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On Douglas metrics

By XINYUE CHEN (Chongging) and ZHONGMIN SHEN (Indianapolis)

Abstract. In this paper, we discuss Douglas metrics with relatively isotropic
Landsberg curvature or isotropic mean Berwald curvature. Then we introduce the
Finsler metrics of isotropic Berwald curvaure. We prove an equivalence among
the above metrics.

1. Introduction

In Finsler geometry, there are several important classes of Finsler met-
rics. The Berwald metrics were first investigated by L. Berwald. Every
Finsler metric F' on a manifold M induced a spray G = y' 8?:1' — 2Giaiw
which determines the geodesics. By definition, a Finsler metric F' is a
Berwald metric if the spray coefficients G* = G*(z,y) are quadratic in

y € T, M at every point z, i.e.,

1. -
G = JTh (Y

Riemannian metrics are special Berwald metrics. In fact, Berwald metrics

are “almost Riemannian” in the sense that every Berwald metric is affinely

equivalent to a Riemannian metric, i.e., the geodesics of any Berwald met-

ric are the geodesics of some Riemannian metric [12]. The Douglas metrics

are more generalized ones than Berwald metrics. A Finsler metric is called
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a Douglas metric if the spray coefficients G* = G*(z,y) are in the following
form:

1. . )
G' = ST @)y'y* + P, )y 1)

Douglas metrics form a rich class of Finsler metrics including locally pro-
jectively flat Finsler metrics. The study on Douglas metrics will enhance
our understanding on the geometric meaning of non-Riemannian quanti-
ties.

There are two imoportant non-Riemannian quantities: the mean Ber-
wald curvature (E-curvature) and the Landsberg curvature (L-curvature).
If G =yt 8?:1' —2G" Bzi is the spray of a Finsler metric F', then the mean
Berwald tensor £ = Eijdxi ® da? and the Landsberg tensor £ = Lijkdxi ®
dz? @ dz* are respectively defined by

1 02 oG™ 1 BGm
9T S Dol (8—7”) s Lk = —3Y gmsm-
Yy oy Y Yy oy’ oy

Clearly, for Berwad metrics, £ =0 and £=0. Finsler metrics with £ =0
are called weakly Berwald metrics and those with £ = 0 are called Lands-
berg metrics. There are many weakly Berwald metrics which are non-
Berwaldian, but so far, we do not know if every Landsberg metric is
Berwaldian. This is a long existing open problem in Finsler geometry.
The class of Douglas metrics is much larger than that of Berwald metrics.
In this paper, we are prove the following theorem for a general Douglas
metrics.

Theorem 1.1. Let (M, F) be a non-Riemannian Douglas manifold of
dimension n > 3. Then the following are equivalent:

(a) F has isotropic mean Berwald curvature;

(b) F has relatively isotropic Landsberg curvature.

We shall introduce Finsler metrics with isotropic Berwald curvature.
We shall prove that, if a Finsler metric is a Douglas metric satisfying
condition (a) or (b) in Theorem 1.1, then it must have isotropic Berwald
curvature, and vice versa. This particularly implies that any Douglas
metric with vanishing Landsberg curvature must be a Berwald metric.
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2. Preliminaries

Let M be a manifold of dimension n and let 7*T'M denote the pull-
back tangent bundle over the slit tangent bundle T'My := TM \ {0} by
the natural projection m : TMy — M. Denote by {8:82“ 8?/1'} be the local
natural frame and {dz?,dy’} the local natural coframe for T(TMy) in a

standard local coordinate system (z%,y") in T My. Denote by {;} the local

a —
ox?

natural frame for 7*TM corresponding to the local natural frame {
for the tangent bundle T'M.

Let F be a Finsler metric on manifold M of dimension n. We have
two tensors

g = gijdz' @dx?,  h:= hjjda’ @ da’,

where g;; := %[FQ]yiyj and hij == FFji,; = gij — Fyiij.‘ The first im-
portant quantity is the Cartan tensor C = Cjjpdar' @ dr’ ® dz!, where
Cijk = %[Fg]yiykyl. Let G be the induced spray. G = yia‘zi - 2Gia%i is a
special vector field on T' My, which is defined by

1
G' = Zgll{[Fg]xkylyk — [Fg]xl},

where (¢/) := (g;;)~'. The spray determines the geodesics of F' by
# 4+ 2G%(x, %) = 0.

More precisely, the geodesics of F' are the projections of the integral curves
of G.

By definition, F is a Berwald metric if the spray coefficients G* =
G'(z,y) are quadratic in y € T, M at every point x € M. For a general
Finsler metrics it is natural to consider the following term

- PG
Bty = ————r.
IR Dyd yk Oyl
It is easy to verify that B := Bjikldxj ® 9; @ dzF @ dz' is a well-defined

tensor on T'My. We call B the Berwald tensor. The mean Berwald tensor
€ = E;jdx' ® da’ is defined by

1 1 92 OG™
Ei‘ = —Bmmi‘ = - - | . 2
T2 Y 20 0y <8ym> 2
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The Landsberg tensor £ = Lijkdxi ® dzd @ dx* is defined by

1 1 »am
L. y :: - s Bm y - — = $ o~ -~ 1. 3
ijk 2y GsmDj 7k 2y gsmaylﬁywyk ( )
We have the following important Bianchi identity:
0Lk OL 1 ; 1 :
3me - 8;lm = 59 Bm’kj = 59mB'kj. (4)

See (10.12) in [11] for a proof.

Definition 2.1. Let F' be a Finsler metric on an n-dimensional mani-
fold M.

(a) F has isotropic mean Berwald curvature if

Eij = ”; L. (5)
(b) F has relatively isotropic Landsberg curvature if
Liji + cFCyj, = 0. (6)
(c¢) F has isotropic Berwald curvature if
Bj'ti = c{F 6] + Fyiyi0j + Fyen6s + Fey' }- (7)

Here ¢ = ¢(z) in (5)—(7) is a scalar function on M.

Since h;; = FF,; and h;- = g%hjy, = 5;- — F2g;55°y", (7) can
expressed as

Byl = cF~ Y hjphi + hyihl, + highl + 2C;0y° ) (8)

Ezample 2.2. The Funk metric ®© = O(z,y) on a strongly convex

domain in R™ has isotropic Berwald curvature with ¢ =

Let

N[ —

| & 1 aam
DYyyi= —— L ——"
N T, (G nt 1oy’ > ’

It is easy to verify that D := Djiklda:j ® 0; @ dz* @ dx! is a well-defined
tensor on T'My. We call D the Douglas tensor. By a direct computation,
one can express Djikl as follows.

Djlk,l = lek:l — n——l—l {E]k(sll + Ejlé}g + Ekl(S; + 8;[ y’} . (9)
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It is easy to verify that (1) holds if and only if

r oG™ ;
n—l—laymy N

Tl (2)y'y", (10)

i

1
2
and (10) holds if and only if D = 0. Thus Douglas metrics are also char-
acterized by the curvature equation D = 0. By (9), one can easily see that
every Berwald metric is a Douglas metric. There are many non-Berwaldian
Douglas metrics. For example, a Randers metric F' = a + 3 is a Douglas
metric if and only if 3 is closed [1].

In [6], we prove that a Randers metric F' = o + (§ with 3 closed has
isotropic mean Berwald curvature if and only if it has relatively isotropic
Landsberg curvature [6]. In this paper, we generalize this result.

Proposition 2.3. Let F' be a non-Riemannian Finsler metric on a
manifold of dimension n > 3. The following are equivalent.
(a) F is of isotropic Berwald curvature;
(b) F' is a Douglas metric with isotropic mean Berwald curvature;

(¢) F is a Douglas metric with relatively isotropic Landsberg curvature.

From Proposition 2.3, we see that every Finsler metric of isotropic
Berwald curvature is a Douglas metric.

Besides Randers metrics, there are many interesting Douglas metrics.

Ezample 2.4. Let F = (a® + 3?)/a, where o = \/a;;y'y? be a Rie-
mannian metric and 3 = b;y* be a 1-form on a manifold M with b :=
Vaijb'hl < 1 at any point € M. Then F is a Finsler metric. M. MA-
TSUMTO [10] has proved that when n = dim M > 3, F'is a Douglas metric
if and only if

bi|j = C{(l + 2b2)aij — 3bibj}.

where ¢ = ¢(x) is a scalar function on M. In this case, we can show that
G'=G" + c{Py' +a*V'},

where P = —233/(a?+ %) and G'= G?(xz,y) are the spray coefficients of a.
One has B
oG™  oG™

ay—m = ay—m +c{(n+1)P+25}.
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Thus

n+1
Eij = 9 CPyiyj.
Clearly, F' does not have isotropic mean Berwald curvature.

The Douglas tensor is a projective invariant, namely, if two Finsler
metrics F' and F are projectively equivalent,

G'=G"'+ Py,

where P = P(x,y) is positively y-homogeneous of degree one, then the
Douglas tensor of F is same as that of F. Thus if a Finsler metric is
projectively equivalent to a Berwald metric, then it is a Douglas metric.
However, it is still an open problem whether or not every Douglas metric
is (locally) projectively equivalent to a Berwald metric.

3. Proof of Theorem 1.1

Lemma 3.1. Let F' = F(z,y) be a Douglas metric on an n-dimensional
manifold M. If €= 4(n+ 1)cF~'h, then L + ¢FC = 0.

PRrROOF. By (9), D =0 if and only if

. ) ) . . OB
szkl = n——|—1 {Ejkéf + Ejl5,’c + Ekl(S; + 8yl yl} . (11)

Plugging Ejj, = %(n + 1)cFi,; into (11), one obtains

Bjikl = C{Fy k5l’ + ijylélic + Fykyl(s; + ijykylyi}

Ty
. . . . (12)
= cF ™ {hyihi + hjhj + hihl + 2C5uy' -
Contracting with (12) with —%ys gsi, one immediately obtains
1 s A
Ljy = —5Y 9siBj' = —cFCjy. O

The converse is almost true.
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Lemma 3.2. Let F = F(x,y) be a non-Riemannian Douglas metric
on an n-dimensional manifold M (n > 3). If L+ ¢FC = 0, then £ =
$(n 4+ 1)AF~'h for some scalar function A = A(z). Moreover, A(z) = c(z)
at any point x where F,. is not Euclidean.

PROOF. By assumption, (11) holds and
ijl = —CFCjkl. (13)

Contracting By with A" := 6™ — F~2g;sy°y™ and using (3) and (13),
one obtains

h'Bj'y = By + 2F 2 Ljjy™ = Bt — 2¢F 1 Ciry™. (14)
Contracting (11) with A" and using (14), one obtains
B = %H{Ejkh}” + Egh + Egh™} + 2eF " Cry™.  (15)
Plugging (13) and (15) into (4), one obtains
Ermhji + Ejmhi — Egihjm — Ejihg, = 0. (16)
Contracting (16) with ¢g/™ yields
Ey = %(n + DAF " hyy, (17)

where
2

A=
n?—1

Fg"Ejm.

Next we are going to show that A = A(z,y) is independent of y € T,, M
at any point z € M. Plugging (17) into (11) and (15) respectively, one
obtains

. A . . , B ;
e = F{hjkél’ + hjib}, 4 hids} + [AF 1hjk}y,y
A ; ; ; _ i
= F{hjkh; + hjlhi; -+ hklh;} + 2¢F 1Cjk1y .
Comparing the above two identities yields

)\yl hjk = 2(6 — A)Cjkl- (18)
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Contracting (18) with ¢/% yields

2
/\yz = " — 1(8—)\)11. (19)

Plugging (19) into (18), one obtains
(C - /\){(n - 1)Cjkl - Ilhjk} = 0. (20)

Contracting the above identity with ¢/* yields
(n—=2)(c—=NI; =0.
Since n > 3, the above equation becomes
(c—= N1 =0.

Then it follows from (19) that A, = 0. Thus A = A(x) is independent of
ye T, M.
Now it follows from (18) that

(C - )\)Cjkzl = 0.

At any point € M where F, = F|r, s is not Euclidean, Cjy(z,y) # 0
for some y € T, M \ {0}. Then ¢(x) = A(z). This completes the proof. [

Lemma 3.2 might be true too in dimension two. But we do not find a
short proof for this conjecture.

4. Isotropic Berwald curvature

In this section, we are going to prove Proposition 2.3.
Lemma 4.1. Let F' be a Finsler metric on an n-dimensional mani-
fold M. The following are equivalent.

(a) F is of isotropic Berwald curvature satisfying (8) for a scalar function
¢=c(x) on M;
(b) D=0 and € = $(n+ 1)cF~'h for a scalar function ¢ = ¢(z) on M.
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PROOF. Assume that (8

~—

holds. Then by (2), one obtains

Ejp = 2B =
ik — 55 kEm —

_ 1
5 (n + 1)CF lhjk; = 5(’!2 + 1)CFyiyj.

N =

Plugging it into (18) yields (11). Thus D;%; = 0. Conversely, suppose
that F' = F(x,y) is a Douglas metric with £ = %(n + 1)cF~'h. Plugging
Ejp=%(n+ 1)cF,,x into (11) yields (12). Thus F' has isotropic Berwald
curvature. This is already proved in Lemma 3.1. Il

By Lemmas 3.2 and 4.1, one can easily show the following

Lemma 4.2. Let I' be a Finsler metric on an n-dimensional mani-
fold M. The following hold

(a) If F is of isotropic Berwald curvature satisfying (8) for a scalar func-
tion ¢ = ¢(x) on M, then D =0 and L + ¢FC = 0;

(b) (n>3) If D=0 and L+ cFC = 0 for a scalar function ¢ = ¢(z) on
M, then F is of isometric Berwald curvature satisfying (8) for a scalar
function A = A\(x). In this case, A(x) = c(x) at point x where F, is
not Euclidean.

One immediately obtains the following corollary.

Corollary 4.3 ([2]). Let F' be a Douglas metric on a manifold M of
dimension n > 3. Suppose that L = 0, then F is a Berwald metric.
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