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A class of Kähler Einstein structures
on the cotangent bundle

By V. OPROIU (Iaşi) and D. D. POROŞNIUC (Botoşani)

Abstract. We use some natural lifts defined on the cotangent bundle T ∗M
of a Riemannian manifold (M, g) in order to construct an almost Hermitian struc-
ture (G, J) of diagonal type. The obtained almost complex structure J on T ∗M
is integrable if and only if the base manifold has constant sectional curvature and
the coefficients as well as their derivatives, involved in its definition, do fulfill a
certain algebraic relation. Next one obtains the condition that must be fulfilled
in the case where the obtained almost Hermitian structure is almost Kählerian.
Combining the obtained results we get a family of Kählerian structures on T ∗M ,
depending on two essential parameters. Next we study three conditions under
which the considered Kählerian structures are Einstein. In one of the obtained
cases we get that (T ∗M, G, J) has constant holomorphic curvature.

Introduction

In the study of the differential geometry of the cotangent bundle T ∗M
of a Riemannian manifold (M,g) one uses several Riemannian and semi-
Riemannian metrics, induced from the Riemannian metric g on M . Among
them, we may quote the metric of Sasaki type and the complete lift of the
metric g. On the other hand, some notions similar to the natural lifts of
g to the tangent bundle TM of M , will induce some new Riemannian and
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pseudo-Riemannian geometric structures with many nice geometric prop-
erties. Next, one can get from g some natural almost complex structures
on T ∗M . The study of the almost Hermitian structures induced from g on
T ∗M is an interesting problem in the differential geometry of the cotangent
bundle.

In the present paper we study some classes of natural Kähler Einstein
structures (G,J), of diagonal type induced on T ∗M from the Riemannian
metric g. They are obtained in a manner quite similar to that used in
[11] (see also [15]) but the parametrization is a bit different. Namely, we
adapt the situation presented in [9] to the case of the cotangent bundle,
restricting ourselves to the case of the lifts of diagonal type. In fact we
do not consider the most general situation due to the hard computations
that must be done. However, in principle, the results obtained in the case
of the general natural almost Hermitian structures on T ∗M do not differ
too much from that obtained in the case of the natural almost Hermitian
structures of diagonal type. We consider the case where the vertical and
horizontal distributions are orthogonal to each other but the dot products
induced on them from G are not isomorphic (isometric). The family of
the natural almost complex structures J on T ∗M that interchange the
vertical and horizontal distributions depends on two essential parameters
a1, b1. These parameters are smooth real functions depending on the
energy density t on the cotangent bundle. From the integrability condition
for J it follows that the base manifold M must have constant curvature
c and the second parameter b1 must be expressed as a rational function
depending on the first parameter a1 and its derivative. Of course, in the
obtained formula there are involved too the constant c and the energy
density t.

A natural Riemannian metric G of diagonal type on T ∗M is defined
by four parameters c1, c2, d1, d2 which are smooth functions of t. From
the condition for G to be Hermitian with respect to J we get two sets of
proportionality relations, from which one obtains the parameters c1, c2, d1,
d2 as functions depending on two new parameters λ, µ and the parameters
a1, b1 involved in the expression of J . In the case where the fundamental
2-form φ, associated to the almost complex structure (G,J) is closed, one
finds that µ = λ′. If the the integrability condition for J is fulfilled, we get
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a Kählerian structure on T ∗M and this structure depends on two essential
parameters a1 and λ.

In the case where the considered Kählerian structure is Einstein we
get several situations in which the parameters a1, λ are related by some
algebraic relations. We have a general case, when (T ∗M,G, J) has con-
stant holomorphic curvature. In other two cases one obtains some simpler
expressions for the components of the curvature tensor field on T ∗M and,
of course, we have some singularities. These cases will be discussed in some
forthcoming papers.

The manifolds, tensor fields and geometric objects we consider in this
paper, are assumed to be differentiable of class C∞ (i.e. smooth). We use
the computations in local coordinates but many results from this paper
may be expressed in an invariant form. The well known summation con-
vention is used throughout this paper, the range for the indices h, i, j,
k, l, r, s being always{1, . . . , n} (see [3], [13], [14]). We shall denote by
Γ(T ∗M) the module of smooth vector fields on T ∗M .

1. Natural almost complex structures
of diagonal type on T ∗M

Let (M,g) be a smooth n-dimensional Riemannian manifold and de-
note its cotangent bundle by π : T ∗M −→ M . Recall that there is a
structure of a 2n-dimensional smooth manifold on T ∗M , induced from the
structure of smooth n-dimensional manifold of M . From every local chart
(U,ϕ) = (U, x1, . . . , xn) on M , it is induced a local chart (π−1(U),Φ) =
(π−1(U), q1, . . . , qn, p1, . . . , pn), on T ∗M , as follows. For a cotangent vec-
tor p ∈ π−1(U) ⊂ T ∗M , the first n local coordinates q1, . . . , qn are the
local coordinates x1, . . . , xn of its base point x = π(p) in the local chart
(U,ϕ) (in fact we have qi = π∗xi = xi ◦ π, i = 1, . . . n). The last n lo-
cal coordinates p1, . . . , pn of p ∈ π−1(U) are the vector space coordinates
of p with respect to the natural basis (dx1

π(p), . . . , dxn
π(p)), defined by the

local chart (U,ϕ), i.e. p = pidxi
π(p). Due to this special structure of dif-

ferentiable manifold for T ∗M it is possible to introduce the concept of
M -tensor field on it. An M -tensor field of type (r, s) on T ∗M is defined by
sets of nr+s components (functions depending on qi and pi), with r upper
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indices and s lower indices, assigned to induced local charts (π−1(U),Φ)
on T ∗M , such that the local coordinate change rule is that of the local
coordinate components of a tensor field of type (r, s) on the base manifold
M , when a change of local charts on M (and hence on T ∗M) is performed
(see [5] for further details in the case of the tangent bundle); e.g., the
components pi, i = 1, . . . , n, corresponding to the last n local coordinates
of a cotangent vector p, assigned to an induced local chart (π−1(U),Φ)
define an M -tensor field of type (0, 1) on T ∗M . A usual tensor field of
type (r, s) on M may be thought of as an M -tensor field of type (r, s) on
T ∗M . If the considered tensor field on M is covariant only, the correspond-
ing M -tensor field on T ∗M may be identified with the induced (pullback
by π) tensor field on T ∗M . Some useful M -tensor fields on T ∗M may
be obtained as follows. Let u : [0,∞) −→ R be a smooth function and
let ‖p‖2 = g−1

π(p)(p, p) be the square of the norm of the cotangent vector
p ∈ π−1(U) (g−1 is the tensor field of type (2, 0) having as components the
entries gij(x) of the inverse of the matrix (gij(x)) defined by the compo-
nents of g in the local chart (U,ϕ)). If δi

j are the Kronecker symbols (in
fact, they are the local coordinate components of the identity tensor field
I on M), then the components u(‖p‖2)δi

j define an M -tensor field of type
(1, 1) on T ∗M . Similarly, if gij(x) are the local coordinate components of
the metric tensor field g on M in the local chart (U,ϕ), then the compo-
nents u(‖p‖2)gij(π(p)) define a symmetric M -tensor field of type (0, 2) on
T ∗M . The components g0i = phghi, as well as u(‖p‖2)g0i define M -tensor
fields of type (1, 0) on T ∗M . Of course, all the components considered
above are in the induced local chart (π−1(U),Φ).

We shall use the horizontal distribution HT ∗M , defined by the Levi
Civita connection ∇̇ of g, in order to define some first order natural lifts
to T ∗M of the Riemannian metric g on M . Denote by V T ∗M = Ker
π∗ ⊂ TT ∗M the vertical distribution on T ∗M . Then we have the direct
sum decomposition

TT ∗M = V T ∗M ⊕ HT ∗M. (1)

If (π−1(U),Φ) = (π−1(U), q1, . . . , qn, p1, . . . , pn) is a local chart on
T ∗M , induced from the local chart (U,ϕ) = (U, x1, . . . , xn), the local vector
fields ∂

∂p1
, . . . , ∂

∂pn
on π−1(U) define a local frame for V T ∗M over π−1(U)
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and the local vector fields δ
δq1 , . . . , δ

δqn define a local frame for HT ∗M over
π−1(U), where

δ

δqi
=

∂

∂qi
+ Γ0

ih

∂

∂ph
, Γ0

ih = pkΓk
ih

and Γk
ih(π(p)) are the Christoffel symbols of g.

The set of vector fields ( ∂
∂p1

, . . . , ∂
∂pn

, δ
δq1 , . . . , δ

δqn ) defines a local frame
on T ∗M , adapted to the direct sum decomposition (1). Remark that

∂

∂pi
= (dxi)V ,

δ

δqi
=
(

∂

∂xi

)H

,

where θV denotes the vertical lift to T ∗M of the 1-form θ on M and XH

denotes the horizontal lift to T ∗M of the vector field X on M .
Now we shall present the following auxiliary result.

Lemma 1. If n > 1 and u, v are smooth functions on T ∗M such that

ugij + vpipj = 0, p ∈ π−1(U)

on the domain of any induced local chart on T ∗M , then u = 0, v = 0.

The proof is obtained easily by transvecting the given relation with
components gij of the tensor field g−1 and g0j (Recall that the functions
gij(x) are the components of the inverse of the matrix (gij(x)), associated
to g in the local chart (U,ϕ) on M).

Remark. From the relations of the type

ugij + vg0ig0j = 0, p ∈ π−1(U),

uδi
j + vg0ipj = 0, p ∈ π−1(U),

it is obtained, in a similar way, u = v = 0. We have used the notation
g0i = phghi.

Since we work in a fixed local chart (U,ϕ) on M and in the correspond-
ing induced local chart (π−1(U),Φ) on T ∗M , we shall use the following
simpler notations

∂

∂pi
= ∂i,

δ

δqi
= δi.
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Denote by

t =
1
2
‖p‖2 =

1
2
g−1
π(p)(p, p) =

1
2
gik(x)pipk, p ∈ π−1(U) (2)

the energy density defined by g in the cotangent vector p. We have t ∈
[0,∞) for all p ∈ T ∗M . For a vector field X on M we shall denote by gX

the 1-form on M defined by gX(Y ) = g(X,Y ), for all vector fields Y on
M . For a 1-form θ on M , we shall denote by θ� = g−1

θ the vector field
on M defined by the usual musical isomorphism, i.e. g(θ�, Y ) = θ(Y ), for
all vector fields Y on M . Remark that, for p ∈ T ∗M , we can consider
the vector p�, tangent to M in π(p). Consider the real valued smooth
functions a1, a2, b1, b2 defined on [0,∞) ⊂ R and define a diagonal natural
almost complex structure J on T ∗M , by using these coefficients and the
Riemannian metric g


JXH

p = a1(t)(gX)Vp + b1(t)p(X)pV
p ,

JθV
p = −a2(t)(θ�)Hp − b2(t)g−1

π(p)(p, θ)(p�)Hp .
(3)

We should remark that the vector pV
p defines the Liouville vector field

on T ∗M and (p�)Hp defines a similar HT ∗M -valued vector field.
The expression of J in adapted local frames is given by

Jδi = a1(t)gij∂
j + b1(t)pipj∂

j ,

J∂i = −a2(t)gijδj − b2(t)g0ig0jδj.

Remark that one can consider the case of the general natural tensor
fields J on T ∗M . In this case we have another four coefficients a3, b3, a4,
b4 and the computations involved in the study of the corresponding almost
complex structure J on T ∗M become really complicate (see [9], [10]). In
fact, the tensor fields of this type define the most general natural lift of
type (1, 1) of the metric g.

Proposition 2. The operator J defines an almost complex structure

on T ∗M if and only if

a1a2 = 1, (a1 + 2tb1)(a2 + 2tb2) = 1. (4)
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Proof. The relations are obtained easily from the property J2 = −I

of J and Lemma 1.
From the relations obtained in Lemma 1 we can get the explicit ex-

pressions of the parameters a2, b2

a2 =
1
a1

, b2 = − b1

a1(a1 + 2tb1)
. (5)

The obtained almost complex structures defined by the tensor field
J on T ∗M are called natural almost complex structures of diagonal type,
defined by the Riemannian metric g, by using the essential parameters
a1, b1. We use the word diagonal for these almost complex structures,
since the 2n × 2n-matrix associated to J , with respect to the adapted
local frame ( δ

δq1 , . . . , δ
δqn , ∂

∂p1
, . . . , ∂

∂pn
) has two n×n-blocks on the second

diagonal

J =

(
0 −a2g

ij − b2g
0ig0j

a1gij + b1pipj 0

)
. �

Remark. From the conditions (4) we have that the coefficients a1, a2,
a1 +2tb1, a2 +2tb2 cannot vanish and have the same sign. We assume that
a1 > 0, a2 > 0, a1 + 2tb1 > 0, a2 + 2tb2 > 0 for all t ≥ 0.

Now we shall study the integrability of the almost complex structure
defined by J on T ∗M . To do this we need the following well known for-
mulas for the brackets of the vector fields ∂i = ∂

∂pi
, δi = δ

δqi , i = 1, . . . , n

[∂i, ∂j ] = 0; [∂i, δj ] = Γi
jk∂

k; [δi, δj ] = R0
kij∂

k, (6)

where Γi
jk are the Christoffel symbols defined by the Levi Civita connection

∇̇, R0
kij = phRh

kij and Rh
kij are the local coordinate components of the

curvature tensor field of ∇̇ on M .

Theorem 3. The almost complex structure J on T ∗M is integrable

if and only if (M,g) has constant sectional curvature c and the function

b1 is given by

b1 =
a1a

′
1 − c

a1 − 2ta′1
. (7)
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Of course we have to study the conditions under which a1, b1 fulfill
the conditions a1 > 0, a1 + 2tb1 = a2

1−2ct
a1−2ta′

1
> 0, ∀t ≥ 0.

Proof. We shall study the vanishing of the Nijenhuis tensor field
N = NJ of J , defined by

N(X,Y ) = [JX, JY ]−J [JX, Y ]−J [X,JY ]− [X,Y ], ∀X,Y ∈ Γ(T ∗M).

We have δkt = 0, ∂kt = g0k and, after a straightforward but quite long
computation, we get

N(δi, δj) =
{
(a1a

′
1 + 2ta′1b1 − a1b1)(pigjk − pjgik) − R0

kij

}
∂k.

Remark that the coefficient of δk in the expression of N(δi, δj) be-
comes 0, due to the usual properties of the Levi Civita connection ∇̇.

From the condition N(δi, δj) = 0 we get

R0
kij = (a1a

′
1 + 2ta′1b1 − a1b1)(pigjk − pjgik).

Differentiating with respect to ph, taking p = 0 and using Schur theo-
rem, it follows that the curvature tensor field of ∇̇ (in the case where M

is connected and dimM > 2) must have the expression

Rh
kij = c

(
δh
i gkj − δh

j gki

)
,

where c is a constant. Then we obtain the expression (7) of b1.
Next it follows by a straightforward computation that N(∂i, δj) = 0,

N(∂i, ∂j) = 0, whenever N(δi, δj) = 0.
Hence the condition N = 0 implies that (M,g) must have constant

sectional curvature c, and b1 must be given by (7). Conversely, if (M,g) has
constant curvature c and b1 is given by (7), it follows in a straightforward
way that N = 0. �

Remark. In the case where a2
1 − 2ct = 0, we have a1a

′
1 − c = 0,

a1 − 2ta′1 = 0 too. So, this case must be thought of as a singular case and
should be considered separately.
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2. Natural almost Hermitian structures on T ∗M

Consider the following symmetric M−tensor fields on T ∗M , defined
by the components

G
(1)
ij = c1gij + d1pipj, Gij

(2) = c2g
ij + d2g

0ig0j , (8)

where c1, c2, d1, d2 are smooth functions depending on the energy density
t ∈ [0,∞).

Obviously, G(1) is of type (0, 2) and G(2) is of type (2, 0). We shall
assume that the matrices defined by G(1) and G(2) are positive definite.
This happens iff c1 > 0, c2 > 0, c1 + 2td1 > 0, c2 + 2td2 > 0. Then the
following Riemannian metric may be considered on T ∗M

G = G
(1)
ij dqidqj + Gij

(2)DpiDpj, (9)

where Dpi = dpi −Γ0
ijdqj is the absolute (covariant) differential of pi with

respect to the Levi Civita connection ∇̇ of g (recall that Γ0
ij = phΓh

ij).
Equivalently, we have

G(δi, δj) = G
(1)
ij , G(∂i, ∂j) = Gij

(2), G(∂i, δj) = G(δj , ∂
i) = 0.

Remark that HT ∗M , V T ∗M are orthogonal to each other with respect
to G, but the Riemannian metrics induced from G on HT ∗M , V T ∗M are
not the same, so the considered metric G on T ∗M is not a metric of Sasaki
type. The 2n × 2n-matrix associated to G, with respect to the adapted
local frame ( δ

δq1 , . . . , δ
δqn , ∂

∂p1
, . . . , ∂

∂pn
) has two n × n-blocks on the first

diagonal

G =


G

(1)
ij 0

0 Gij
(2)


 .

The Riemannian metric G is called a natural lift of diagonal type
of g. Remark also that the system of 1-forms (dq1, . . . , dqn,Dp1, . . . ,Dpn)
defines a local frame on T ∗T ∗M , dual to the local frame (δ1, . . . , δn, ∂1, . . .

. . . , ∂n) adapted to the direct sum decomposition (1).
We shall consider another two M -tensor fields H(1), H(2) on T ∗M ,

defined by the components

Hjk
(1) =

1
c1

gjk − d1

c1(c1 + 2td1)
g0jg0k,
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H
(2)
jk =

1
c2

gjk − d2

c2(c2 + 2td2)
pjpk.

The components Hjk
(1) define an M -tensor field of type (2, 0) and the

components H
(2)
jk define an M -tensor field of type (0, 2). Moreover, the

matrices associated to H(1), H(2) are the inverses of the matrices associated
to G(1) and G(2), respectively, i.e. we have

G
(1)
ij Hjk

(1) = δk
i , Gij

(2)H
(2)
jk = δi

k.

Now, we shall be interested in the conditions under which the metric
G is almost Hermitian with respect to the almost complex structure J ,
considered in the previous section, i.e.

G(JX, JY ) = G(X,Y ),

for all vector fields X, Y on T ∗M .
Considering the coefficients of gij , g

ij in the conditions


G(Jδi, Jδj) = G(δi, δj),

G(J∂i, J∂j) = G(∂i, ∂j),
(10)

we can express the parameters c1, c2 with the help of the parameters a1,
a2 and a proportionality factor λ = λ(t)

c1 = λa1, c2 = λa2, (11)

where the coefficients a1, a2 are related by (4). Since we made the as-
sumption a1 > 0, a2 > 0, it follows λ > 0.

Next, considering the coefficients of pipj, g0ig0j in the relations (10),
we can express the parameters c1 + 2td1, c2 + 2td2 with the help of the
parameters a1 + 2tb1, a2 + 2tb2 and a new parameter λ + 2tµ


c1 + 2td1 = (λ + 2tµ)(a1 + 2tb1),

c2 + 2td2 = (λ + 2tµ)(a2 + 2tb2).
(12)

Remark that λ + 2tµ = λ(t) + 2tµ(t) is a positive smooth function of
t ∈ [0,∞). It was much more convenient to consider the proportionality
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factor in such a form in the expression of the parameters c1+2td1, c2+2td2.
Of course, we can obtain easily from (12) the explicit expressions of the
coefficients d1, d2 


d1 = λb1 + µ(a1 + 2tb1),

d2 = λb2 + µ(a2 + 2tb2).
(13)

Hence we may state

Theorem 4. Let J be the natural, almost complex structure of diag-

onal type on T ∗M , given by (3), where the coefficients a1, a2, b1, b2 are

related by (4). The family of the natural Riemannian metrics G on T ∗M ,

of diagonal type, such that (T ∗M,G, J) is an almost Hermitian manifold,

is given by (9) where the coefficients c1, c2 are related to a1, a2 by (11),
and c1 + 2td1, c2 + 2td2 are related to a1 + 2tb1, a2 + 2tb2 by (12), the

proportionality coefficients being λ > 0 and λ + 2tµ > 0.

Remark. A result of the same kind can be obtained in the case of the
natural almost Hermitian structures of general type on T ∗M (see [9]).

Consider now the two-form φ defined by the almost Hermitian struc-
ture (G,J) on T ∗M

φ(X,Y ) = G(X,JY ),

for all vector fields X,Y on T ∗M .

Proposition 5. The expression of the 2-form φ in a local adapted

frame (∂1, . . . , ∂n, δ1, . . . , δn) on T ∗M , is given by

φ(∂i, ∂j) = 0, φ(δi, δj) = 0, φ(∂i, δj) = λδi
j + µg0ipj ,

or, equivalently

φ = (λδi
j + µg0ipj)Dpi ∧ dqj , (14)

where Dpi = dpi − Γ0
ihdqh is the absolute differential of pi.

The proof is obtained by using the definition of φ and computing the
values φ(∂i, ∂j), φ(δi, δj), φ(∂i, δj).

Theorem 6. The almost Hermitian structure (G,J) on T ∗M is almost

Kählerian if and only if

µ = λ′.
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Proof. We shall study the vanishing of the exterior differential dφ.
The expressions of dλ, dµ, dg0i and dDpi are obtained in a straightforward
way, by using the property ∇̇kgij = 0 (hence ∇̇kg

ij = 0)

dλ = λ′g0iDpi, dµ = µ′g0iDpi, dg0i = gikDpk − g0hΓi
hkdqk,

dDpi = −1
2
R0

ikldqk ∧ dql + Γl
ikdqk ∧ Dpl.

Then we have

dφ = (dλδi
j + dµg0ipj + µdg0ipj + µg0idpj) ∧ Dpi ∧ dqj

+ (λδi
j + µg0ipj)dDpi ∧ dqj .

By replacing the expressions of dλ, dµ, dg0i and dDpi then using, again, the
property ∇̇kgij = 0, doing some algebraic computations with the exterior
products, then using the well known symmetry properties of gij , Γh

ij , and
of the Riemann–Christoffel tensor field, as well as the Bianchi identities,
it follows that

dφ =
1
2
(λ′ − µ)g0hDph ∧ Dpi ∧ dqi.

Therefore we have dφ = 0 if and only if µ = λ′. �

Theorem 7. The almost Hermitian structure (G,J) on T ∗M is Kähler-

ian if and only if the base manifold M has constant sectional curvature,

the parameter b1 is given by (7) and µ = λ′.

Proof. The family of natural almost Hermitian structures (G,J) of
diagonal type on T ∗M depends on four essential coefficients a1, b1, λ, µ.
According to the result of Theorem 3, the integrability of J is equivalent to
the property of M to have constant sectional curvature c and the condition
for b1 to be given by (7). Then, from Theorem 6, we get the (G,J) is almost
Kählerian if and only if µ = λ′. Combining these two results one obtains
the result of our theorem. �

Remark. A natural Kählerian structure (G,J) of diagonal type on
T ∗M is defined by two essential coefficients a1, λ. Using (7), these co-
efficients must satisfy the supplementary conditions a1 > 0, a1 + 2tb1 =
a2
1−2ct

a1−2ta′
1

> 0, λ > 0, λ + 2tλ′ > 0.
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3. The Levi Civita connection of the metric G

and its curvature tensor field

Recall that the Levi Civita connection ∇̇ on a Riemannian manifold
(M,g) is determined by the conditions

∇̇g = 0, Ṫ = 0,

where Ṫ is its torsion tenor field. The explicit expression of this connection
is obtained from the formula

2g(∇̇XY,Z) = X(g(Y,Z)) + Y (g(X,Z)) − Z(g(X,Y )) + g([X,Y ], Z)

− g([X,Z], Y ) − g([Y,Z],X), ∀X,Y,Z∈Γ(M).

We shall use this formula in order to obtain the expression of the Levi
Civita connection ∇ of G on T ∗M . The final result can be stated as follows

Theorem 8. The Levi Civita connection ∇ of G has the following

expression in the local adapted frame (∂1, . . . , ∂n, δ1, . . . , δn)

∇∂i∂j = Qij
h ∂h, ∇δi

∂j = −Γj
ih∂h + P hj

i δh,

∇∂iδj = P hi
j δh, ∇δi

δj = Γh
ijδh + Shij∂

h,

where Qij
h , P hi

j , Shij are M -tensor fields on T ∗M , defined by

Qij
h =

1
2
H

(2)
hk (∂iGjk

(2) + ∂jGik
(2) − ∂kGij

(2)),

P hi
j =

1
2
Hhk

(1)(∂
iG

(1)
jk − Gil

(2)R
0
ljk),

Shij = −1
2
H

(2)
hk ∂kG

(1)
ij +

1
2
R0

hij.

Replacing the expressions of the involved M -tensor fields and assuming
that the base manifold (M,g) has constant sectional curvature, one obtains

Qij
h = − c′2 − 2d2

2(c2 + 2d2t)
gijph +

c′2
2c2

(δj
hg0i + δi

hg0j) +
−2c′2d2 + c2d

′
2

2c2(c2 + 2d2t)
phg0ig0j ,
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P hi
j = −cc2 − d1

2c1
ghipj +

cc2 + d1

2(c1 + 2d1t)
δi
jg

0h +
c′1
2c1

δh
j g0i

+
−c′1d1 + cc2d1 − d2

1 + c1d
′
1

2c1(c1 + 2d1t)
pjg

0hg0i,

Shij =
−c′1

2(c2 + 2d2t)
gijph +

cc2 − d1

2c2
ghjpi − cc2 + d1

2c2
ghipj

− c2d
′
1 − 2d1d2

2c2(c2 + 2d2t)
phpipj.

In the case of a Kähler structure on T ∗M , the final expressions of
these M -tensor fields can be obtained by doing the necessary replace-
ments. However, the final expressions are quite complicate but they may
be obtained quite automatically by using the Mathematica package Ricci

for doing tensor computations (see [4]).
Now we shall indicate the obtaining of the components of the curvature

tensor field of the connection ∇.
The curvature tensor K field of the connection ∇ is obtained from the

well known formula

K(X,Y )Z = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z.

The components of K with respect to the adapted local frame (∂1, . . . ,

∂n, δ1, . . . , δn) can be expressed easily

K(∂i, ∂j)∂k = PPP ijk
h ∂h = (∂iQjk

h − ∂jQik
h + Qjk

l Qil
h − Qik

l Qjl
h )∂h,

K(∂i, ∂j)δk = PPQijh
k δh = (∂iP hj

k − ∂jP hi
k + P lj

k P hi
l − P li

k P hj
l )δh,

K(δi, δj)∂k = QQP k
ijh∂h = (−Rk

hij − R0
lijQ

lk
h + ShilP

lk
j − ShjlP

lk
i )∂h,

K(δi, δj)δk = QQQh
ijkδh = (Rh

kij + SljkP
hl
i − SlikP

hl
j − R0

lijP
hl
k )δh,

K(∂i, δj)δk = PQQi
jkh∂h = (∂iShjk + SljkQ

il
h − ShjlP

li
k )∂h,

K(∂i, δj)∂k = PQP ikh
j δh = (∂iP hk

j + P hi
l P lk

j − Qik
l P hl

j )δh.

The explicit expressions of these components are obtained after some
quite long and hard computations, made by using the package Ricci.
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Next, the components of the Ricci tensor field are obtained as traces
of K

Ric PP jk = Ric(∂j , ∂k) = PPP hjk
h − PQP jkh

h ,

RicQQjk = Ric(δj , δk) = QQQh
hjk + PQQh

jkh,

Ric(∂j , δk) = Ric(δk, ∂
j) = 0.

4. The cotangent bundle T ∗M

as a Kähler Einstein manifold

From the explicit expressions of the components of the Ricci tensor
field on T ∗M one obtains the common Einstein factor Ef, appearing in the
condition for the Kählerian manifold (T ∗M,G, J) to be an Einstein space

Ef = −n
a2

1a
′
1λ − 2a1cλ + a3

1λ
′ + 2a′1cλt − 2a1cλ

′t
2a1λ2(a1 − 2a′1t)

− (a2
1 − 2ct)(a1a

′
1λ

2

+ a2
1λλ′ − a′21 λ2t + a1a

′′
1λ

2t − a2
1λ

′2t + a2
1λλ′′t − 2a′21 λλ′t2

+ 2a1a
′′
1λλ′t2 + 2a1a

′
1λ

′2t2 − 2a1a
′
1λλ′′t2)/(a1λ

2(a1 − 2a′1t)
2(λ + 2λ′t)).

Next we consider the differences

Diff QQjk = Ric QQjk − Ef G
(1)
jk =

a2
1 − 2ct

2a2
1λ

2(a1 − 2a′1t)4(λ + 2λ′t)2
γpjpk,

Diff PP jk = Ric PP jk − Ef Gjk
(2)

=
1

2a2
1λ

2(a1 − 2a′1t)2(a
2
1 − 2ct)(λ + 2λ′t)2

γg0jg0k,

where γ = nCn + β and Cn, β are expressions involving a1, λ and their
derivatives up to third order. The condition for (T ∗M,G, J) to be Kähler
Einstein is given by Diff QQjk = 0, Diff PP jk = 0 or, equivalently, γ = 0.
If we ask for Kähler Einstein structures on T ∗M to be independent of the
dimension n of M , then we must have Cn = 0, β = 0. The coefficient of n

in the expression of γ is

Cn = −(a1 − 2a′1t)(a
2
1 − 2ct)(λ + 2λ′t)2(2a1a

′2
1 λ2 + a2

1a
′′
1λ

2 + 2a2
1a

′
1λλ′
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− 2a3
1λ

′2 + a3
1λλ′′ − 2a′31 λ2t − 2a1a

′2
1 λλ′t + 2a2

1a
′′
1λλ′t

+ 4a2
1a

′
1λ

′2t − 2a2
1a

′
1λλ′′t).

Excluding the cases for which we have singularities, we can obtain
from the condition Cn = 0 the expression


a′′1 = − (2a1a
′2
1 λ2 + 2a2

1a
′
1λλ′ − 2a3

1λ
′2 + a3

1λλ′′ − 2a′31 λ2t−

− 2a1a
′2
1 λλ′t + 4a2

1a
′
1λ

′2t − 2a2
1a

′
1λλ′′t)/(a2

1λ
2 + 2a2

1λλ′t).
(15)

Differentiating the expression of a′′1 with respect to t, then replacing
a′′1 from (15), we get a quite complicate expression for the derivative of
third order a

(3)
1

a
(3)
1 = (12a2

1a
′3
1 λ4 − 24ta1a

′4
1 λ4 + 12t2a′51 λ4 + 18a3

1a
′2
1 λ3λ′ − 30ta2

1a
′3
1 λ3λ′

+ 12t2a1a
′4
1 λ3λ′ + 18ta3

1a
′2
1 λ2λ′2 − 24t2a2

1a
′3
1 λ2λ′2 − 12a5

1λλ′3

+ 36ta4
1a

′
1λλ′3− 24t2a3

1a
′2
1 λλ′3− 12ta5

1λ
′4 + 24t2a4

1a
′
1λ

′4 + 3a4
1a

′
1λ

3λ′′

− 12ta3
1a

′2
1 λ3λ′′ + 12t2a2

1a
′3
1 λ3λ′′ + 9a5

1λ
2λ′λ′′ − 24ta4

1a
′
1λ

2λ′λ′′

+ 12t2a3
1a

′2
1 λ2λ′λ′′ + 12ta5

1λλ′2λ′′ − 24t2a4
1a

′
1λλ′2λ′′ − a5

1λ
3λ(3)

+ 2ta4
1a

′
1λ

3λ(3)− 2ta5
1λ

2λ′λ(3) + 4t2a4
1a

′
1λ

2λ′λ(3))/(a4
1(λ

2 + 2tλλ′)2).

Next, replacing these expressions of a′′1 , a
(3)
1 in the condition β = 0,

we get the following interesting relation


λ(a1 − 2ta′1)3(a2
1 − 2ct)(a1λ − ta′1λ + ta1λ

′)(a′1λ

+a1λ
′)(a2

1a
′
1λ + 2ca1λ + a3

1λ
′ − 2cta′1λ + 2cta1λ

′) = 0.
(16)

The vanishing of the factors λ,a1 − 2ta′1 and a2
1 − 2ct will be not

considered since the corresponding situations lead to singularities. Thus
we have the following three essential cases

1) The first and most interesting situation which will be studied is that
when the last factor in (16) vanishes. From the corresponding relation one
gets

a′1 = −2ca1λ + a3
1λ

′ + 2cta1λ
′

λ(a2
1 − 2ct)

. (17)
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Differentiating a′1 with respect to t and replacing a′1 from (17) in the
obtained result, one gets the same expression for a′′1 as that obtained from
(15), after the replacing of a′1 from (17). Next, computing a

(3)
1 and replac-

ing again a′1 from (17) one gets Diff QQjk = 0 and Diff PP jk = 0. Thus if
the relation (17) is fulfilled, one obtains that (T ∗M,G, J) is Kähler Ein-
stein. Next one obtains the expresion

Ef = 2c(n + 1)
a1

λ(a2 + 2ct)
,

of the Einstein factor which must be a constant. We shall take Ef = k(n+1)
2 ,

where k is a constant. It follows that we can express λ as a function of a1

(although the above computations could suggest to express a1 as a function
of λ)

λ =
4c
k

a1

a2
1 + 2ct

. (18)

Differentiating (18) with respect to t it follows that (17) is identically
fulfilled. Hence the expression (18) of λ is obtained from a prime integral
of (17).

Remark. The same result is obtained if we express from the equation
Cn = 0 the derivative λ′′ as a function of λ, λ′, a1, a′1, a′′1.

Recall that the Kähler manifold (T ∗M,G, J) has constant holomorphic
sectional curvature k if its curvature tensor field K can be expressed by
the relation

K(X,Y )Z =
k

4
(G(Z, Y )X − G(Z,X)Y

+ G(Z, JY )JX − G(Z, JX)JY + 2G(X,JY )JZ),

where X, Y , Z are vector fields on T ∗M .
We shall use an adapted local frame (∂1, . . . , ∂n, δ1, . . . , δn) in or-

der to obtain the expressions for the components of K in the case where
(T ∗M,G, J) has constant holomorphic curvature. Introduce the following
M -tensor fields

J
(1)
ij = a1gij + b1pipj, Jkl

(2) = a2g
kl + b2g

0kg0l.
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Remark that, up to a sign, the M -tensor fields J
(1)
ij , Jkl

(2) are the compo-
nents of the tensor field J , defining the integrable almost complex structure
on T ∗M . Next we have

K(δi, δj)δk =
k

4
(
G

(1)
jk δh

i − G
(1)
ik δh

j

)
δh,

K(∂i, ∂j)∂k =
k

4
(
Gkj

(2)δ
i
h − Gki

(2)δ
j
h

)
∂h,

K(δi, δj)∂k =
k

4
(
J

(1)
ih J

(1)
jl − J

(1)
il J

(1)
jh

)
Gkl

(2)∂
h,

K(∂i, ∂j)δk =
k

4
(
J ih

(2)J
jl
(2) − J il

(2)J
jh
(2)

)
G

(1)
kl δh,

K(∂i, δj)∂k =
k

4
(− J

(1)
jl J ih

(2)G
kl
(2) − Gki

(2)δ
h
j − 2J (1)

jl Jkh
(2)G

il
(2)

)
δh,

K(∂i, δj)δk =
k

4
(
G

(1)
kj δi

h + G
(1)
kl J il

(2)J
(1)
jh + 2Gil

(2)J
(1)
jl J

(1)
kh

)
∂h.

In our case, i.e. when a1, λ are related by (18), one obtains that
the components of K are given just by the above relations, hence the
Kähler Einstein manifold (T ∗M,G, J) has constant holomorphic curva-
ture k. Hence we may state the following result.

Theorem 9. Assume that the Riemannian manifold (M,g) has con-

stant sectional curvature c and consider the natural integrable almost com-

plex structure J defined on its cotangent bundle T ∗M by (3), where the

coefficients a1, a2, b1, b2 are related by (4) and (7). There exists a family

of Kähler Einstein structures (G,J) defined by (9), on T ∗M , where the

coefficients c1, c2, d1,d2 are expressed by (11), (13) and the factors λ, µ

are given by µ = λ′ and by (18). Moreover, the obtained Kähler Einstein

structure has constant holomorphic sectional curvature k.

Remark. The parameter a1 is not quite arbitrary. In fact, the following
conditions must be fulfilled

a1 > 0, a1 + 2tb1 =
a1a

′
1 − c

a1 − 2ta′1
> 0,

λ =
4c
k

a1

a2
1 + 2ct

> 0, λ + 2tλ′ =
4c
k

(a1 − 2ta′1)(a2
1 − 2ct)

(a2
1 + 2ct)2

> 0.
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Examples 1. Assume c > 0 and consider the function a1 = B +√
B2 + 2ct, where B is a positive constant. We have a′1 = c√

B2+2ct
and one

checks easily that all the conditions from the above remark are fulfilled. In
the case where c < 0 one can consider the function a1 = B +

√
B2 − 2ct,

where B is a positive constant, and a simple algebraic computation shows
that λ is a constant and all the conditions from the above remark are
fulfilled. In fact, the case λ = 1 has been considered, in the case of the
tangent bundle, in [8], [11].

2. The next situation is obtained when

a′1λ + a1λ
′ = 0

It follows that a1λ = k, a constant (this constant is not related to the
constant used in the study of the first case). Then we have

λ =
k

a1
, λ′ = −k

a′1
a2

1

, λ′′ = k
2a′21 − a1a

′′
1

a3
1

,

λ(3) = k
6a1a

′
1a

′′
1 − 6a′31 − a2

1a
(3)
1

a4
1

With these values of λ, λ′, λ′′, λ(3) one gets that the conditions
Diff QQjk = 0 and Diff PP jk = 0 are fulfilled identically.

If we study the property of (T ∗M,G, J) to have constant holomorphic
sectional curvature, we get that the components K(δi, δj)δk, K(δi, δj)∂k,
K(∂i, ∂j)δk, K(∂i, ∂j)∂k can be expressed just like in the case 1. However,
the last two components K(∂i, δj)∂k, K(∂i, δj)δk are quite different from
the expression obtained in the case 1. Hence (T ∗M,G, J) cannot have con-
stant holomorphic sectional curvature. Then, we may state the following
result

Theorem 10. Consider the Kählerian structure (G,J) on T ∗M ob-

tained in Theorem 7, depending on the essential parameters a1, λ. If

λ = k
a1

, then the manifold (T ∗M,G, J) is Kähler Einstein. It cannot have

constant holomorphic sectional curvature.

Remark. In this case, the following conditions must be fulfilled

a1 > 0, a1 + 2tb1 =
a1a

′
1 − c

a1 − 2ta′1
> 0,
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k > 0,
a2

1

k
(λ + 2tλ′) = a1 − 2ta′1 > 0,

hence the functions a2
1 − 2ct and t

a2
1

must be increasing.

Remark. The case λ = 1 (and k = 1) has been considered, in the case
of the tangent bundle, in [7].

3. The last case is obtained when a1λ−ta′1λ+ta1λ
′ = 0. One sees easily

that, in this case, one has a1 = ktλ, where k is a constant (this constant is
not related to the constant used in the previous cases). One sees easily that
a1(0) = 0, thus this situation should be excluded. However, we can study
the properties of the Kählerian structure (G,J) on the manifold T ∗

0 M

obtained from T ∗M by excluding the zero section. Next one gets that the
conditions Diff QQjk = 0 and Diff PP jk = 0 are fulfilled identically, so the
Kähler manifold (T ∗

0 M,G, J) is Einstein.

Theorem 11. it Consider the Kählerian structure (G,J) on T ∗M ,

obtained in Theorem 7, depending on the essential parameters a1, λ. If

a1 = ktλ then the manifold (T ∗
0 M,G, J) is Kähler Einstein.

Remark. The function λ must fulfill the conditions obtained from
a1 > 0, a1 + 2tb1 > 0, λ > 0, λ + 2tλ′ > 0.

Remark. The case λ = 1 has been considered, in the case of the tangent
bundle, in [14].

Remark. The authors agree with the referee who claimed more details
about some involved computations necessary to get our results. Remark
that some results are quite simple if we think of the huge formulas used
in order to get them. E.g. the expanded expression of the expression from
the formula (16) contains about 180 terms. However, after some quite
obvious factorizations, one sees that the essential expression contains only
30 terms. The authors are ready to reveal details of the computations
(symbolic computations made by using the Ricci program) used in the
paper to reader who claim this.
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