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On approximately t-convex functions

By ATTILA HAZY (Miskolc) and ZSOLT PALES (Debrecen)

Dedicated to the 75th birthday of Professor Heinz Kdnig

Abstract. A real valued function f defined on an open convex set D is called
(e,p,t)-convex if it satisfies

k
fltw+ (1 =t)y) <tf(x)+ (1 =0)f(y) + > elr—y
1=0

Pi for x,y € D,

where € = (g¢,...,ex) € [0,00[**, p = (po,...,px) € [0,1[FF! and ¢ € |0, 1] are
fixed parameters. The main result of the paper states that if f is locally bounded
from above at a point of D and (e, p, t)-convex then it satisfies the convexity-type
inequality

k
Flso+ (1= 8)y) < sf(@) + (1= ) f(y) + D _eidpa(s)le -yl

i=0
for x,y € D, s € [0,1], where ¢y, ¢ : [0,1] — R is defined by

1 1
; = : 1-— Pi
Opisi(s) = max { 1ty —(1—1t) tr — t}(s( 5))

The particular case k = 0, p = 0 of this result is due to PALES [P4l00], the
case k = 0, p = 0 and t = 1/2 was investigated by NG and NIKODEM [NN93].
The specialization kK = 0, €y = 0 yields the celebrated theorem of BERNSTEIN
and DOETSCH [BD15]. The case k = 1, € = (g9,€1), p = (1,0) and ¢ = 1/2 was
investigated in HAzy and PALES [HP04].
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1. Introduction

Let (X,]|-]) be a normed space and D C X be a nonempty open convex
set throughout this paper. Given a nonnegative constant ¢ and ¢ € ]0, 1],
a function f: D — R is said to be (e, t)-convex if

fz+ 1 —=t)y) <tf(x)+ (1 -t)f(y) +e

for all z,y € D. If this inequality holds for all z,y € D and for all
t € [0,1], then f is simply called e-convex. The following result establishes
a connection between these convexity properties (cf. [P4l00]):

Theorem A. If f : D — R is locally bounded from above at a point

of D and is (e,t)-convex on D, then f is (max {1, & }¢)-convex.
If ¢ = 0, then this result specializes to the celebrated theorem of

BERNSTEIN and DOETSCH [BD15] (see also [Kuc85] for further references).
The particular case ¢t = 1/2 was investigated by NG and NIKODEM [NN93].

Motivated by these results, we introduce new approximate convexity
concepts and investigate the connection of “t-convexity” and “convexity”
in this approximate sense.

Given two parameter vectors ¢ = (gg,...,ex) € [0,00[F*! and p =
(pos - --,pk) € [0,00[F*!, and a fixed t € ]0,1], a function f : D — R is
called (g, p,t)-convex if

k
fltw+ (1= t)y) <tf(@)+ (1 —0)f(y) + Y eile -yl
i=0

for all z,y € D. In the particular case t = 1/2 we refer to it as (g, p)-
midconvexity.

Observe that Theorem A concerns the case k = 0, p = 0. In the case
k=1,¢ = (e0,e1), p = (0,1) and ¢ = 1/2 the following theorem was
proved in [HPO04]:

Theorem B. Let €p,e1 be nonnegative constants. If f : D — R
is locally bounded above at a point of D and ((9,€1), (0, 1))-midconvex
on D, then

fltz 4+ (1 =t)y) <tf(x)+ (1 —1)f(y) + 2e0 + 2e190(t) |z — y]
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for all x,y € D and t € [0,1], where ¢ : R — R is the Takagi function
defined by

o(t) = n;) w (t € R).
In [HP04] we also showed that
¢(t) < p(t) < L4g(t) (L €0,1)), (1)

where the function ¢ : [0, 1] — R is defined by the formula
¢(t) := max(—tlogyt, —(1 —t)logy(1 — 1))

—tlogyt if (2)

IN

t<1
_27
<t< 1.

|
N = O
IN

—(1—1t)logy(l —1t) if

It follows from inequality (1) that the Takagi function cannot be com-
pared with the function #(1 — ¢), that is, there is no constant ¢ > 0 so
that ¢(t) < ct(1 —t) is valid for all ¢ € [0, 1]. Therefore, it does not follow
from Theorem B that locally upper bounded ((go,€1), (0,1))-midconvex
functions satisfy

fltz+ 1 —t)y) <tf(x)+ (1 —0)f(y) + 20 + cert(l —t)|lz —y|  (3)

for all x,y € D, t € [0,1], and for some ¢ > 0. Moreover, the function
f=¢1is ((0,1/2),(0,1))-midconvex, but there is no constant ¢ such that
(3) is valid for some ¢ > 0.

In this paper, we search for convexity properties that follow from the
(e, p,t)-convexity and the local upper boundedness property of the func-
tion f. More precisely, we intend to find functions ¢,,+ : [0,1] — R
(t=0,1,...,k) so that

k
Flsz+(1—s)y) < sf@) + (1= 8)f@W) + 3 cipals)lz =yl (&)
1=0

hold for all z,y € D and all s € [0,1].
In our main result we prove that if 0 < p; < 1, then (4) holds with the
choice
1 1
(1—t)pi —(1—t) tri —t

Ppi(s) = max{ } (s(1 — s))P.
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Due to the symmetry, we may assume that 0 < t < % in the rest of the
paper.

2. A functional equation
and related functional inequalities

Denote by B(I) the space of bounded real-valued functions defined on
I :=[0,1] equipped with the usual supremum norm. For fixed p > 0 and
t €]0,1/2], introduce the operator Tp,+ : B(I) — B(I) by

a0 (i5) + (%)
“‘t)f(i:i) + G:i)p

Our first result concerns the solution of the functional equation

[an}

<s

IN

1
57
(Tpef)(s) =

IN

s <

[a—

| =

o(s) = (Tpap) (s) (s €10,1]) (5)
and the corresponding functional inequalities
O(s) < (Tpa®) (s) (s €[0,1]), (6)

U(s) = (Tp:¥) (s) (s €[0,1]). (7)

Theorem 1. There exists a unique bounded function ¢ : [0,1] — R
such that (5) holds. Furthermore, ¢ is continuous, nonnegative and is
symmetric with respect to s = 1/2, i.e., p(s) = ¢(1 — s) for all s € [0,1].
In addition, if ® : [0,1] — R and ¥ : [0,1] — R are bounded solutions of
(6) and (7), respectively, then ® < ¢ < ¥ holds.

Proor. It is immediate to see that T}, ; is a contraction with contrac-
tion factor 1 —¢ on B(I). Hence, by the Banach fixed point theorem, there
exists a unique function ¢ € B(I) such that T}, ¢ = ¢, i.e., (5) is satisfied.

Let the sequence ¢, : [0,1] — R be defined by

1 :=0,

(8)
Pn+1(5) := (Tpapn) (5)-
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By induction, one can see that ¢, is a continuous, nonnegative, and sym-
metric (with respect to 1/2) function on [0, 1] for all n € N. By the Banach
fixed point theorem, this sequence uniformly tends to ¢ (i.e., to the fixed
point of T}, ;). Therefore ¢ is also continuous, nonnegative, and symmetric.

Finally, let @ : [0,1] — R and ¥ : [0,1] — R be bounded solutions of
(6) and (7). Observe that T}, ; is monotone with respect to the pointwise
ordering in B(I). Thus, applying the operator T}'; to the inequalities (6)
and (7), we get that

T3 <T'H'® and 1,0 > T forall n € N.
It follows from these inequalities that
<7 and V>T)¥ forallneN.

Taking the limit n — oo, we obtain & < ¢ < U. O

In the sequel, the unique solution ¢ of (5) will be denoted by ¢, ;. The
picture of ¢, in the case of p = 1/2, t = 1/2 is as follows:

124 | \

087 |
0.6/ \
o.4§f
0.2 |

In order to compare ¢, ; with a function that is defined in more com-
putable terms, introduce the function ¢, : [0,1] — R by the following
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formula:

dp(s) = (s(1 = 5))" (9)

To obtain our result on the comparison of ¢,; and ¢,, we need the
following lemma.

Lemma. Let 0 < p < 1 be an arbitrary constant and v, : [0,1—t] = R
be defined by

Tpi(s) = (1= 8PP (L= )P — (1= ) P(1 =t — s)P.

Then -y, is a positive and increasing function.
PROOF. Since 0 <1 -t <1 and 0 < p < 1, therefore
Ypt(0) = (1 —-t)P — (1 —1t) > 0.
The function 7y, ; is differentiable and
1 o(5) = p(—(1 = 8L 1= )+ (1 — ¢ — )2 (1 = )'7),

Since p > 0, therefore it is enough to prove that, for s € [0,1 — ¢],

—(1=s)P A=t + (A —t—s)P 1 -t)P 20,

which is equivalent to the inequality

t 2p—1
1— —— <(1—t)»1.
1—3_( )?

One can easily see, that the left-hand side of this inequality is a monotone
function of s, and the inequality holds at the endpoints s = 0 and s = 1—¢.
Therefore, it is also valid for all s € [0,1 —t]. Thus, v, is increasing and
it is also positive on [0,1 — t]. O

The functions ¢, and ¢, ; have the following property:

Theorem 2. If 0 < p < 1, then

_®(8) < opi(s) < Orls)

Yp,t(1/2) ~ .t(0)

for s € 10,1]. (10)
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PROOF. In the first step we prove that the function ® = L
a solution of the functional inequality (6). t(1/2)

We consider first the case 0 < s < 1/2. The function Yp,t is monotone
increasing, therefore 7, ¢(s) < v,:(1/2) for all 0 < s <1/2, i.e.,

is

V.t (5) :(1—®W1—®y—ﬂ—ﬂLmﬂ—S—®p<l

.t(1/2) Vp.t(1/2) T

which implies

(1L—s)P(L— 1)
i (1/2)

Multiplying by (%), we get
P(1 — 5P _ P P P
sP(1 S)g(l t)(s)(l_ s>+<s>’
e172) = e/ \T=1 =) T

s = (15) + (75)

Similarly, if 1/2 < s <1, then from 7, +(1 — s) < 7, +(1/2), we get that

fyﬁ(l?z) : wi,lt@/%% (ij) * (11)
_ 9

Vp,t(1/2)
inequality (6). Due to Theorem 1, the left hand side inequality in (10)

holds.
To obtain the right hand side inequality in (10), it suffices to prove that

(1—t)'P(1—s—t)P

ey b

<

ie.,

Thus, we have proved that & = indeed satisfies the functional

the function ¥ = @(7 0) is a bounded solution of the functional inequality
’Yp,t
(7) and use Theorem 1 again. O

Remark 1. An inequality analogous to (10) in the case p=1,¢=1/2
was derived in [HP04]; in this case ¢,; can be compared to the function
¢ defined by (2). It is not clear, however, what the asymptotic magnitude
of ¢+ is for p > 1. This problem is left open in this paper.
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3. Regularity properties of (&, p, t)-convex functions

In our next results, we deal with boundedness and continuity proper-
ties of (g, p, t)-convex functions.

Theorem 3. Let ¢ = (gg,...,6x) € [0,00[**, p = (po,...,pr) €
[0,00[FT! and t € ]0,1/2]. If f : D — R is (g, p,t)-convex and locally
bounded from above at a point w € D, then f is locally bounded on D.

PRrOOF. First we prove that f is locally bounded from above on D.
Define the sequence of sets D,, by

Dy = {w}, Dn+1 =tD, + (1 — t)D
Then, it follows by induction that
D, =t"w+ (1 —-t")D.

Using induction on n, we prove that f is locally upper bounded at each
point of D,,. By assumption f is locally upper bounded at w € Dy. Assume
that f is locally upper bounded at each point of D,. For x € D,.1,
there exists xg € D,, and yo € D such that z = tzg + (1 — t)yo. By the
inductive assumption, there exists r > 0 and a constant My > 0 such that
f(@") < My for |zg — 2’| < r. Then, by the (e, p,t)-convexity of f, for
x' € Uy := U(xg,r), we have

k
ot + (1 =t)yo) <tf(2')+ (1 —=1)f(yo) + Y cila’ — yol”
=0
k
<tMo+ (1—)f (o) + Y _ eilla’ — xo| + [z — yo| )"
i=0
k
<tMo+ (1—t)f(yo) + Y illwo — yo| + )P =: M.
=0

Therefore, for x € U := tUp + (1 — t)yo = U(tzg + (1 — t)yo,tr), we get
that f(z) < M. Thus f is locally bounded from above on D, 1.
On the other hand, one can easily see that

o0
D= U D,,.
n=1
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Indeed, for fixed = € D, define the sequence x,, by

(1/t)"z —w
Ty =
1/t —1
Then z,, — z if n — oco. The set being open, x,, € D for some n. Therefore
~wA+ (/)" = 1)z,
B 1/t
Thus f is locally bounded from above on D.
Now, we prove that f is locally bounded from below. Let ¢ € D be

arbitrary. Since f is locally bounded from above at the point ¢, hence
there exists p > 0 and M > 0 such that

=t"w+ (1 —-t")z, € t"w+ (1 —1t")D = D,

sup f < M.
Ulg,0)

Let © € U(q, 0) and y := ﬁq — 1. Then, by (e, p, t)-convexity,

k

fla) = fltz+ (1= t)y) <tf(x)+ (L—t)f(y)+ D &

1=0

1

= |y —qglP

which implies

f(x)

v
I
~
—~
-
|
~
<
~—
|
I
D

> - flg) ———M - —Z&ﬁgpi =: M".

Therefore f is locally bounded from below at any point of D. O

The next theorem essentially weakens the local boundedness assump-
tion if the underlying space is of finite dimension. It can be derived from
Theorem 3 adopting the argument followed in [HP04] (that is based on
STEINHAUS’ and PICCARD’s theorems (cf. [Ste20], [Pic42])).

Theorem 4. Let ¢ = (gg,...,6x) € [0,00[**, p = (po,...,pr) €
[0,00[F*1, and t € ]0,1/2]. Let D be an open convex subset of R" and
f : D — R be an (e,p,t)-convex function. Assume that there exist a
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Lebesgue-measurable set of positive measure (or a Baire-measurable set
of second category) S C D and a Lebesgue-measurable (resp. a Baire-
measurable) function g : S — R such that f < g on S. Then f is locally
bounded on D.

The next result states that if all the components of p are positive
then the local upper boundedness of an (e, p,t)-convex function yields its
continuity as well. The proof is analogous to what was followed for (e, 0)-
midconvexity in [HP04].

Theorem 5. Let ¢ = (gg,...,6x) € [0,00[F*, p = (po,...,pr) €
10,00[F*1, and t € 10,1/2]. If f : D — R is (g,p,t)-convex and locally
bounded from above at a point of D, then it is continuous.

4. Main results

The following result offers a generalization of the theorems of BERN-
STEIN and DOETSCH [BD15], NG and NIKODEM [NN93] and the results of
PALES [P4l00] and HAzY and PALES [HP04].

Theorem 6. Let ¢ = (gg,...,6x) € [0,00[F*, p = (po,...,pr) €
[0,00F*1, and t € ]0,1/2]. If f : D — R is (g,p,t)-convex and locally
bounded from above at a point of D, then

k
flsz+(1=s)y) < sfl@)+(1—9)f(y)+ D eippals)lz gyl (11)
1=0

for all z,y € D and s € [0, 1], (where pp, ; is the fixed point of the operator
Ty, defined in Section 2).

PrOOF. Due to Theorem 3, f is locally bounded at each point of D.
Thus f is bounded on each compact subset of D.

Let z,y € D be fixed and denote by K, , the upper bound of the
function

s f(sz+(1=s)y)—sf(x) =1 =9)f(y)  (s€0,1]).
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We are going to show, by induction on n, that

flsz+ (1 =s)y) <sf(@)+ 1 —s)f(y)+ (1 -t)"Kay

k 12
+ Zsi(Tp’i,tO)(s)lw —ylP 12
=0

for all z,y € D and s € [0, 1], where 0 denotes the identically zero function
on [0,1].

For n = 0, the statement follows from the definition of K, .

Assume that (12) is true for some n € N. Suppose that s € [1/2,1].
Then, due to the (e, p,t)-convexity of f, we get

f(s:c+(1—s)y):f<tx+(1—t) <i:ix+ i:iy>>

k )

s—t 1—s 1—s\" )
Stf(x)Jr(l—t)f(l_t:c—i—l—_ty)+Ze,~<1_t> |z — y[Pe.
=0

On the other hand, using (12), we have that

_ 1 _ 1
F(3ge o0) < @+ 1)

k
1-s ,
0" Ky (T30 (155 b - o

=0

Combining these two inequalities, we obtain

flsz+(1=s)y) < sf@)+ 1 =s)f(y)+ (1 - 1)Ky

+§;5i ((1 —0)(T7.,0) (1:?) T G:i)p) p—_—

k

=sf@)+ Q= 9)fy)+ Q- )" Kyy + > a(Tpt'0)(s)]a — yP.
=0

Thus, we proved (12) for s € [1/2,1]. A completely similar argument shows
that (12) is also valid for s € [0,1/2].
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To complete the proof of the theorem, we take the limit n — oo in
(12) and we get (11). O
Applying the right hand side inequality of Theorem 2, if the parame-

ters p; are smaller than 1, we immediately get the following result.

Corollary. Let ¢ = (gg,...,e;) € [0,00[F, p = (po,...,px) €
[0,1[F* and t € ]0,1/2]. If f : D — R is (g,p,t)-convex and locally
bounded from above at a point of D, then

flsz+(1=s)y) <sf(z)+(1-s)f(y)

k ' |

for all x,y € D and s € [0,1].

Proor. It follows from Theorem 2 that, for 0 < p; < 1,

&_ _H\Pi (1 — s(1 — g))\P
Ppit < ’Ypi,t(o) - (1 t) (1 t)( (1 )) )

where the function 7,; was defined in Lemma. Thus the statement is an
immediate consequence of the previous theorem. ]
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