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On Douglas metrics

By XINYUE CHEN (Chongqing) and ZHONGMIN SHEN (Indianapolis)

Abstract. In this paper, we discuss Douglas metrics with relatively isotropic
Landsberg curvature or isotropic mean Berwald curvature. Then we introduce the
Finsler metrics of isotropic Berwald curvaure. We prove an equivalence among
the above metrics.

1. Introduction

In Finsler geometry, there are several important classes of Finsler met-
rics. The Berwald metrics were first investigated by L. Berwald. Every
Finsler metric F on a manifold M induced a spray G = yi ∂

∂xi − 2Gi ∂
∂yi

which determines the geodesics. By definition, a Finsler metric F is a
Berwald metric if the spray coefficients Gi = Gi(x, y) are quadratic in
y ∈ TxM at every point x, i.e.,

Gi =
1
2
Γi

jk(x)yjyk.

Riemannian metrics are special Berwald metrics. In fact, Berwald metrics
are “almost Riemannian” in the sense that every Berwald metric is affinely
equivalent to a Riemannian metric, i.e., the geodesics of any Berwald met-
ric are the geodesics of some Riemannian metric [12]. The Douglas metrics
are more generalized ones than Berwald metrics. A Finsler metric is called
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a Douglas metric if the spray coefficients Gi = Gi(x, y) are in the following
form:

Gi =
1
2
Γi

jk(x)yjyk + P (x, y)yi. (1)

Douglas metrics form a rich class of Finsler metrics including locally pro-
jectively flat Finsler metrics. The study on Douglas metrics will enhance
our understanding on the geometric meaning of non-Riemannian quanti-
ties.

There are two imoportant non-Riemannian quantities: the mean Ber-
wald curvature (E-curvature) and the Landsberg curvature (L-curvature).
If G = yi ∂

∂xi − 2Gi ∂
∂yi is the spray of a Finsler metric F , then the mean

Berwald tensor E = Eijdxi ⊗ dxj and the Landsberg tensor L = Lijkdxi ⊗
dxj ⊗ dxk are respectively defined by

Eij :=
1
2

∂2

∂yi∂yj

(
∂Gm

∂ym

)
, Lijk := −1

2
ysgms

∂3Gm

∂yi∂yj∂yk
.

Clearly, for Berwad metrics, E = 0 and L= 0. Finsler metrics with E = 0
are called weakly Berwald metrics and those with L = 0 are called Lands-
berg metrics. There are many weakly Berwald metrics which are non-
Berwaldian, but so far, we do not know if every Landsberg metric is
Berwaldian. This is a long existing open problem in Finsler geometry.
The class of Douglas metrics is much larger than that of Berwald metrics.
In this paper, we are prove the following theorem for a general Douglas
metrics.

Theorem 1.1. Let (M,F ) be a non-Riemannian Douglas manifold of

dimension n ≥ 3. Then the following are equivalent:

(a) F has isotropic mean Berwald curvature;

(b) F has relatively isotropic Landsberg curvature.

We shall introduce Finsler metrics with isotropic Berwald curvature.
We shall prove that, if a Finsler metric is a Douglas metric satisfying
condition (a) or (b) in Theorem 1.1, then it must have isotropic Berwald
curvature, and vice versa. This particularly implies that any Douglas
metric with vanishing Landsberg curvature must be a Berwald metric.
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2. Preliminaries

Let M be a manifold of dimension n and let π∗TM denote the pull-
back tangent bundle over the slit tangent bundle TM0 := TM \ {0} by
the natural projection π : TM0 → M . Denote by { ∂

∂xi ,
∂

∂yi } be the local
natural frame and {dxi, dyi} the local natural coframe for T (TM0) in a
standard local coordinate system (xi, yi) in TM0. Denote by {∂i} the local
natural frame for π∗TM corresponding to the local natural frame { ∂

∂xi }
for the tangent bundle TM .

Let F be a Finsler metric on manifold M of dimension n. We have
two tensors

g := gijdxi ⊗ dxj , h := hijdxi ⊗ dxj ,

where gij := 1
2 [F 2]yiyj and hij := FFyiyj = gij − FyiFyj . The first im-

portant quantity is the Cartan tensor C = Cijkdxi ⊗ dxj ⊗ dxl, where
Cijk = 1

4 [F 2]yiykyl . Let G be the induced spray. G = yi ∂
∂xi − 2Gi ∂

∂yi is a
special vector field on TM0, which is defined by

Gi =
1
4
gil

{
[F 2]xkylyk − [F 2]xl

}
,

where (gij) := (gij)−1. The spray determines the geodesics of F by

ẍi + 2Gi(x, ẋ) = 0.

More precisely, the geodesics of F are the projections of the integral curves
of G.

By definition, F is a Berwald metric if the spray coefficients Gi =
Gi(x, y) are quadratic in y ∈ TxM at every point x ∈ M . For a general
Finsler metrics it is natural to consider the following term

Bj
i
kl :=

∂3Gi

∂yj∂yk∂yl
.

It is easy to verify that B := Bj
i
kldxj ⊗ ∂i ⊗ dxk ⊗ dxl is a well-defined

tensor on TM0. We call B the Berwald tensor. The mean Berwald tensor
E = Eijdxi ⊗ dxj is defined by

Eij :=
1
2
Bm

m
ij =

1
2

∂2

∂yi∂yj

(
∂Gm

∂ym

)
. (2)
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The Landsberg tensor L = Lijkdxi ⊗ dxj ⊗ dxk is defined by

Lijk := −1
2
ysgsmBi

m
jk = −1

2
ysgsm

∂3Gm

∂yi∂yj∂yk
. (3)

We have the following important Bianchi identity:

∂Ljkl

∂ym
− ∂Ljkm

∂yl
=

1
2
gilBm

i
kj − 1

2
gimBl

i
kj. (4)

See (10.12) in [11] for a proof.

Definition 2.1. Let F be a Finsler metric on an n-dimensional mani-
fold M .

(a) F has isotropic mean Berwald curvature if

Eij =
n + 1

2
cFyiyj . (5)

(b) F has relatively isotropic Landsberg curvature if

Lijk + cFCijk = 0. (6)

(c) F has isotropic Berwald curvature if

Bj
i
kl = c

{
Fyjykδi

l + Fyjylδi
k + Fykylδi

j + Fyjykylyi
}
. (7)

Here c = c(x) in (5)–(7) is a scalar function on M .

Since hij = FFyiyj and hi
j := gikhjk = δi

j − F−2gjsy
syi, (7) can

expressed as

Bj
i
kl = cF−1

{
hjkh

i
l + hjlh

i
k + hklh

i
j + 2Cjkly

i
}
. (8)

Example 2.2. The Funk metric Θ = Θ(x, y) on a strongly convex
domain in R

n has isotropic Berwald curvature with c = 1
2 .

Let

Dj
i
kl :=

∂3

∂yj∂yk∂yl

(
Gi − 1

n + 1
∂Gm

∂ym
yi

)
,

It is easy to verify that D := Dj
i
kldxj ⊗ ∂i ⊗ dxk ⊗ dxl is a well-defined

tensor on TM0. We call D the Douglas tensor. By a direct computation,
one can express Dj

i
kl as follows.

Dj
i
kl := Bj

i
kl − 2

n + 1

{
Ejkδ

i
l + Ejlδ

i
k + Eklδ

i
j +

∂Ejk

∂yl
yi

}
. (9)
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It is easy to verify that (1) holds if and only if

Gi − 1
n + 1

∂Gm

∂ym
yi =

1
2
Γi

jk(x)yjyk, (10)

and (10) holds if and only if D = 0. Thus Douglas metrics are also char-
acterized by the curvature equation D = 0. By (9), one can easily see that
every Berwald metric is a Douglas metric. There are many non-Berwaldian
Douglas metrics. For example, a Randers metric F = α + β is a Douglas
metric if and only if β is closed [1].

In [6], we prove that a Randers metric F = α + β with β closed has
isotropic mean Berwald curvature if and only if it has relatively isotropic
Landsberg curvature [6]. In this paper, we generalize this result.

Proposition 2.3. Let F be a non-Riemannian Finsler metric on a

manifold of dimension n ≥ 3. The following are equivalent.

(a) F is of isotropic Berwald curvature;

(b) F is a Douglas metric with isotropic mean Berwald curvature;

(c) F is a Douglas metric with relatively isotropic Landsberg curvature.

From Proposition 2.3, we see that every Finsler metric of isotropic
Berwald curvature is a Douglas metric.

Besides Randers metrics, there are many interesting Douglas metrics.

Example 2.4. Let F = (α2 + β2)/α, where α =
√

aijyiyj be a Rie-
mannian metric and β = biy

i be a 1-form on a manifold M with b :=√
aijbibj < 1 at any point x ∈ M . Then F is a Finsler metric. M. Ma-

tsumto [10] has proved that when n = dim M ≥ 3, F is a Douglas metric
if and only if

bi|j = c
{
(1 + 2b2)aij − 3bibj

}
.

where c = c(x) is a scalar function on M . In this case, we can show that

Gi = Ḡi + c
{
Pyi + α2bi

}
,

where P = −2β3/(α2+ β2) and Ḡi= Ḡi(x, y) are the spray coefficients of α.
One has

∂Gm

∂ym
=

∂Ḡm

∂ym
+ c{(n + 1)P + 2β}.
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Thus

Eij =
n + 1

2
cPyiyj .

Clearly, F does not have isotropic mean Berwald curvature.

The Douglas tensor is a projective invariant, namely, if two Finsler
metrics F and F̄ are projectively equivalent,

Gi = Ḡi + Pyi,

where P = P (x, y) is positively y-homogeneous of degree one, then the
Douglas tensor of F is same as that of F̄ . Thus if a Finsler metric is
projectively equivalent to a Berwald metric, then it is a Douglas metric.
However, it is still an open problem whether or not every Douglas metric
is (locally) projectively equivalent to a Berwald metric.

3. Proof of Theorem 1.1

Lemma 3.1. Let F = F (x, y) be a Douglas metric on an n-dimensional

manifold M . If E = 1
2(n + 1)cF−1h, then L + cFC = 0.

Proof. By (9), D = 0 if and only if

Bj
i
kl =

2
n + 1

{
Ejkδ

i
l + Ejlδ

i
k + Eklδ

i
j +

∂Ejk

∂yl
yi

}
. (11)

Plugging Ejk = 1
2 (n + 1)cFyiyj into (11), one obtains

Bj
i
kl = c

{
Fyjykδi

l + Fyjylδi
k + Fykylδi

j + Fyjykylyi
}

= cF−1
{
hjkh

i
l + hjlh

i
k + hklh

i
j + 2Cjkly

i
}
.

(12)

Contracting with (12) with −1
2ysgsi, one immediately obtains

Ljkl = −1
2
ysgsiBj

i
kl = −cFCjkl. �

The converse is almost true.
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Lemma 3.2. Let F = F (x, y) be a non-Riemannian Douglas metric

on an n-dimensional manifold M (n ≥ 3). If L + cFC = 0, then E =
1
2(n + 1)λF−1h for some scalar function λ = λ(x). Moreover, λ(x) = c(x)
at any point x where Fx is not Euclidean.

Proof. By assumption, (11) holds and

Ljkl = −cFCjkl. (13)

Contracting Bj
i
kl with hm

i := δm
i − F−2gisy

sym and using (3) and (13),
one obtains

hm
i Bj

i
kl = Bj

m
kl + 2F−2Ljkly

m = Bj
m

kl − 2cF−1Cjkly
m. (14)

Contracting (11) with hm
i and using (14), one obtains

Bj
m

kl =
2

n + 1
{
Ejkh

m
l + Ejlh

m
k + Eklh

m
j

}
+ 2cF−1Cjkly

m. (15)

Plugging (13) and (15) into (4), one obtains

Ekmhjl + Ejmhkl − Eklhjm − Ejlhkm = 0. (16)

Contracting (16) with gjm yields

Ekl =
1
2
(n + 1)λF−1hkl, (17)

where
λ :=

2
n2 − 1

FgjmEjm.

Next we are going to show that λ = λ(x, y) is independent of y ∈ TxM

at any point x ∈ M . Plugging (17) into (11) and (15) respectively, one
obtains

Bi
jkl =

λ

F

{
hjkδ

i
l + hjlδ

i
k + hklδ

i
j

}
+

[
λF−1hjk

]
yly

i

=
λ

F

{
hjkh

i
l + hjlh

i
k + hklh

i
j

}
+ 2cF−1Cjkly

i.

Comparing the above two identities yields

λylhjk = 2(c − λ)Cjkl. (18)
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Contracting (18) with gjk yields

λyl =
2

n − 1
(c − λ)Il. (19)

Plugging (19) into (18), one obtains

(c − λ)
{
(n − 1)Cjkl − Ilhjk

}
= 0. (20)

Contracting the above identity with gjk yields

(n − 2)(c − λ)Il = 0.

Since n ≥ 3, the above equation becomes

(c − λ)Il = 0.

Then it follows from (19) that λyl = 0. Thus λ = λ(x) is independent of
y ∈ TxM .

Now it follows from (18) that

(c − λ)Cjkl = 0.

At any point x ∈ M where Fx = F |TxM is not Euclidean, Cjkl(x, y) �= 0
for some y ∈ TxM \ {0}. Then c(x) = λ(x). This completes the proof. �

Lemma 3.2 might be true too in dimension two. But we do not find a
short proof for this conjecture.

4. Isotropic Berwald curvature

In this section, we are going to prove Proposition 2.3.

Lemma 4.1. Let F be a Finsler metric on an n-dimensional mani-

fold M . The following are equivalent.

(a) F is of isotropic Berwald curvature satisfying (8) for a scalar function

c = c(x) on M ;

(b) D = 0 and E = 1
2(n + 1)cF−1h for a scalar function c = c(x) on M .
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Proof. Assume that (8) holds. Then by (2), one obtains

Ejk =
1
2
Bj

m
km =

1
2
(n + 1)cF−1hjk =

1
2
(n + 1)cFyiyj .

Plugging it into (18) yields (11). Thus Dj
i
kl = 0. Conversely, suppose

that F = F (x, y) is a Douglas metric with E = 1
2(n + 1)cF−1h. Plugging

Ejk = 1
2 (n + 1)cFyjyk into (11) yields (12). Thus F has isotropic Berwald

curvature. This is already proved in Lemma 3.1. �

By Lemmas 3.2 and 4.1, one can easily show the following

Lemma 4.2. Let F be a Finsler metric on an n-dimensional mani-

fold M . The following hold

(a) If F is of isotropic Berwald curvature satisfying (8) for a scalar func-

tion c = c(x) on M , then D = 0 and L + cFC = 0;

(b) (n ≥ 3) If D = 0 and L + cFC = 0 for a scalar function c = c(x) on

M , then F is of isometric Berwald curvature satisfying (8) for a scalar

function λ = λ(x). In this case, λ(x) = c(x) at point x where Fx is

not Euclidean.

One immediately obtains the following corollary.

Corollary 4.3 ([2]). Let F be a Douglas metric on a manifold M of

dimension n ≥ 3. Suppose that L = 0, then F is a Berwald metric.
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