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Intertwined basins of attraction for flows
on a smooth manifold

By CHANGMING DING (Hangzhou)

Abstract. In this article, we give some sufficient conditions to guarantee
the existence of intertwined basins of attraction for flows on a smooth manifold.

1. Introduction

One of the objectives of science is prediction. For a dynamical system
with multiple attractors, the main prediction problem then is to determine
which basin of attraction a given point is in, that is, which attractor the
trajectory through that point will be attracted to. If it happens that
different basins of attraction have mutual boundaries, the basin boundaries
can be much complicated (see [3], [5], [6] and references therein). So near
such boundaries a small uncertainty in the position of the initial point
may yield a large uncertainty as to which attractor the trajectory will go
to. Several recent papers [2], [9]–[12] discuss the property of intertwined
basins of attraction, in some extent it also leads to the obstruction to
predictability. In [9] intertwined basins of attraction are elucidated by
examples without much theoretical analysis. According to the work of [9],
the author of [10] hopes to give a definition of intertwined basins, however
his formula is self-contradictory (see [2]). After that, in [11] the same
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author tries to give a rigorous proof of the result in [10], he uses a new
definition ([11, p. 656, Def. 2.1]). Also he use that new definition to discuss
basin boundaries for OED’s on the two-dimensional sphere S2 ([12, p. 148,
Def. 3.1]). However, we think that his new definition of intertwined basins
is still unsuitable. We restate his definition word for word from [11], [12]:

“Suppose that φt is a flow for an ODE on R2 (or S2). Two basins
of attraction are said to be intertwined, if they have a common boundary
and that common boundary, call it ∂B, has the following property: There
are points x and y in ∂B such that for every ε > 0, there exists t1 > 0 such
that the point φ(y, t1) is contained in the intersection of the ε-disc D(x, ε)
centered at x and a line Lx transversal to the vector field generated by the
flow at the point x, or equivalently D(x, ε) ∩ {φ(y, t1)} ∩ Lx �= ∅.”

Consider a system on S2 defined as follows: The equator is an unstable
limit cycle. The trajectories through points in the southern hemisphere
and in the northern hemisphere respectively spiral to two polar points.
Using the stereogaphic projection, we get such a system from the planar
system in polar coordinates: ṙ = r(r − 1) and θ̇ = 1, by adding an infinity
point to R2 as a sink. It is easy to see that the system on S2 has two
sinks whose basins of attraction are respectively the southern hemisphere
and the northern hemisphere with a common boundary the equator. Ob-
viously, all the conditions of above definition are satisfied, but there exist
no intertwined basins of attraction. So the definition is unsuitable. Also
it is easy to give a similar example for planar systems.

The goal of this article is to describe the phenomenon of intertwined
basins of attraction by a simple mathematical definition, and then to give
some sufficient conditions to guarantee the existence of intertwined basins.

2. Preliminaries

The general information of flows on a surface may be found in [1]. For
the convenience of reading, here we recall some basic notions. Let M be
a smooth two-dimensional manifold with a metric ρ, on which there is a
flow f : M × R → M defined by the vector field:

ẋ = V (x), x ∈ M. (2.1)
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Write x·t = f(x, t) and let A·J = {x·t | x ∈ A, t∈J} for A⊂M and J ⊂R.
So x ·R = {x}·R and x ·R+ = {x}·R+ are respectively the trajectory and
the positive semi-trajectory of a point x ∈ M . A set S is invariant under
the flow f if S · R = S holds. Thus an invariant set is composed of whole
trajectories. Throughout the paper for A ⊂ M , A, IntA and ∂A denote re-
spectively the closure, interior and boundary of A. The ω-limit set of x∈M

is the set ω(x) = {y ∈ M | there is a sequence tn ∈ R+ such that tn →
+∞ and x · tn → y}, equivalently ω(x) =

⋂
t≥0 x · [t,+∞). Similarly we

define the α-limit set α(x) of x by reversing the direction of time. A com-
pact and invariant set A is called an attractor for the flow f provided
that A has a shrinking neighborhood, i.e., there is an open neighborhood
U of A such that U · t ⊂ U for t > 0 and A =

⋂
t>0 U · t. If A is an

attractor, its basin of attraction B(A) is defined to be the set of initial
points x such that ω(x) ⊂ A, i.e., ρ(x · t, A) → 0 (t → +∞), where
ρ(x · t, A) = inf{ρ(x · t, a) | a ∈ A}, with no confusion we also use ρ for the
distance between a point and a set. Observe that the basin of attraction
B(A) can be expressed as

⋃
t<0 U · t for a shrinking neighborhood U of A.

Thus B(A) is an open set. By a sink we mean an equilibrium that is also
an attractor. For a point p ∈ M , let D(p, ε) denote the open disc with
radius ε > 0 and center p.

Denote O to be a saddle point of System (2.1), then the stable manifold
W s(O) and unstable manifold W u(O) are defined to be the following sets:

W s(O) = {x ∈ M | x · t → O as t → +∞},
W u(O) = {x ∈ M | x · t → O as t → −∞}.

The existence of a saddle point with its two branches of unstable manifold
approaching different attractors plays an essential role in occurrence of
intertwined basins of attraction.

Definition 1. Let p be a regular point of System (2.1), and L is a
transversal at p. We call that the system has intertwined basins of attrac-
tion beside p, if there exists an arc L1 ⊂L such that p is an endpoint of L1,
and for any ε > 0 both

L1 ∩ B(A1) ∩ D(p, ε) �= ∅ and L1 ∩ B(A2) ∩ D(p, ε) �= ∅ (2.2)

hold for two different attractors A1 and A2.
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Since L is a transversal at p, all the trajectories crosses L in the same
direction. Thus, on one side of the trajectory p · R the basins B(A1)
and B(A2) approach to p · R alternately, of course they become narrower
and narrower. Apparently both the basin of attraction B(A1) and its
boundary ∂B(A1) are invariant sets, it follows that p ·R ⊂ ∂B(A1). Then
by the continuity of dependence on initial conditions we see that the basins
B(A1) and B(A2) intertwine together along the trajectory p · R, it is a
common segment of boundaries ∂B(A1) and ∂B(A2). In this situation the
basins B(A1) and B(A2) are called to be of intertwining property, or the
System (2.1) is said to be of intertwining property. According to the above
argument, the prediction of which final attractor will be attained by the
system is constrained by the intertwined basins near the solution arc p ·R.

3. Main results

In this section we assume that O ∈ M is a saddle point, A1 and A2 are
two attractors of the System (2.1). Let B(A1) and B(A2) be respectively
the basins of A1 and A2. Denote by W s

1 (O) and W s
2 (O) the two branches

of the stable manifold W s(O), similarly W u
1 (O) and W u

2 (O) respectively
denote the two branches of the unstable manifold W u(O).

Theorem 3.1. Suppose that W u
1 (O) ⊂ B(A1) and W u

2 (O) ⊂ B(A2).
If α(W s

1 (O))∪α(W s
2 (O)) has a regular point p, then the System (2.1) has

the intertwining property.

Proof. Suppose that p ∈ α(W s
1 (O)) ∪ α(W s

2 (O)) is a regular point.
Let L be a transversal at p, then all the trajectories crosses L in the
same direction. Thus for a point q ∈ W s

1 (O) ∪ W s
2 (O), the negative semi-

trajectory q · R− crosses L successively at ti with 0 > t1 > t2 > · · ·
(ti → −∞) and q · ti tends monotonously to p along L (see [4, Chap. 7]).
Now for any ε > 0 we have q · tk ∈ D(p, ε/2) for a sufficiently large |tk|.
Take a sufficiently small λ > 0 such that D(q · tk, λ) ⊂ D(p, ε) holds.
Consider the diffeomorphism F = f(	, 1) : M → M , by the Inclination
Lemma ([7, p. 82]), it is easy to see that both Fn(D(q · tk, λ))∩B(A1) �= ∅
and Fn(D(q · tk, λ)) ∩ B(A2) �= ∅ hold for a sufficiently large n. Thus we
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obtain that f(D(q ·tk, λ), n)∩B(A1) �= ∅ and f(D(q ·tk, λ), n)∩B(A2) �= ∅.
It follows that (2.2) in Definition 2.1 is true, so the proof is completed. �

Corollary 3.2. Suppose that the system (2.1) just has a finite number

of sinks and a saddle point O whose unstable manifold connects two sinks

p1 and p2. If the manifold M is compact, then the system (2.1) has the

intertwining property.

Proof. Since the manifold of M is compact, we have α(W s
1 (O))∪

α(W s
2 (O)) �= ∅. Certainly, any sinks are not contained in α(W s

1 (O))∪
α(W s

2 (O)). Now the corollary follows easily from the Theorem 3.1. �

A Problem. If the basins B(A1) and B(A2) have the intertwining prop-
erty, is it possible that they intertwine elsewhere, not along W s(O) or
α(W s

1 (O)) ∪α(W s
2 (O))? Equivalently, is the converse of Theorem 3.1 also

true?

In the following, we give a partial answer to the problem if M is a
simply connected manifold.

Theorem 3.3. Let M be a simply connected two-dimensional mani-

fold. Suppose that W u
1 (O) ⊂ B(A1) and W u

2 (O) ⊂ B(A2), and futhermore

we assume that there exist no equilibria in M \ (A1 ∪ A2 ∪ {O}). Then

the System (2.1) has the intertwining property if and only if α(W s
1 (O))∪

α(W s
2 (O)) has a regular point p.

Proof. By Theorem 3.1 we only need to prove the necessity. If the
system (2.1) has the intertwining property, by Definition 2.1 there exist a
regular point p and a transversal L at p such that for a subarc L1 ⊂ L

with the endpoint p and for any ε > 0 both L1 ∩ B(A1) ∩ D(p, ε) �= ∅ and
L1 ∩ B(A2) ∩ D(p, ε) �= ∅ hold. To prove p ∈ α(W s

1 (O)) ∪ α(W s
2 (O)), we

only need to show that for any ε > 0 there is a point of W s
1 (O) ∪ W s

2 (O)
in the disc D(p, ε). Now choose two points p1 ∈ L1 ∩ B(A1) ∩ D(p, ε) and
p2 ∈ L1 ∩ B(A2) ∩ D(p, ε) respectively such that the segment L′

1 = p1p2

of L1 lies in D(p, ε). Apparently, p1 · t → A1 and p2 · t → A2 hold as
t → +∞. By the definition of attractor, there exists an open neighbor-
hood Ui of Ai (i = 1, 2) such that Ui and ∂Ui are homeomorphic to the
open unit disc and its boundary S1 respectively, further each point on ∂Ui

(i = 1, 2) goes into Int Ui under the flow f . Assume that p1 ·R+ and p2 ·R+
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respectively intersect ∂U1 and ∂U2 at q1 and q2, also W u
1 (O) and W u

2 (O)
respectively intersect ∂U1 and ∂U2 at q′1 and q′2. Thus we can choose two
suitable arcs q1q

′
1 on ∂U1 and q′2q2 on ∂U2 to constitute a Jordan curve

C = p1q1q
′
1Oq′2q2p2p1 along four solution arcs such that C surrounds a

bounded region G containing one branch of W s(O) but not containing A1

and A2. Since M is simply connected, C is a contractible loop. Then
G is homeomorphic to the disc. Without loss of generality, we suppose
W s

1 (O) ⊂ G. Observe that O �∈ α(W s
1 (O)) because O is a saddle point.

Since there exist no equilibria in G, W s
1 (O) ∩ L′

1 �= ∅ holds, otherwise by
the Poincaré–Bendixson Theorem there is at least an equilibrium in G. It
follows that D(p, ε) ∩ W s

1 (O) �= ∅. Now we complete the proof. �

Remark. The conclusion of [12, Proposition 2.1] is contained in the
famous Peixoto’s Theorem [8]. By the Bendixson Formula [4, p. 166] and
the index of an equilibrium, there exists no a system just with two sinks
and a saddle point on S2, so the result of [12, Theorem 3.6] is invalid.
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