Publ. Math. Debrecen 66/3-4 (2005), 449–455

On topological ultraproducts

By MILOŠ S. KURILIĆ (Novi Sad)

Abstract. In "Ultraproducts in topology" [Gen. Topology Appl. 7 (1977) 283–308] PAUL BANKSTON investigated ultraproducts of topological spaces and asked when is the quotient mapping $q : \Box X_{\alpha} \to \Box_{\mathcal{U}} X_{\alpha}$ closed. An answer for a wide class of spaces containing sequential Hausdorff spaces and Hausdorff spaces of cardinality $\leq \mathfrak{c}$ is obtained in [4]. Here we consider some classes of spaces that are not observed in [4].

1. Introduction

Let $(X_{\alpha}, \mathcal{O}_{\alpha})$, $\alpha \in \kappa$, be a family of topological spaces. The box topology on the set $\prod X_{\alpha}$ is generated by the sets of the shape $\prod_{\alpha \in \kappa} O_{\alpha}$, where $O_{\alpha} \in \mathcal{O}_{\alpha}$ for all $\alpha \in \kappa$. Such a product is called the box product and denoted by $\Box X_{\alpha}$. If $\mathcal{U} \subset P(\kappa)$ is an ultrafilter, the equivalence relation \sim on the set $\prod X_{\alpha}$ given by $f \sim g$ iff $\{\alpha \in \kappa : f_{\alpha} = g_{\alpha}\} \in \mathcal{U}$ determines the quotient space $\Box X_{\alpha}/\sim$, the ultraproduct of the given family of spaces, which will be denoted by $\Box_{\mathcal{U}} X_{\alpha}$. The natural projection $q : \Box X_{\alpha} \to$ $\Box_{\mathcal{U}} X_{\alpha}$ given by $q(f) = [f] = \{g \in \prod X_{\alpha} : g \sim f\}$ is always an open and continuous surjection.

Mathematics Subject Classification: 54B10, 54B15, 54C10.

Key words and phrases: topological ultraproducts, quotient mappings, closed mappings. Research supported by the MNTRS (Project 1768: Forcing, Model Theory and Set-Theoretic Topology).

Miloš S. Kurilić

In [1] PAUL BANKSTON investigated ultraproducts of topological spaces and asked when the quotient map $q : \Box X_{\alpha} \to \Box_{\mathcal{U}} X_{\alpha}$ is closed (Problem 10.3). In [4], more general products-reduced products were considered and it was proved (in ZFC) that if the X_{α} -s belong to a wide class of spaces, then the mapping q is not closed. When the ultraproducts are in question, by Theorem 2 of [4] we have

Theorem 1. Let κ be an infinite cardinal and $\mathcal{U} \subset P(\kappa)$ a nonprincipal ultrafilter. Let the spaces X_{α} , $\alpha \in \kappa$, contain closed subspaces Y_{α} containing closed sets I_{α} of ι many isolated (in Y_{α}) points and nonisolated points p_{α} of pseudocharacter $\psi_{Y_{\alpha}}(p_{\alpha}) = \nu$. If $\nu^{\kappa} \leq \iota^{\kappa}$, then the mapping $q : \Box X_{\alpha} \to \Box_{\mathcal{U}} X_{\alpha}$ is not closed.

This theorem settles the question of Bankston if, for example, X_{α} are sequential Hausdorff spaces or ordinals $> \omega$ or Hausdorff spaces of cardinality $\leq \mathfrak{c}$. But it can not be applied if, for example, X_{α} -s have the cofinite topology. (Then each closed subspace of X_{α} is either finite (and discrete) or equal to X_{α} (and without isolated points)). In this paper, by methods different from those used in [4], we give some additional results concerning Bankston's question.

By $\prod_{\mathcal{U}} \omega$ we denote the ultrapower of structures $\langle \omega, \langle \rangle$ where $\langle \rangle$ is the natural order on ω , $\kappa = \omega$ and $\mathcal{U} \in \beta \omega \backslash \omega$. This ultrapower is a linearly ordered set again, where the relation $\langle_{\mathcal{U}} \text{ on } \omega \omega / \sim \rangle$ is given by: $[f] \langle_{\mathcal{U}} [g]$ iff $\{n \in \omega : f_n < g_n\} \in \mathcal{U}$. The "ground set" of this structure has \mathfrak{c} elements and the order type of $\prod_{\mathcal{U}} \omega \rangle \simeq \omega + Z\theta$, where Z is the order type of integers and θ is the order type of a dense linear ordering without end-points. $(\prod_{\mathcal{U}} \omega \rangle \simeq \omega)$ is in fact a non-standard model of the Peano arithmetic).

It is well-known that for every linearly ordered set $\langle L, < \rangle$ having no last element there exists the unique regular cardinal κ such that L contains a cofinal subset K of type κ . Then we write $cf(\langle L, < \rangle) = \kappa$. The cofinality $cf(\prod_{\mathcal{U}} \omega)$ will be used in our consideration. It is known that it depends on additional set-theoretic assumptions.

450

2. Two theorems

Here we give two theorems concerning ultraproducts of countably many spaces and leave generalizations to the reader. We will use the following elementary facts.

Fact 1 (Theorem 1.4.13 of [3]). A continuous mapping $f: X \to Y$ is closed iff for each $y \in Y$ and each $O \in \mathcal{O}_X$ such that $f^{-1}(\{y\}) \subset O$ there exists a neighbourhood V of y satisfying $f^{-1}(V) \subset O$.

Fact 2. Let $(X_{\alpha}, \mathcal{O}_{\alpha})$, $\alpha \in \kappa$, be a family of topological spaces and $Y_{\alpha} \subset X_{\alpha}$, $\alpha \in \kappa$, nonempty closed sets. If the quotient mapping $q : \Box X_{\alpha} \to \Box_{\mathcal{U}} X_{\alpha}$ is closed, then the quotient mapping $q_1 : \Box Y_{\alpha} \to \Box_{\mathcal{U}} Y_{\alpha}$ is closed too.

Theorem 2. Let (X_n, \mathcal{O}_n) , $n \in \omega$, be spaces containing countable non-discrete closed T_1 -subspaces Y_n . If \mathcal{U} is a non-principal ultrafilter on ω satisfying $\operatorname{cf}(\chi(\mathcal{U})) = \operatorname{cf}(\prod_{\mathcal{U}} \omega)$, then the mapping $q : \Box X_n \to \Box_{\mathcal{U}} X_n$ is not closed.

PROOF. Let X_n , Y_n and \mathcal{U} be as supposed. By Fact 2, it is sufficient to prove that the mapping $q_1 : \Box Y_n \to \Box_{\mathcal{U}} Y_n$ is not closed.

For each $n \in \omega$ we pick a non-isolated point $y_n \in Y_n$. Clearly, we can suppose that $Y_n = \omega + 1$ and $y_n = \omega$. Since the spaces Y_n are T_1 , the sets $(k, \omega]$ are open. In order to apply Fact 1 we will construct an open set $O \subset \Box(\omega + 1) = \Box Y_n$ such that

$$[\langle \omega \rangle] \subset O \quad \text{and} \quad [h] \not \subset O, \quad \text{for all } h \in {}^{\omega} \omega. \tag{1}$$

Firstly, let us suppose that such an O is constructed. Then $q_1^{-1}([\langle \omega \rangle]) = [\langle \omega \rangle] \subset O$ and it is sufficient to prove that $q_1^{-1}(V) \not\subset O$ for an arbitrary neighbourhood V of the point $[\langle \omega \rangle]$ of $\Box_{\mathcal{U}} Y_n$. Let $q_1(\prod_{n \in \omega} W_n)$ be a basic neighbourhood of $[\langle \omega \rangle]$ contained in V, where W_n is a neighbourhood of ω in Y_n , for $n \in \omega$. Since the point ω is non-isolated we choose $h_n \in W_n \setminus \{\omega\}, n \in \omega, \text{ so, } h = \langle h_n : n \in \omega \rangle \in {}^{\omega}\omega \cap \prod W_n$. Now, $[h] = q_1^{-1}(\{q_1(h)\}) \subset q_1^{-1}(q_1(\prod W_n)) \subset q_1^{-1}(V)$, and since $[h] \not\subset O$ we have $q_1^{-1}(V) \not\subset O$. Thus $q_1^{-1}(V) \not\subset O$, for each neighbourhood V of $[\langle \omega \rangle]$ and, by Fact 1, the mapping q_1 is not closed.

Miloš S. Kurilić

Now we will construct the set O satisfying (1). Let $\mathcal{B} = \{B_{\alpha} : \alpha < \lambda\}$ be a base for \mathcal{U} satisfying $\lambda = \chi(\mathcal{U})$ and $\kappa = \mathrm{cf}(\lambda) = \mathrm{cf}(\prod_{\mathcal{U}} \omega)$ and let $\{[f_{\beta}] : \beta < \kappa\}$ be an increasing unbounded subset of $\prod_{\mathcal{U}} \omega$. There exists a non-decreasing unbounded function $\varphi : \lambda \to \kappa$. (If $\psi : \kappa \to \lambda$ is an unbounded function, then the function $\varphi : \lambda \to \kappa$ given by: $\varphi(\alpha) =$ $\min\{\beta < \kappa : \alpha < \psi(\beta)\}$ is non-decreasing and unbounded). Let O = $\bigcup_{\alpha < \lambda} O_{\alpha}$ where the sets $O_{\alpha}, \alpha < \lambda$, are defined by:

$$O_{\alpha} = \prod_{n \in B_{\alpha}} (f_{\varphi(\alpha)}(n), \omega] \times \prod_{n \in \omega \setminus B_{\alpha}} (\omega + 1).$$

For each $f \in [\langle \omega \rangle]$ we have $f^{-1}(\omega) \in \mathcal{U}$ and there is $\alpha < \lambda$ such that $B_{\alpha} \subset f^{-1}(\omega)$, hence $f \in O_{\alpha}$. So, $[\langle \omega \rangle] \subset O$ and O is an open subset of $\Box(\omega+1)$.

Suppose there is $h \in {}^{\omega}\omega$ such that $[h] \subset O$. The set $\{[f_{\varphi(\alpha)}] : \alpha < \lambda\}$ is unbounded in $\prod_{\mathcal{U}} \omega$ thus there exists $\alpha_0 < \lambda$ satisfying $[h] \leq_{\mathcal{U}} [f_{\varphi(\alpha_0)}]$.

Let $F \in \mathcal{U}$. We define $h_F \in [h]$ by

$$h_F(n) = \begin{cases} h(n) & \text{for } n \in F, \\ 0 & \text{for } n \in \omega \setminus F. \end{cases}$$

If $\alpha \geq \alpha_0$, then $\varphi(\alpha_0) \leq \varphi(\alpha)$ and $[f_{\varphi(\alpha_0)}] \leq \mathcal{U}[f_{\varphi(\alpha)}]$ so we have $[h] \leq \mathcal{U}[f_{\varphi(\alpha)}]$, that is $G = \{n \in \omega : h(n) \leq f_{\varphi(\alpha)}(n)\} \in \mathcal{U}$. Pick one $n \in F \cap G \cap B_{\alpha}$. Then $h_F(n) = h(n) \leq f_{\varphi(\alpha)}(n)$ and since $n \in B_{\alpha}$, there holds $h_F \notin O_{\alpha}$. Now, $h_F \notin O_{\alpha}$ for all $\alpha \geq \alpha_0$ so there is $\alpha < \alpha_0$ such that $h_F \in O_{\alpha}$. Thus

$$\forall F \in \mathcal{U} \quad \exists \alpha < \alpha_0 \quad h_F \in O_\alpha. \tag{2}$$

If $h_F \in O_\alpha$, then $B_\alpha \subset F$ (because $n \in B_\alpha \setminus F$ would imply $0 = h_F(n) \in (f_{\varphi(\alpha)}(n), \omega]$). From (2) it follows that $\forall F \in \mathcal{U} \exists \alpha < \alpha_0 \ (B_\alpha \subset F)$. So, the family $\{B_\alpha : \alpha < \alpha_0\}$ is a base for \mathcal{U} of cardinality $< \lambda$ which is impossible and (1) is proved.

If the spaces X_n do not contain T₁-subspaces, then the previous theorem and the results of [4] do not work. We will say that a space (X, \mathcal{O}) is rightly-open of type $\kappa + 1$ (where κ is an infinite cardinal) iff there is a (bijective) enumeration $X = \{x_\alpha : \alpha \leq \kappa\}$ such that $\{x_\kappa\} \notin \mathcal{O}$ and

452

 $\{x_{\alpha} : \beta < \alpha \leq \kappa\} \in \mathcal{O}$ for each $\beta < \kappa$. (For example, for each cardinal $\kappa \geq \omega$, the space $\kappa + 1$ with the order topology is rightly-open of type $\kappa + 1$.)

Theorem 3. Let (X_n, \mathcal{O}_n) , $n \in \omega$, be rightly-open spaces of type $\kappa + 1$ and $\mathcal{U} \in \beta \omega \setminus \omega$ where $\operatorname{cf}(\chi(\mathcal{U})) = \kappa > \omega$. Then the mapping $q : \Box X_n \to \Box_{\mathcal{U}} X_n$ is not closed.

PROOF. Clearly, we can assume $X_n = \kappa + 1$ and $(\beta, \kappa] \in \mathcal{O}_n$ for each $\beta < \kappa$ and $n \in \omega$, where $(\beta, \kappa] = \{\alpha \in \kappa + 1 : \alpha > \beta\}$.

Let $\mathcal{B} = \{B_{\alpha} : \alpha < \lambda\}$ be a base for \mathcal{U} , where $\lambda = \chi(\mathcal{U})$ and let $\varphi : \lambda \to \kappa$ be a non-decreasing cofinal mapping. Let $O = \bigcup_{\alpha < \lambda} O_{\alpha}$, where the sets $O_{\alpha}, \alpha < \lambda$ are defined by

$$O_{\alpha} = \prod_{n \in B_{\alpha}} (\varphi(\alpha), \kappa] \times \prod_{n \in \omega \setminus B_{\alpha}} (\kappa + 1).$$

The proof that $[\langle \kappa \rangle] \subset O$ and $[h] \not\subset O$ for all $h \in {}^{\omega}\kappa$ is analogous to the corresponding part of the proof of the preceding theorem (here we use the fact that each $h \in {}^{\omega}\kappa$ is dominated by some constant function since $\kappa > \omega$ is regular). The proof that $q^{-1}(V) \not\subset O$ for each neighbourhood V of $[\langle \kappa \rangle]$ is a copy of the corresponding part of the proof of the preceding theorem again. By Fact 1, the mapping q is not closed.

Example 1. Let (X_n, \mathcal{O}_n) , $n \in \omega$ be countable spaces with the cofinite topology. If \mathcal{U} is a non-principal ultrafilter on ω satisfying $cf(\chi(\mathcal{U})) = cf(\prod_{\mathcal{U}} \omega)$, then, by Theorem 2, the mapping $q : \Box X_n \to \Box_{\mathcal{U}} X_n$ is not closed.

Example 2. Let $X_n = \omega_1 + 1$ and $\mathcal{O}_n = \{\omega_1 + 1\} \cup \{(\alpha, \omega_1] : \alpha < \omega_1\}$. If $\mathcal{U} \in \beta \omega \setminus \omega$ where $\operatorname{cf}(\chi(\mathcal{U})) = \omega_1$, then by Theorem 3, the mapping $q : \Box X_n \to \Box_{\mathcal{U}} X_n$ is not closed.

Finally, a few words about the condition $\operatorname{cf}(\chi(\mathcal{U})) = \operatorname{cf}(\prod_{\mathcal{U}} \omega)$. The cardinal $\operatorname{cf}(\prod_{\mathcal{U}} \omega)$ is bounded by some "small" uncountable cardinals. Namely, let \leq^* be the relation on ${}^{\omega}\omega$ given by: $f \leq^* g$ iff there is $n_0 \in \omega$ such that $f_n \leq g_n$ for all $n \geq n_0$. A family $\mathcal{B} \subset {}^{\omega}\omega$ is unbounded iff there is no $g \in {}^{\omega}\omega$ such that $b \leq^* g$ for all $b \in \mathcal{B}$. A family $\mathcal{D} \subset {}^{\omega}\omega$ is dominating iff for each $f \in {}^{\omega}\omega$ there exists $d \in \mathcal{D}$ satisfying $f \leq^* d$. The cardinals \mathfrak{b} , \mathfrak{d} and \mathfrak{u} are defined by:

 $\mathfrak{b} = \min\{|\mathcal{B}| : \mathcal{B} \subset {}^{\omega}\omega \text{ is an unbounded family}\},\$

 $\mathfrak{d} = \min\{|\mathcal{D}| : \mathcal{D} \subset {}^{\omega}\omega \text{ is a dominating family}\}$ and

 $\mathfrak{u} = \min\{|\mathcal{V}| : \mathcal{V} \subset [\omega]^{\omega} \text{ is a base for a } \mathcal{U} \in \beta \omega \backslash \omega\}.$

For more information see [2] and [5].

Fact 3. (a) \mathfrak{b} is a regular cardinal.

- (b) $\mathfrak{b} \leq \mathfrak{u} \leq \mathfrak{c}$.
- (c) $\omega_1 \leq \mathfrak{b} \leq \mathfrak{d} \leq \mathfrak{c}$.
- (d) $\mathfrak{b} \leq \mathrm{cf}(\prod_{\mathcal{U}} \omega) \leq \mathfrak{d}$, for each $\mathcal{U} \in \beta \omega \setminus \omega$.

PROOF. For (a), (b) and (c) see [2] and we prove (d). Since $f \leq^* g$ implies $[f] \leq_{\mathcal{U}} [g]$, we see that if $\{[f_{\alpha}] : \alpha < \kappa\}$ is a cofinal family in $\prod_{\mathcal{U}} \omega$, the family $\{f_{\alpha} : \alpha < \kappa\}$ must be unbounded in ${}^{\omega}\omega$. On the other hand, if $\{d_{\alpha} : \alpha < \kappa\}$ is a dominating family, then the family $\{[d_{\alpha}] : \alpha < \kappa\}$ is cofinal in $\prod_{\mathcal{U}} \omega$.

For example, the equality $\mathfrak{b} = \mathfrak{c}$ implies $\operatorname{cf}(\chi(\mathcal{U})) = \operatorname{cf}(\prod_{\mathcal{U}} \omega)$ for each $\mathcal{U} \in \beta \omega \setminus \omega$. Namely, by Fact 3, $\mathfrak{b} = \mathfrak{c}$ gives $\mathfrak{b} = \mathfrak{d} = \mathfrak{u} = \mathfrak{c}$ and $\operatorname{cf}(\mathfrak{c}) = \mathfrak{c}$. Then clearly $\chi(\mathcal{U}) = \operatorname{cf}(\chi(\mathcal{U})) = \mathfrak{c}$ and $\operatorname{cf}(\prod_{\mathcal{U}} \omega) = \mathfrak{c}$. Specially, this equality holds under CH or MA.

But the equality $\operatorname{cf}(\chi(\mathcal{U})) = \operatorname{cf}(\prod_{\mathcal{U}} \omega)$ is not a theorem of ZFC. Moreover, it is consistent with ZFC that for each $\mathcal{U} \in \beta \omega \setminus \omega$ there holds $\operatorname{cf}(\prod_{\mathcal{U}} \omega) < \operatorname{cf}(\chi(\mathcal{U}))$. For example, if we add ω_2 many random reals to a model of GCH, we obtain a model of $\mathfrak{d} = \omega_1 < \omega_2 = \mathfrak{c} = \mathfrak{u}$. In this model for each $\mathcal{U} \in \beta \omega \setminus \omega$ we have $\operatorname{cf}(\prod_{\mathcal{U}} \omega) = \omega_1 < \omega_2 = \chi(\mathcal{U}) = \operatorname{cf}(\chi(\mathcal{U}))$.

ACKNOWLEDGEMENTS. The author would like to express his gratitude to the referee for constructive suggestions which improved the contents of the paper.

454

On topological ultraproducts

References

- [1] P. BANKSTON, Ultraproducts in topology, Gen. Topology Appl. 7 (1977), 283–308.
- [2] E. K. VAN DOUWEN, The integers and topology, (K. Kunen, J. E. Vaughan, eds.), Handbook of Set-theoretic Topology, North-Holland, Amsterdam, 1984, 111–167.
- [3] R. ENGELKING, General topology, Polish Scientific Publishers, Warszawa, 1977.
- [4] M. S. KURILIĆ, Topological ultraproducts: when is the quotient mapping closed?, *Topol. Appl.* 87 (1998), 89–95.
- [5] J. E. VAUGHAN, Small uncountable cardinals and topology, (J. van Mill and G. M. Reed, eds.), Open Problems in Topology, North-Holland, Amsterdam, 1990, 195–218.

MILOŠ S. KURILIĆ DEPARTMENT OF MATHEMATICS AND INFORMATICS UNIVERSITY OF NOVI SAD TRG DOSITEJA OBRADOVIĆA 4, 21000 NOVI SAD SERBIA AND MONTENEGRO

E-mail: milos@im.ns.ac.yu

(Received September 8, 2003; revised March 9, 2004)