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Ricci curvature along rays

By ALBERT BORBÉLY (Kuwait)

Abstract. The connection between the behavior of the Ricci curvature and
the existence of conjugate points on a complete manifold is studied.

0. Introduction

This note follows in the footsteps of the papers of Ambrose [1] and
Wraith [4] examining the connection between the behavior of the Ricci
curvature along geodesics and the existence of the conjugate points. The
basic setup is as follows.

Let Mn be a complete Riemannian manifold and γ : (0,∞) → M be a
geodesic. Denote by r(t) = Ricci(γ′(t)) the Ricci curvature in the direction
of the geodesic at γ(t). Then Ambrose’s result [1] states:

Theorem (Ambrose). If limt→∞
∫ t
0 r(s)ds = ∞, then there is a point

conjugate to γ(0) along γ.

The condition limt→∞
∫ t
0 r(s)ds = ∞ cannot be replaced with the

weaker assumption lim supt→∞
∫ t
0 r(s)ds = ∞. At the end of the paper

we sketch the construction of a two-dimensional complete manifold with
a point O such that lim supt→∞

∫ t
0 r(s)ds = ∞ along every geodesic ema-

nating from O and there are no points conjugate to O on this manifold.
So the only way to relax the condition in the above theorem is to put
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some restriction on the Ricci curvature along γ. To this end we have the
following.

Theorem 1. If γ has no conjugate point to γ(0) and r(t) < K for

some K > 0, then
∫ t
0 r(s)ds < nK + n for all t ∈ (0,∞).

It is well known that if a complete and connected manifold Mn has a
point O ∈ Mn such that every geodesic ray emanating from O has a point
conjugate to O along that ray, then Mn is compact (see Lemma 1 of [1]).
Combining this with the above we obtain a theorem like that of Myers.

Corollary. Let Mn be a complete connected Riemannian manifold

with Ricci curvature Ricci < K for some K > 0. Suppose there is a point

O ∈ Mn such that along every geodesic ray γ : (0,∞) → M emanating

from O we have
∫ t
0 r(s)ds > nK + n for some t ∈ (0,∞). Then Mn is

compact.

A similar statement holds if we have some kind of lower bound on the
Ricci curvature. In the following theorem we give three versions of this.
The different conditions in the theorem are meant to ensure that

∫ t
0 r(s)ds,

as a function of t, cannot decrease too fast.

Theorem 2. Suppose that γ has no conjugate point to γ(0). Then∫ t
0 r(s)ds is bounded from above as a function of t if any of the following

three conditions is satisfied.

Condition 1: r(t) > −K for some K > 0 on t ∈ (0,∞).

Condition 2:
∫ t+1
t r(s)ds > −K for some K > 0.

Condition 3: r′(t) > −K for some K > 0.

Let us denote by f : Mn → R the distance function from γ(0) and let
m(t) = ∆f(γ(t)) the trace of the shape operator of distance spheres from
γ(0) at γ(t). It is well known that if m(t) develops a singularity at t = t0,
that is, limt→t−0

= −∞, then γ(t0) is conjugate to γ(0) along γ. It is also
well known that m(t) satisfies the Riccati inequality along γ.

m′(t) ≤ −r(t) − m2(t)
n − 1

. (1)



Ricci curvature along rays 481

Let y(t) be the solution of the Riccati equation

y′(t) = −r(t) − y2(t)
n − 1

. (2)

with the initial condition y(0) = m(0). Then it is clear that if γ(0) has
no conjugate point on γ, then m(t) ≤ y(t) for all t ≥ 0. Therefore the
question of conjugate points can be reduced to the existence of an all time
solution of the Riccati equation (2).

1. Riccati equation

In this section we collect some basic results concerning the Riccati
equation (2). Let us start with the well known comparison principle [2].

Comparison Principle. Let r1(t) ≥ r2(t) be two continuous func-

tions on [0, T ] and y1(t) and y2(t) be corresponding solutions of (1) and (2)
respectively with initial conditions y1(0) ≤ y2(0). Then for every t ∈ [0, T ]
we have y1(t) ≤ y2(t).

The next two propositions are crucial to our proof. They are somewhat
similar to the comparison principle in that they compare a solution of (1)
to a solution of (2) with a specially chosen r.

Let r be a continuous function on [a, b]. Denote by r+ = max(0, r) and
by r− = −min(0, r). Then r = r+ − r−. Let M =

∫ b
a r+ and N =

∫ b
a r−.

Then we have.

Proposition 1. Let r be a continuous function on [a, b] and m be a

solution of (1) with initial condition m(a) ≤ T . Let r0 be the distribution

on [a, b] defined by r0 = Mδa − Nδb, where δx denotes the Dirac delta

distribution at x. Suppose m0 is a positive solution of (2) with initial

condition m0(a) = T . Then m(b) ≤ m0(b). The above statement remains

true for T = ∞ as well.

We also need the following.

Proposition 2. Let r be a continuous function on [a, a + n− 1] with

the property that
∫ t
a r(s)ds ≥ 0 for all t ∈ [a, a + n − 1]. Suppose m is
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a solution of (1) with initial condition m(a) < −1. Then m develops a

singularity in [a, a + n− 1], that is, there is a t0 ∈ (a, a + n − 1] such that

limt→t−0
m(t) = −∞.

The rest of the section is devoted to the proof of these propositions.

Proof of Proposition 1. Assume, on the contrary, that m(b) >

m0(b). Let t0 be the last point where m(t0) = m0(t0), that is m(t) >

m0(t) > 0 for all t ∈ (t0, b]. Then we have

m0(b) − m0(t0) =
∫ b

t0

m′
0(s)ds

=
∫ b

t0

−r0(s) − m2
0(s)

n − 1

≥
∫ b

t0

−r(s) − m2(s)
n − 1

≥
∫ b

t0

m′(s)ds = m(b) − m(t0).

Since m(t0) = m0(t0) we obtain m0(b) ≥ m(b) that contradicts our as-
sumption, therefore the proof is complete.

In the case when T = ∞ set r0,ε = Mδa+ε − Nδb and denote by m0,ε

the positive solution of (2) on the interval [a + ε, b] with initial condition
m0,ε(ε) = m(ε) + 1

ε . Then by Proposition 1 we have m(b) ≤ m0,ε(b). Since
limε→0 m0,ε(b) = m0(b) the conclusion of the proposition holds. �

Proof of Proposition 2. Let r0 ≡ 0 on [a, a+n−1] and denote by
m0 the solution of (2) with initial condition m0(a) = −1. Then we know
from the explicit solution of (2),

(
m0(t) = −1

1− t−a
n−1

)
, that m0 develops a

singularity at t = a + n − 1. The conclusion of the Proposition will follow
if we can show that m(t) < m0(t) for every t ∈ [a, a + n − 1] as long as
m(t) is defined.

Suppose this is not true. Then, since m(a) < m0(a) = −1, there is
a t0 ∈ [a, a + n − 1] such that m(t0) = m0(t0) and m(t) < m0(t) for all
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t ∈ [a, t0]. Then

m0(a) − m0(t0) =
∫ t0

a
r0(s) +

m2
0(s)

n − 1
ds

<

∫ t0

a
r(s) +

m2(s)
n − 1

ds = m(a) − m(t0),

that contradicts the assumption on the initial condition. �

2. Proof of the theorems

Proof of Theorem 1. The proof proceeds by contradiction. As-
sume, on the contrary, that there is a point t3 such that

∫ t3
0 r(s)ds ≥

nK + n. Then t3 > 1 since r(s) < K.
As before set r+= max(0, r) and r−= −min(0, r). Let A=

∫ 1
0 r+(s)ds

and B =
∫ 1
0 r−. Then again from the bound on r(s) we see that A < K.

Let y(t) be the solution of (2) with r = Aδ0−Bδ1 and initial condition
y(0) = ∞, where δx denotes the Dirac distribution at x. Then y(t) =
(n − 1)/t for t < 1 and y(1) = B + n − 1. Proposition 1 now implies that

m(1) ≤ B + n − 1. (3)

From the indirect assumption it follows that there are points 1 < t1 <

t2 < t3 such that
∫ t1
0 r(s)ds = K + n,

∫ t2
0 r(s)ds = nK + n and for all

t ∈ (t1, t2) we have
∫ t
0 r(s)ds > K + n. From the upper bound on r we

conclude that t2 − t1 ≥ n − 1.
First we claim that m(t1) < −1. From the definition of A and B we

have

K + n =
∫ t1

0
r(s)ds = A − B +

∫ t1

1
r(s)ds,

hence ∫ t1

1
r(s)ds = B + n + K − A > B + n.
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Then from (1) and (3) we get

m(t1) ≤ m(1) +
∫ t1

1
−r(s)− m2(s)

n − 1
ds

< B + n − 1 − (B + n) = −1.

Next we apply Proposition 2 to the interval [t1, t2]. Recall that for all
t ∈ (t1, t2) we have

∫ t
0 r(s)ds > K + n. This implies that for all t ∈ (t1, t2)

we have
∫ t
t1

r(s)ds > 0. Since t2 − t1 ≥ n− 1 Proposition 2 implies that m

develops a singularity between t1 and t2. This contradicts the assumption
that γ has no conjugate points and the proof is complete. �

Proof of Theorem 2. Assume, on the contrary, that
lim supt→∞

∫ t
0 r(s)ds = ∞. Then there are numbers 1 < t1 < t2 such that

∫ t1

1
r(s)ds ≥ m(1) + 1.1, (4)

and for all t ∈ (t1, t2) we have
∫ t

t1

r(s)ds > 0 with
∫ t2

t1

r(s)ds = (n − 1)2K and r(t2) ≥ 0. (5)

Then from (1) and (4) we have

m(t1) ≤ m(1) +
∫ t1

1
−r(s) − m2(s)

n − 1
ds < m(1) − m(1) − 1.1 < −1. (6)

On the other hand combining (5) with any of the three conditions of the
theorem implies that for all t ∈ [t1, t2 +n−1] we have

∫ t
t1

r(s)ds ≥ 0. Then
an application of Proposition 2 to the interval [t1, t1 + n − 1] shows that
m(s) develops a singularity. This leads to a contradiction that completes
the proof of the theorem. �

Remark. The same argument gives a proof of Ambrose’s theorem.

Proof of the Theorem of Ambrose. Assume that
lim
t→∞

∫ t
0 r(s)ds = ∞. Then there is a number t1 > 1 such that

∫ t1
1 r(s)ds >

m(1)+ 1 and for all t ∈ [t1,∞) we have
∫ t
t1

r(s)ds ≥ 0. Then, as in (6), we
have m(t1) < −1 and an application of Proposition 2. yields the desired
contradiction. �
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Remark. The fact that the Ambrose Theorem can be derived from the
Riccati inequality for mean curvature was established in [5].

3. An example

The purpose of this section is to sketch the construction of a two-
dimensional complete Riemannian manifold M2 with a point O such that
every geodesic γ emanating from O is free of conjugate points and
lim supt→∞

∫ t
0 r(s)ds = ∞ along γ.

Our manifold M2 will be a surface of rotation in R
3 obtained by ro-

tating the graph of a function f : (0,∞) → R with f(0) = 0 around
the x-axis. The origin of the coordinate system will play the role of the
point O. The metric on the surface will be the natural metric inherited
from the ambient space R

3.
First we construct f(t) to be piecewise smooth. In fact f(t) will be

piecewise linear and decreasing on [1,∞). Although the manifold obtained
this way will not be smooth it has the advantage of maintaining simplicity
and clarity. Smoothing off the corners of f(t) will give a smooth function,
which in turn will give rise to a smooth manifold.

Before we start off with the construction of f we have to make a remark
on the curvature of the manifold arising this way. Since M2 is rotationally
symmetric we may assume that γ is the intersection of the 1st quadrant
of the xy-plane and M2. Therefore we need to compute the curvature at
the points (t, f(t)) only. When f is smooth this is given by the formula
(Gray [3], Chapter 18)

K =
−f ′′

f(1 + f ′2)2
. (7)

Since f is piecewise linear on [1,∞) the curvature of the surface will
be zero at (t, f(t)) for those points where f is smooth and t > 1.

The only problem is when two linear pieces join together. At these
points the manifold is not smooth so it has no curvature in the classical
sense. Even if we round off the corner and take limits the sectional curva-
ture will approach ±∞. But if we integrate the curvature of the rounded
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off manifold near the point and take the limit the result will be a finite
value depending on the left and right derivatives and the value of f . We
will need an estimate of this value.

Let us assume that f is piecewise linear and t0 is one of the points
where two linear pieces meet. Denote the left and right derivatives by
s− = D−f(t0) and s+ = D+f(t0).

If we smooth off the corner of the graph of f at t0 then for the integral
of the sectional curvature (which is the same as the Ricci curvature in this
case) we have from (7)

C1
s− − s+

f(t0)
<

∫ t0+δ

t0−δ
r(s)ds < C2

s− − s+

f(t0)
for 0 > s−, s+ ≥ −1, (8)

where C1, C2 > 0 are some constants.
We are now ready to construct f . First set f(t) =

√
1 − (1 − t)2 for

t ∈ [0, 1]. The graph of this function is the quarter unit circle centered
around the point x = 1.

Let f be linear on [1, a1] with slope s1 = −1/2 and on [a1, a1 + ε1/10]
with slope −1, where ε1 = f(a1) and a1 = 3/2.

Suppose that f had been constructed on [0, ai+εi/10], where εi = f(ai)
and −1

2 ≤ si < 0 denotes the slope of f on [ai−1 + εi−1/10, ai].
Choose si+1 such that si,− εi

3 < si+1 < 0. Let f be linear on [ai +
εi/10, ai+1] with slope si+1 and on [ai+1, ai+1 + εi+1

10 ] with slope −1, where
εi+1 = f(ai+1). Choose ai+1 such that ai+1 > 2 + ai (this is why we
required − εi

3 < si+1 < 0) and

C1

2εi+1
> i + 1 +

∣∣∣∣
∫ ai+1−1

0
r(s)ds + 1

∣∣∣∣.
This will imply that the integral of the curvature near the point ai+1 will
dominate the integral of the curvature on [0, ai+1 − 1]. To be more precise
from (8) we obtain

∫ ai+1+δ

ai+1−δ
r(s)ds > C1

si+1 − (−1)
εi+1

>
C1

2εi+1
,

for some sufficiently small δ > 0.
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From this we have
∫ ai+1+(εi+1/20)

0
r(s)ds > i + 1.

Therefore lim supt→∞
∫ t
0 r(s)ds = ∞, while the condition ai+1 > 2+ai

implies that f is defined on R. Rounding off the corners of f will produce
a smooth function which in turn will give rise to a smooth surface with
the required properties.
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