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Abstract. A real valued function f defined on an open convex set D is called
(ε, p, t)-convex if it satisfies

f(tx + (1 − t)y) ≤ tf(x) + (1 − t)f(y) +
k∑

i=0

εi|x − y|pi for x, y ∈ D,

where ε = (ε0, . . . , εk) ∈ [0,∞[k+1, p = (p0, . . . , pk) ∈ [0, 1[k+1 and t ∈ ]0, 1[ are
fixed parameters. The main result of the paper states that if f is locally bounded
from above at a point of D and (ε, p, t)-convex then it satisfies the convexity-type
inequality

f(sx + (1 − s)y) ≤ sf(x) + (1 − s)f(y) +
k∑

i=0

εiφpi,t(s)|x − y|pi

for x, y ∈ D, s ∈ [0, 1], where φpi,t : [0, 1] → R is defined by

φpi,t(s) = max
{ 1

(1 − t)pi − (1 − t)
;

1
tpi − t

}
(s(1 − s))pi .

The particular case k = 0, p = 0 of this result is due to Páles [Pál00], the
case k = 0, p = 0 and t = 1/2 was investigated by Ng and Nikodem [NN93].
The specialization k = 0, ε0 = 0 yields the celebrated theorem of Bernstein

and Doetsch [BD15]. The case k = 1, ε = (ε0, ε1), p = (1, 0) and t = 1/2 was
investigated in Házy and Páles [HP04].
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1. Introduction

Let (X, |·|) be a normed space and D ⊂ X be a nonempty open convex
set throughout this paper. Given a nonnegative constant ε and t ∈ ]0, 1[,
a function f : D → R is said to be (ε, t)-convex if

f (tx + (1 − t)y) ≤ tf(x) + (1 − t)f(y) + ε

for all x, y ∈ D. If this inequality holds for all x, y ∈ D and for all
t ∈ [0, 1], then f is simply called ε-convex. The following result establishes
a connection between these convexity properties (cf. [Pál00]):

Theorem A. If f : D → R is locally bounded from above at a point

of D and is (ε, t)-convex on D, then f is
(
max

{
1
t ,

1
1−t

}
ε
)
-convex.

If ε = 0, then this result specializes to the celebrated theorem of
Bernstein and Doetsch [BD15] (see also [Kuc85] for further references).
The particular case t = 1/2 was investigated by Ng and Nikodem [NN93].

Motivated by these results, we introduce new approximate convexity
concepts and investigate the connection of “t-convexity” and “convexity”
in this approximate sense.

Given two parameter vectors ε = (ε0, . . . , εk) ∈ [0,∞[k+1 and p =
(p0, . . . , pk) ∈ [0,∞[k+1, and a fixed t ∈ ]0, 1[, a function f : D → R is
called (ε, p, t)-convex if

f
(
tx + (1 − t)y

) ≤ tf(x) + (1 − t)f(y) +
k∑

i=0

εi|x − y|pi

for all x, y ∈ D. In the particular case t = 1/2 we refer to it as (ε, p)-
midconvexity.

Observe that Theorem A concerns the case k = 0, p = 0. In the case
k = 1, ε = (ε0, ε1), p = (0, 1) and t = 1/2 the following theorem was
proved in [HP04]:

Theorem B. Let ε0, ε1 be nonnegative constants. If f : D → R

is locally bounded above at a point of D and
(
(ε0, ε1), (0, 1)

)
-midconvex

on D, then

f
(
tx + (1 − t)y

) ≤ tf(x) + (1 − t)f(y) + 2ε0 + 2ε1ϕ(t)|x − y|
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for all x, y ∈ D and t ∈ [0, 1], where ϕ : R → R is the Takagi function

defined by

ϕ(t) :=
∞∑

n=0

dist(2nt, Z)
2n

(t ∈ R).

In [HP04] we also showed that

φ(t) ≤ ϕ(t) ≤ 1.4φ(t) (t ∈ [0, 1]), (1)

where the function φ : [0, 1] → R is defined by the formula

φ(t) := max
(−t log2 t, −(1 − t) log2(1 − t)

)

=



−t log2 t if 0 ≤ t ≤ 1

2
,

−(1 − t) log2(1 − t) if
1
2
≤ t ≤ 1.

(2)

It follows from inequality (1) that the Takagi function cannot be com-
pared with the function t(1 − t), that is, there is no constant c > 0 so
that ϕ(t) ≤ ct(1− t) is valid for all t ∈ [0, 1]. Therefore, it does not follow
from Theorem B that locally upper bounded ((ε0, ε1), (0, 1))-midconvex
functions satisfy

f
(
tx + (1 − t)y

) ≤ tf(x) + (1 − t)f(y) + 2ε0 + cε1t(1 − t)|x − y| (3)

for all x, y ∈ D, t ∈ [0, 1], and for some c > 0. Moreover, the function
f = φ is ((0, 1/2), (0, 1))-midconvex, but there is no constant c such that
(3) is valid for some c > 0.

In this paper, we search for convexity properties that follow from the
(ε, p, t)-convexity and the local upper boundedness property of the func-
tion f . More precisely, we intend to find functions φpi,t : [0, 1] → R

(i = 0, 1, . . . , k) so that

f
(
sx + (1 − s)y

) ≤ sf(x) + (1 − s)f(y) +
k∑

i=0

εiφpi,t(s)|x − y|pi (4)

hold for all x, y ∈ D and all s ∈ [0, 1].
In our main result we prove that if 0 ≤ pi < 1, then (4) holds with the

choice

φpi,t(s) := max
{

1
(1 − t)pi − (1 − t)

;
1

tpi − t

}
(s(1 − s))pi .
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Due to the symmetry, we may assume that 0 < t ≤ 1
2 in the rest of the

paper.

2. A functional equation
and related functional inequalities

Denote by B(I) the space of bounded real-valued functions defined on
I := [0, 1] equipped with the usual supremum norm. For fixed p ≥ 0 and
t ∈]0, 1/2], introduce the operator Tp,t : B(I) → B(I) by

(Tp,tf)(s) =




(1 − t)f
(

s

1 − t

)
+

(
s

1 − t

)p

0 ≤ s ≤ 1
2
,

(1 − t)f
(

1 − s

1 − t

)
+

(
1 − s

1 − t

)p 1
2
≤ s ≤ 1.

Our first result concerns the solution of the functional equation

ϕ(s) = (Tp,tϕ) (s) (s ∈ [0, 1]) (5)

and the corresponding functional inequalities

Φ(s) ≤ (Tp,tΦ) (s) (s ∈ [0, 1]), (6)

Ψ(s) ≥ (Tp,tΨ) (s) (s ∈ [0, 1]). (7)

Theorem 1. There exists a unique bounded function ϕ : [0, 1] → R

such that (5) holds. Furthermore, ϕ is continuous, nonnegative and is

symmetric with respect to s = 1/2, i.e., ϕ(s) = ϕ(1 − s) for all s ∈ [0, 1].
In addition, if Φ : [0, 1] → R and Ψ : [0, 1] → R are bounded solutions of

(6) and (7), respectively, then Φ ≤ ϕ ≤ Ψ holds.

Proof. It is immediate to see that Tp,t is a contraction with contrac-
tion factor 1− t on B(I). Hence, by the Banach fixed point theorem, there
exists a unique function ϕ ∈ B(I) such that Tp,tϕ = ϕ, i.e., (5) is satisfied.

Let the sequence ϕn : [0, 1] → R be defined by

ϕ1 := 0,

ϕn+1(s) := (Tp,tϕn) (s).
(8)
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By induction, one can see that ϕn is a continuous, nonnegative, and sym-
metric (with respect to 1/2) function on [0, 1] for all n ∈ N. By the Banach
fixed point theorem, this sequence uniformly tends to ϕ (i.e., to the fixed
point of Tp,t). Therefore ϕ is also continuous, nonnegative, and symmetric.

Finally, let Φ : [0, 1] → R and Ψ : [0, 1] → R be bounded solutions of
(6) and (7). Observe that Tp,t is monotone with respect to the pointwise
ordering in B(I). Thus, applying the operator T n

p,t to the inequalities (6)
and (7), we get that

T n
p,tΦ ≤ T n+1

p,t Φ and T n
p,tΨ ≥ T n+1

p,t Ψ for all n ∈ N.

It follows from these inequalities that

Φ ≤ T n
p,tΦ and Ψ ≥ T n

p,tΨ for all n ∈ N.

Taking the limit n → ∞, we obtain Φ ≤ ϕ ≤ Ψ. �

In the sequel, the unique solution ϕ of (5) will be denoted by ϕp,t. The
picture of ϕp,t in the case of p = 1/2, t = 1/2 is as follows:
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In order to compare ϕp,t with a function that is defined in more com-
putable terms, introduce the function φp : [0, 1] → R by the following
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formula:
φp(s) :=

(
s(1 − s)

)p
. (9)

To obtain our result on the comparison of ϕp,t and φp, we need the
following lemma.

Lemma. Let 0 ≤ p < 1 be an arbitrary constant and γp,t : [0, 1−t]→R

be defined by

γp,t(s) := (1 − s)p(1 − t)p − (1 − t)1−p(1 − t − s)p.

Then γp,t is a positive and increasing function.

Proof. Since 0 < 1 − t < 1 and 0 ≤ p < 1, therefore

γp,t(0) = (1 − t)p − (1 − t) > 0.

The function γp,t is differentiable and

γ′
p,t(s) = p

(−(1 − s)p−1(1 − t)p + (1 − t − s)p−1(1 − t)1−p
)
.

Since p ≥ 0, therefore it is enough to prove that, for s ∈ [0, 1 − t],

−(1 − s)p−1(1 − t)p + (1 − t − s)p−1(1 − t)1−p � 0,

which is equivalent to the inequality

1 − t

1 − s
� (1 − t)

2p−1
p−1 .

One can easily see, that the left-hand side of this inequality is a monotone
function of s, and the inequality holds at the endpoints s = 0 and s = 1−t.
Therefore, it is also valid for all s ∈ [0, 1 − t]. Thus, γp,t is increasing and
it is also positive on [0, 1 − t]. �

The functions φp and ϕp,t have the following property:

Theorem 2. If 0 ≤ p < 1, then

φp(s)
γp,t(1/2)

≤ ϕp,t(s) ≤ φp(s)
γp,t(0)

for s ∈ [0, 1]. (10)
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Proof. In the first step we prove that the function Φ =
φp

γp,t(1/2)
is

a solution of the functional inequality (6).
We consider first the case 0 ≤ s ≤ 1/2. The function γp,t is monotone

increasing, therefore γp,t(s) ≤ γp,t(1/2) for all 0 ≤ s ≤ 1/2, i.e.,

γp,t(s)
γp,t(1/2)

=
(1 − s)p(1 − t)p − (1 − t)1−p(1 − s − t)p

γp,t(1/2)
≤ 1,

which implies

(1 − s)p(1 − t)p

γp,t(1/2)
≤ (1 − t)1−p(1 − s − t)p

γp,t(1/2)
+ 1.

Multiplying by ( s
1−t)

p, we get

sp(1 − s)p

γp,t(1/2)
≤ (1 − t)

γp,t(1/2)

(
s

1 − t

)p (
1 − s

1 − t

)p

+
(

s

1 − t

)p

,

i.e.,
φp(s)

γp,t(1/2)
≤ (1 − t)

γp,t(1/2)
φp

(
s

1 − t

)
+

(
s

1 − t

)p

.

Similarly, if 1/2 ≤ s ≤ 1, then from γp,t(1 − s) � γp,t(1/2), we get that

φp(s)
γp,t(1/2)

≤ (1 − t)
γp,t(1/2)

φp

(
1 − s

1 − t

)
+

(
1 − s

1 − t

)p

.

Thus, we have proved that Φ =
φp

γp,t(1/2)
indeed satisfies the functional

inequality (6). Due to Theorem 1, the left hand side inequality in (10)
holds.

To obtain the right hand side inequality in (10), it suffices to prove that

the function Ψ =
φp

γp,t(0)
is a bounded solution of the functional inequality

(7) and use Theorem 1 again. �

Remark 1. An inequality analogous to (10) in the case p = 1, t = 1/2
was derived in [HP04]; in this case φp,t can be compared to the function
φ defined by (2). It is not clear, however, what the asymptotic magnitude
of φp,t is for p > 1. This problem is left open in this paper.
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3. Regularity properties of (ε, p, t)-convex functions

In our next results, we deal with boundedness and continuity proper-
ties of (ε, p, t)-convex functions.

Theorem 3. Let ε = (ε0, . . . , εk) ∈ [0,∞[k+1, p = (p0, . . . , pk) ∈
[0,∞[k+1, and t ∈ ]0, 1/2]. If f : D → R is (ε, p, t)-convex and locally

bounded from above at a point w ∈ D, then f is locally bounded on D.

Proof. First we prove that f is locally bounded from above on D.
Define the sequence of sets Dn by

D0 := {w}, Dn+1 := tDn + (1 − t)D.

Then, it follows by induction that

Dn = tnw + (1 − tn)D.

Using induction on n, we prove that f is locally upper bounded at each
point of Dn. By assumption f is locally upper bounded at w ∈ D0. Assume
that f is locally upper bounded at each point of Dn. For x ∈ Dn+1,
there exists x0 ∈ Dn and y0 ∈ D such that x = tx0 + (1 − t)y0. By the
inductive assumption, there exists r > 0 and a constant M0 ≥ 0 such that
f(x′) ≤ M0 for |x0 − x′| < r. Then, by the (ε, p, t)-convexity of f , for
x′ ∈ U0 := U(x0, r), we have

f
(
tx′ + (1 − t)y0

) ≤ tf(x′) + (1 − t)f(y0) +
k∑

i=0

εi|x′ − y0|pi

≤ tM0 + (1 − t)f(y0) +
k∑

i=0

εi(|x′ − x0| + |x0 − y0|)pi

≤ tM0 + (1 − t)f(y0) +
k∑

i=0

εi(|x0 − y0| + r)pi =: M.

Therefore, for x ∈ U := tU0 + (1 − t)y0 = U(tx0 + (1 − t)y0, tr), we get
that f(x) ≤ M . Thus f is locally bounded from above on Dn+1.

On the other hand, one can easily see that

D =
∞⋃

n=1

Dn.
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Indeed, for fixed x ∈ D, define the sequence xn by

xn :=
(1/t)nx − w

(1/t)n − 1
.

Then xn → x if n → ∞. The set being open, xn ∈ D for some n. Therefore

x =
w + ((1/t)n − 1)xn

(1/t)n
= tnw + (1 − tn)xn ∈ tnw + (1 − tn)D = Dn.

Thus f is locally bounded from above on D.
Now, we prove that f is locally bounded from below. Let q ∈ D be

arbitrary. Since f is locally bounded from above at the point q, hence
there exists � > 0 and M > 0 such that

sup
U(q,�)

f ≤ M.

Let x ∈ U(q, �) and y := 1
1−tq − t

1−tx. Then, by (ε, p, t)-convexity,

f(q) = f(tx + (1 − t)y) ≤ tf(x) + (1 − t)f(y) +
k∑

i=0

εi
1

(1 − t)pi
|x − q|pi ,

which implies

f(x) ≥ 1
t
f(q) − 1 − t

t
f(y) − 1

t

k∑
i=0

εi
1

(1 − t)pi
|x − q|pi

≥ 1
t
f(q) − 1 − t

t
M − 1

t

k∑
i=0

εi
1

(1 − t)pi
�pi =: M∗.

Therefore f is locally bounded from below at any point of D. �

The next theorem essentially weakens the local boundedness assump-
tion if the underlying space is of finite dimension. It can be derived from
Theorem 3 adopting the argument followed in [HP04] (that is based on
Steinhaus’ and Piccard’s theorems (cf. [Ste20], [Pic42])).

Theorem 4. Let ε = (ε0, . . . , εk) ∈ [0,∞[k+1, p = (p0, . . . , pk) ∈
[0,∞[k+1, and t ∈ ]0, 1/2]. Let D be an open convex subset of R

n and

f : D → R be an (ε, p, t)-convex function. Assume that there exist a
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Lebesgue-measurable set of positive measure (or a Baire-measurable set

of second category) S ⊂ D and a Lebesgue-measurable (resp. a Baire-

measurable) function g : S → R such that f ≤ g on S. Then f is locally

bounded on D.

The next result states that if all the components of p are positive
then the local upper boundedness of an (ε, p, t)-convex function yields its
continuity as well. The proof is analogous to what was followed for (ε, 0)-
midconvexity in [HP04].

Theorem 5. Let ε = (ε0, . . . , εk) ∈ [0,∞[k+1, p = (p0, . . . , pk) ∈
]0,∞[k+1, and t ∈ ]0, 1/2]. If f : D → R is (ε, p, t)-convex and locally

bounded from above at a point of D, then it is continuous.

4. Main results

The following result offers a generalization of the theorems of Bern-

stein and Doetsch [BD15], Ng and Nikodem [NN93] and the results of
Páles [Pál00] and Házy and Páles [HP04].

Theorem 6. Let ε = (ε0, . . . , εk) ∈ [0,∞[k+1, p = (p0, . . . , pk) ∈
[0,∞[k+1, and t ∈ ]0, 1/2]. If f : D → R is (ε, p, t)-convex and locally

bounded from above at a point of D, then

f (sx + (1 − s)y) ≤ sf(x) + (1 − s)f(y) +
k∑

i=0

εiϕpi,t(s)|x − y|pi (11)

for all x, y ∈ D and s ∈ [0, 1], (where ϕpi,t is the fixed point of the operator

Tpi,t defined in Section 2).

Proof. Due to Theorem 3, f is locally bounded at each point of D.
Thus f is bounded on each compact subset of D.

Let x, y ∈ D be fixed and denote by Kx,y the upper bound of the
function

s �→ f (sx + (1 − s)y) − sf(x) − (1 − s)f(y) (s ∈ [0, 1]).
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We are going to show, by induction on n, that

f
(
sx + (1 − s)y

) ≤ sf(x) + (1 − s)f(y) + (1 − t)nKx,y

+
k∑

i=0

εi(T n
pi,t000)(s)|x − y|pi

(12)

for all x, y ∈ D and s ∈ [0, 1], where 000 denotes the identically zero function
on [0, 1].

For n = 0, the statement follows from the definition of Kx,y.
Assume that (12) is true for some n ∈ N. Suppose that s ∈ [1/2, 1].

Then, due to the (ε, p, t)-convexity of f , we get

f(sx + (1 − s)y) = f

(
tx + (1 − t)

(
s − t

1 − t
x +

1 − s

1 − t
y

))

≤ tf(x) + (1 − t)f
(

s − t

1 − t
x +

1 − s

1 − t
y

)
+

k∑
i=0

εi

(
1 − s

1 − t

)pi

|x − y|pi .

On the other hand, using (12), we have that

f

(
s − t

1 − t
x +

1 − s

1 − t
y

)
≤ s − t

1 − t
f(x) +

1 − s

1 − t
f(y)

+ (1 − t)nKx,y +
k∑

i=0

εi(T n
pi,t000)

(
1 − s

1 − t

)
|x − y|pi .

Combining these two inequalities, we obtain

f (sx + (1 − s)y) ≤ sf(x) + (1 − s)f(y) + (1 − t)n+1Kx,y

+
k∑

i=0

εi

(
(1 − t)(T n

pi,t000)
(

1 − s

1 − t

)
+

(
1 − s

1 − t

)pi
)
|x − y|pi

= sf(x) + (1 − s)f(y) + (1 − t)n+1Kx,y +
k∑

i=0

εi(T n+1
pi,t

000)(s)|x − y|pi .

Thus, we proved (12) for s ∈ [1/2, 1]. A completely similar argument shows
that (12) is also valid for s ∈ [0, 1/2].
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To complete the proof of the theorem, we take the limit n → ∞ in
(12) and we get (11). �

Applying the right hand side inequality of Theorem 2, if the parame-
ters pi are smaller than 1, we immediately get the following result.

Corollary. Let ε = (ε0, . . . , εk) ∈ [0,∞[k+1, p = (p0, . . . , pk) ∈
[0, 1[k+1, and t ∈ ]0, 1/2]. If f : D → R is (ε, p, t)-convex and locally

bounded from above at a point of D, then

f(sx + (1 − s)y) ≤ sf(x) + (1 − s)f(y)

+
k∑

i=0

εi

(1 − t)pi − (1 − t)
(
s(1 − s)|x − y|)pi (13)

for all x, y ∈ D and s ∈ [0, 1].

Proof. It follows from Theorem 2 that, for 0 ≤ pi < 1,

ϕpi,t ≤
φpi

γpi,t(0)
= (1 − t)pi − (1 − t)

(
s(1 − s)

)pi ,

where the function γp,t was defined in Lemma. Thus the statement is an
immediate consequence of the previous theorem. �
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– Kraków – Katowice, 1985.

[Mro01] J. Mrowiec, Remark on approximately Jensen-convex functions, C. R. Math.
Rep. Acad. Sci. Canada 23, no. 1 (2001), 16–21.

[NN93] C. T. Ng and K. Nikodem, On approximately convex functions, Proc. Amer.
Math. Soc. 118, no. 1 (1993), 103–108.
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