® and A € R satisfying the
conditions (18) ~ (21) below.

w212
A= Bag = —*. (18)
A= Bag = —2. (19)

A= Baz = —2. (20)
L+lk+l3=Ek. (21)

We find that the existence of such (I1,lz,l3) € N? and A € R is unique,
since the function R 5 ¢t — t — fBa; € R is strictly monotone increasing.
Both (18) and (19) hold if and only if both

72 2 3 2 asl?  ayl?
p= 2 ) and A= 2 T T2
a2 — aq 81 82 81 82

are valid. Plugging these into (20) and 3 # 0, we obtain

a2 — asg az — aj a1 — az

l% l% + l32, =0 and SQll 7& 51l2
52 82 82 ’
1 2 3

respectively. Thus we get the assertion of Theorem 2. ]
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Remark. For Hill’s equation with a four-step potential, there is no
analogy to Theorem 1. To see this we give a counterexample. We put

T T 3
to =0, tlzg, t2—§, t3—§7T, ty = 2m,
2
Sj:tj_tj—la aj:——2 fOI‘j:1,2,3,4.

Let V : R — R be a 2n-periodic function such that
V(-)=a;on [tj_1,t;) forj=1,2,3,4.
We consider the equation of the form
—y"(z) +V(2)y(z) =0 on R.
We define
T < COS 8j1/—a; +ajsinsj\/——aj
T —y/—a;sinsj\/—a; COS 8j1/—a;

We notice that the equation (22) admits two linearly independent, periodic
solutions of period 2w, because its monodromy matrix is given by

) for j =1,2,3,4.

5254

5183 1 0
Ty T5ToT) = = < > .
0 5183 0 1
59854

However, we have
S/ —a; = g ¢ N for j =1,2,3,4.
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