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A G-version of Smale’s theorem

By IMRE MAJOR (Dunaújváros)

Abstract. We will prove the equivariant version of Smale’s transversality
theorem (see Smale [5]): suppose that the compact Lie-group G acts on the
compact differentiable manifold M on which an invariant Morse-function f and
an invariant vector field X are given so that X is gradient-like with respect to f
(i.e. X(f) < 0 away from critical orbits and X is the gradient of f (w.r.t. a fixed
invariant Riemannian metric) on some invariant open subsets about critical orbits
of f . Given a bound ε > 0 we will prove the existence of an invariant vector field
Y of class C1 for which vector field X + Y is also gradient-like such that:
(a) ‖Y ‖1 < ε (‖.‖1 is the C1 norm).
(b) The intersection of the stable and unstable sets of vector field X + Y taken

at a pair of critical orbits of f is transverse when restricted to an orbit type
of the action.

1. Introduction, basic concepts

Suppose, that a compact Lie group G acts on the compact orientable
smooth manifold Mm and let f : M → R be an invariant function (i.e.
f(gx) = f(x) (g ∈ G)). If an orbit contains a critical point of f then, by
invariance, all points of this orbit are critical points and the orbit itself is
called a critical orbit of f . Choose an invariant Riemannian metric g and
at a point p ∈M let

⊥p := [TpG(p)]⊥
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be the perpendicular complement of the tangent space to the orbit through
point p and let

Up := expp(⊥p(ε))

where ⊥p(ε) is the ε-disk about the origin in ⊥p on which the exponen-
tial map of the Levi–Civita connection of metric g is injective. Then a
critical point x of f is also a critical point of f |Ux. We say that the G-
invariant function f is a G-Morse function if the Hessian of f |Ux at x is
non-degenerate for each critical point x. This property does not depend
on the choice of metric g (see e.g. Wasserman [7]). Non-degeneracy of
the Hessian also ensures that each critical orbit has an invariant neighbor-
hood (called tube about the orbit) that does not contain any other critical
orbits. We can suppose, that GUx is such an invariant neighborhood.

The induced action of the isotropy subgroup Gp at a point p ∈M :

Gp × TpM/TpG(p) → TpM/TpG(p)

on the normal space is called the normal action (see e.g. Bredon [1]).

pr : M →M/G, p −→ G(p)

is the canonical projection. For a set N ⊂M we use notation N := pr(N).

Observe that the relation

x ∼ y ⇔ ∃ (g ∈ G) 	 Gx = gGyg
−1 (x, y ∈M)

is an equivalence relation onM . The equivalence classes provide a partition

M =
⋃

α∈A
Mα (1)

of M . The index set A is the set of conjugacy classes of isotropy subgroups
of G. It is partially ordered by relation

α ≺ β ⇔ ∀ (x ∈Mα) ∃ y ∈Mβ 	 Gy ⊂ Gx

(the property on the RHS does not depend on the choice of representative
x ∈Mα).

An index α ∈ A (or submanifold Mα) is called an orbit-type and we
say that a point p is of type α if p ∈Mα (in notation, [p] = α). Note, that
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Mα ⊂ M is a G-invariant subset. Theorem 4 of Chapter 3 in [1] implies
that Mα and Mα are smooth manifolds and the partition in formula (1) is
locally finite, thus A is finite when M is compact (cf. 4.3 Theorem, p. 187
and 10.4 Theorem, p. 220 in [1]).

As the boundary of an orbit type Mα is the union of some lower
dimensional orbit types that preceed α with respect to ≺, a level can be
associated to each orbit type: the closed ones are at level 0 and inductively,
for i > 0 an orbit type is at level i if its boundary contains orbit types of
level at most i− 1 and contains at least one orbit type at level i− 1. (The
level is also called the depth in the literature.)

Let mα := dim(Mα), m⊥
α := codim(Mα) and oα := dim(G/Gp) (p ∈

Mα). Notice that then dim(M) := m = mα + m⊥
α + oα. An α-slice is

an mα-dimensional disk D ⊂ Mα which intersects an orbit at most once
and along which the isotropy subgroup is constant, moreover the union of
orbits GD is open in Mα.

For an arbitrary subset Q ⊂M

Qα := Q ∩Mα

is the α-part of Q.

The set of differentials of left translations {dLg | g ∈ G} act on the
tangent bundle TM . A vector field X is invariant under this action (called
an invariant vector field) iff its flow is an eqivariant flow (i.e. for trajectory
λp of vector field X through point p

Lg(λp) = λgp

holds.) This implies that the isotropy subgroup is constant along trajec-
tories, in particular, an invariant vector field is tangent to the orbit types.

Definition 1. An invariant vector field X is gradient-like for the G-
Morse function f if:

(i) Each critical orbit has an invariant neighborhood U such that

X|U = − gradg(f)|U .

(ii) X(f) < 0 away from critical orbits.
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Definition 2. At a critical orbit O:

W−
O =

{
p ∈M | lim

t→−∞λp(t) ∈ O
}

is called the unstable set and

W+
O =

{
p ∈M | lim

t→+∞λp(t) ∈ O
}

is the stable set of the flow (of invariant vector field X). (Notations W s
O =

W+
O , W u

O = W−
O are also used in the literature.)

Definition 3. A Morse chart about critical orbit O is given by:

(i) A splitting of the normal bundle ⊥O of O into two invariant orthogonal
subbundles ⊥O = ⊥−

O ⊕⊥+
O.

(ii) An equivariant diffeomorphism ηO : ⊥O(ε) → UO from the ε-disc bun-
dle of the normal bundle of O (with constant ε) onto an invariant open
neighborhood UO of O (ηO is the identity on the zero section O of ⊥O)
such that

f ◦ ηO = −‖P−‖2 + ‖P+‖2 + f(O)

where (P−, P+) : ⊥O → (⊥−
O,⊥+

O) are the projections that belong to
the decomposition in (i). The open set UO is called a Morse-tube.

Observe that ⊥−
O −→ O and ⊥+

O −→ O are G-vector bundles in-
duced from the orthogonal representations on the Eucledian spaces ⊥−

x :=
⊥x ∩⊥−

O, ⊥+
x :=⊥x ∩⊥+

O. The restriction g|⊥O
is a scalar product on vector

bundle ⊥O, thus it defines a Reimannian metric 〈 , 〉 on ⊥O in the canonical
way. The push-forward ηO∗〈 , 〉 of this Riemannian metric along map ηO

can be patched together with original metric g by using an invariant cutoff
function. Thus we can presume that for the restrictions we have:

g|UO
= ηO∗〈 , 〉|UO

.

Lemma (Equivariant Morse Lemma). Let f : M → R be a G-Morse

function on a Riemannian G-manifold. Then there is a Morse chart about

each critical orbit (see Wasserman [7]).

Note that by the above lemma the stable and unstable sets are, in
fact, invariant submanifolds of M . Let O1, . . . , OK be the set of critical
orbits of f , and abbreviate W+

j := W+
Oj

, etc.
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Definition 4. The gradient-like vector field X (or its flow Λ : M×R →
M) is G-Morse–Smale if it is of class C1 moreover W+

j ∩Mα and W−
k ∩Mα

intersect transversely as submanifolds of Mα for each choice of α ∈ A,
1 ≤ j, k ≤ K. (We refer to this property as relative transversality of stable
and unstable submanifolds, or α-transversality, when the orbit type α is
fixed.)

As we wish to perturb a given gradient-like vector field by an invariant
vector field (the flow of which thus keeps orbit types), the above definition
seems to be the only plausible generalization for the G-version of Morse–
Smale property (see Smale [5]).

Theorem. For any given ε > 0 an invariant gradient-like vector field

X can be approximated by a G-Morse–Smale vector field X ′, which is also

gradient-like for f such that ‖X −X ′‖1 < ε.

2. Proof of the Theorem

In order to ensure that the perturbed vector field is C1-close to the
original one, we need a family of special coordinate charts. Invariant charts
would serve our purpose the best, however, we might not be able to ar-
range such charts with invariant domains (by compactness of group G, the
domain of such a chart cannot be an m-ball).

For each orbit type fix a representative isotropy subgroup Gα = Gpα

(where pα ∈ Mα), a coordinate chart
(
Eα,

(
x̃

mα+m⊥
α +1

α , . . . , x̃m
α

))
about

the unit element Gα of quotient group G/Gα, an open neighborhood E′
α ⊂

G/Gα of Gα such that E′
α ⊂ Eα and elements g1

α, . . . , g
nα
α ∈ G such that

the translates
g1
αE

′
α, . . . , g

nα
α E′

α

cover G/Gα. Note that each orbit of type α contains a point with isotropy
subgroup Gα. Let Nα

Πα−→Mα be the normal bundle of orbit type Mα.
It is a well known fact that G is a principal bundle over quotient group

G/Gα by the canonical projection G −→ G/Gα with structure group Gα,
so we can fix a section σα : Eα → G, σα(Gα) = e of this bundle over
contractible neighborhood Eα.
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Definition 5. A coordinate chart (U, (x1, . . . , xm)) is adapted to orbit
type α if there exists a relatively compact α-slice U∗

α ⊂ Mα with isotropy
subgroup Gα, a coordinate chart (U∗

α, x
1
α, . . . , x

mα
α )) (with respect to the

smoothness structure on quotient manifold Mα), an index 1 ≤ i ≤ nα and
ε > 0 such that:

(i) U = exp(Nα(ε)|U i
α
) with U i

α = gi
αEαU

∗
α, i.e. U is the exp-image of the

restriction of the ε-disc bundle of Nα to subset U i
α.

(ii) xi(q) = xi
α ◦ pr ◦ Πα ◦ exp−1(q) (i = 1, . . . ,mα, q ∈ U).

(iii) By clause (i), ∀ r ∈ U ∃! pair (gGα, q) ∈ Eα × U∗
α such that:

Πα ◦ exp−1(r) = gi
αgq

holds. Define

xi(r) = x̃i
α(gGα), (i = mα +m⊥

α + 1, . . . ,m). (2)

(iv) Fix an orthonormal frame bundle (v1, . . . ,vm⊥
α
) of trivial bundle

Nα|U∗
α

and extend it to U i
α by

vj(gi
αgq) = dLgi

ασα(gGα)(vj(q)) (j = 1, . . . ,m⊥
α , q ∈ U∗

α)

Define:

exp−1(r) =
m⊥

α∑
j=1

xmα+j(r)vj (r ∈ U). (3)

Note that the first mα coordinates do not depend on the choice of the
rest of the coordinates. For the definition of the C1-norm of a vector field
we need to fix a compact subset within each chart, which we can get as
follows:

Fix K∗
α ⊂ U∗

α compact set, 0 < ε′ < ε real number, let Ki
α = gi

αE
′
αK

∗
α

and define
K = exp

(
Nα(ε′)|Ki

α

) ⊂ U.

We will call int(K) the strong interior of chart (U, (x1, . . . , xm)). In the
sequel we will presume that each adapted chart has a fixed compact set in
its interior (even if we don’t state this explicitely).

To cover M choose adapted charts(
Uj , (x1

j , . . . , x
m
j )
)

(j = 1, . . . , j0)
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so that their strong interior cover the level-0 orbit types. Then the com-
plement of the union of strong interiors of these charts in any of the level-1
strata is compact, so it can be covered by the strong interiors of charts(

Uj , (x1
j , . . . , x

m
j )
)

(j = j0 + 1, . . . , j1)

so that each chart is adapted to the stratum at issue, a.s.o. Finally we get
a finite family of adapted coordinate charts so that their strong interiors
int(K1), . . . , int(KjL

) cover M (here L is the highest level).

Given a vector field Y with local coordinates:

Y |Uj =
m∑

i=1

yi
j

∂

∂xi
j

(j = 1, . . . , jL)

its C1-norm is defined as:

‖Y ‖1 :=
∑
i,j,k

(
sup
Kj

|yi
j| + sup

Kj

∣∣∣∣ ∂∂xk
j

yi
j

∣∣∣∣
)

(4)

We will perturb vector field X into a G-Morse–Smale vector field in
succession of increasing order of the level of strata. Although domains
U1, . . . , UjL

cover M , each stratum has parts covered by some of the Uj ’s
that are adapted to a stratum at a lower level. To attain α-transversality,
we should adjust X in charts that are adapted to orbit type α. It seems
so that in order to end up with a C1 vector field, we need to modify vector
field X in finite steps. To cover a non-compact stratum, however, we need
to use infinitely many adapted charts. To overcome this discrepancy, for
each orbit type α we will choose a countable family of adapted coordinate
charts with set of domains Q(α) which is a finite union

Q(α) = Q(α);1 ∪ · · · ∪Q(α);kα

of sub-families such that:

Property I. For a fixed i = 1, . . . , kα the closure of domains in

Q(α);i =
{
Q

(α);i
1 , Q

(α);i
2 , . . . , Q

(α);i
j , . . .

}
are pairwise disjoint.
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Property II. The strong interiors of domains in Q(α) cover Mα.

Property III.

Q
(α);i
j ∩Q(β);k

l �= ∅ for some i, j, k, l

⇒ α and β can be compared w.r.t. ≺

Remark. Given a family of open subsets about strata, it is standard to
impose a condition similar to Property III (see e.g. Mather [3]). It is also
shown there, that arbitrary system of tubes about strata can be trimmed
down so that Property III holds.

Definition 6. A cover of each stratum by adapted charts with the above
three properties is called a stratified cover of M .

Proposition 1. A compact G-manifold has a stratified cover.

Proof. We will use induction on the level of strata. We have already
constructed a finite cover of each level-0 strata. For an orbit type Mα at
the (k+ 1)th level the complement Mα \⋃jk

j=1 Uj is compact (here the Uj’-
s are the domains constructed above) so it can be covered by the strong
interiors of finitely many charts adapted to Mα, thus it is enough to choose
a stratified cover for each set

Mα ∩ Uj 1 ≤ j ≤ jk

separately. For a fixed j domain Uj is adapted to Mβ for some β ≺ α.
Let Uβ = Uj ∩Mβ. Choose ε′ < ε and let Sε′ ⊂ Nβ denote the ε′-

sphere bundle of the normal bundle of stratum Mβ . The level of orbit type
(exp |Uβ

)−1(Mα)∩Sε′ of the normal action is at most k, thus by induction
we can choose a stratified cover Q′(α) of the subset

(Sε′)α := (exp |Uβ
)−1(Mα) ∩ Sε′ .

This means that family Q′(α) is a finite union

Q′(α) =
k⋃

i=1

Q′(α);i
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where each subset Q′(α);i consists of relatively compact open sets (in the
topology of Sε′) with pairwise disjoint closure. Consider the subsets

R1 :=
{(

1
2n+ 1

,
2

4n− 1

) ∣∣ n ∈ Z+

}

R2 :=
{(

1
2n
,

4
8n− 5

) ∣∣ n ∈ Z+

}

Let

Q(α);i
1

:=
{
(a, b) ×Q | (a, b) ∈ R1, Q ∈ Q′(α);i

}

Q(α);i
2

:=
{
(a, b) ×Q | (a, b) ∈ R2, Q ∈ Q′(α);i

}
.

Then the exp-images of sets Q(α);i
1

, Q(α);i
2

(i = 1, . . . , k) provide a stratified
cover for Mα ∩ Uj. (Pairwise disjointness and relative compactness follow
trivially; intervals (a, b) can serve as new coordinates.) �

At each step X will denote the invariant gradient-like vector field that
has already been adjusted along certain strata (so we will not re-denote X
in every single step).

For the proof of our theorem suppose inductively that relative transver-
sality of ascending and descending submanifolds has been attained be-
low critical level f(O) = c. Fix critical orbit O and a Morse-chart ηO :
⊥O(ε∗) → UO about O. We will perturb X by an invariant vector field
with support contained in the Morse-tube UO (in the case when we have
more than one critical orbits at level (f = c), we choose disjoint Morse-
tubes about them). This way we will not influence relative transverse
intersections that have already been established in previous steps.

Notations. At a point x ∈ O let Sx, S−
x , S+

x denote the spheres with
radius ε < ε∗ (about the origin) in subspaces ⊥x, ⊥−

x , ⊥+
x respectively.

Let B =⊥x (ε∗) denote the ε∗-ball about the origin of ⊥x. As for the rest
of this paper we will work in ball B, we can (ab)use notation by denoting
the trajectory of vector field

X|B := dη−1
O (X|UO

) = grad(f ◦ ηO)

through point p ∈ B by λp.
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Fix x ∈ O and drop it from the subscripts. Let Ĝ := Gx be the
isotropy subgroup at x and choose an invariant open neighborhood

ν := νx ⊂ η−1
O

(
f−1(c− ε) ∩ UO

) ∩ ⊥x

of outbound shpere S− := S−
x . Then ν is partitioned by the orbit types of

action Ĝ× ν → ν as
ν =

⋃
[x]�α

να .

For a subset Z ⊂ ν and an orbit type [x] � α let Zα := Z ∩ να be the
α-part of set Z in orbit type να. Let {O1, . . . , Ok} denote the set of critical
orbits that are connected with O by a trajectory of X and reside below
critical level c. Set

Σj := ν ∩ η−1
O (W+

Oj
∩ UO), Σ :=

k⋃
j=1

Σj .

Observe that the intersection W−
O ∩W+

j is relative transverse (with
respect to the partition M =

⋃
α∈AMα) if and only if for all orbit types α

preceeded by [x] the intersection S−
α ∩(Σj)α is transverse in submanifold να.

Recall notation Ux := ηO(B) and choose a point p ∈ Ux ∩W−
O ∩W+

j ∩Mα.
We have

Tp(W−
O )α + Tp(W+

j )α = Tp(W−
O ∩ Ux)α + Tp(W+

j ∩ Ux)α + TpG(p) (5)

thus Tp(W−
O )α + Tp(W+

j )α = TpMα if and only if

Tp(W−
O ∩ Ux)α + Tp(W+

j ∩ Ux)α = Tp(Ux)α

This means that it is enough to ensure relative transversality of intersection
S− ∩ Σj with respect to ν.

Strategy of proof: first we will construct the perturbing vector field on
ball B, then we extend it along the G-action to a vector field on ⊥O(ε∗),
finally we push it forward along Morse coordinate system ηO : ⊥O(ε∗) →
UO. We will proceed by induction on the level of orbit types of action
Ĝ × S− → S−. In the sequel “level” will always be meant in this sense.
We will use the same method to perturb vector field X for both the base
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step and the induction step, so by induction suppose that we need to define
the perturbing vector field for orbit type α and we are done with all orbit
types at lower levels. We can presume Gα ⊂ Ĝ. Then the fixed point set
of orthogonal action Gα ×⊥x → ⊥x is a linear subspace

V = V − ⊕ V +

where V − ⊂ ⊥−
x , V + ⊂ ⊥+

x and dim(V −) �= ∅.
Note, that the normalizer Nα of subgroup Gα ⊂ Ĝ acts on linear

subspace V as well as on

V −
α := [V − less the points that are fixed

by a group strictly larger than Gα].

Let Q∗ be an α-slice for action Nα × V −
α → V −

α such that it is a union of
(open) rays in V −

α (thus it is a cone C(Q∗ ∩ S−) over α-slice Q∗ ∩ S− for
action Nα × S− → S−). Let D+ ⊂ V + be a small disc about the origin.
Then Q∗ ⊕ D+ is an α-slice of action Nα × V → V and also for action
Ĝ×⊥x → ⊥x, thus

(Q∗ ⊕D+) ∩ ν

is an α-slice for action Ĝ× ν → ν. This leads to the following conclusion,
which is crucial for the proof:

Observation 1. For an α-slice Q∗∗ of action Ĝ×S− → S− there exists
an α-slice of action

Ĝ× ν → ν

which is a product of Q∗∗ and the fiber. We will call such a slice a product
slice associated to Q∗∗ and its image under G (i.e. the union of G-paths
through its points) is the G-extension of the associated slice.

Level-0 orbit types are compact, so are their projections to orbit
space M. In the base step of induction we define the perturbing vec-
tor fields along these projections and then we will lift them into invariant
vector fields defined on M . This is done in complete analogy with the
non-equivariant case (see Smale [5]).

Remark. We could have chosen to work out the whole reasoning in the
orbit space, lifting the resulting vector fields (isotopies) to M afterwards.
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In spite of the simplicity of some parts of this way of reasoning, other
technical difficulties would have arisen (e.g. the quotient space V is not a
linear space, etc).

Construction of the stratified cover. First we choose a family of
α-slices

Q
(α);i∗
j ⊂ S−

α ∩ V − (i = 1, . . . , kα, j = 1, . . . , n, . . . )

for the action
Ĝ× S− → S−

together with associated product slices

Q
(α);i∗
j ⊕D+

so that
ĜQ

(α);i∗
j ∩ ĜQ

(α);i∗
j′ = ∅ (j �= j′).

Intersections
ν ∩ C

(
Q

(α);i∗
j ⊕D+

)
will be α-slices for action

Ĝ× ν → ν

so if nα is the normal bundle of να ⊂ ν then with the aid of a small disc
bundle of

nα|ĜC(Q
(α);i∗
j ⊕D+)∩ν

we can define a stratified cover

Q(α) = Q(α);1 ∪ · · · ∪Q(α);kα

of the α-part να (the cover is taken in ν). Choose a smaller disk D′+ ⊂ D+

and fix compact subsets

K
(α);i∗
j ⊂ Q

(α);i∗
j , K

(α);i
j ⊂ Q

(α);i
j

With ε′ < ε define

Q̃
(α);i
j :=

{
q ∈ λp | p ∈ Q

(α);i
j and c− ε < f ◦ ηO(q) < c− ε′

}
(6)
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K̃
(α);i
j :=

{
q ∈ λp | p ∈ K

(α);i
j and c− ε < f ◦ ηO(q) < c− ε′

}
(7)

The αth step will consist of kα substeps so that in the ith substep the
support of the perturbing vector field is contained in the extension

G


 ∞⋃

j=1

Q̃
(α);i
j


 (i = 1, . . . , kα).

The following observations can be made:

Observation 2. The perturbed vector field remains the same on lower
level strata, so does the transversality of intersections S−

β ∩ Σβ (β ≺ α)
(that have already been established by induction).

Observation 3. By the fact that transverse intersections are stable
under small perturbations of class C1, in each sub-step we can choose the
perturbing vector field to be so small that it will not destroy transverse
intersections that had already been established in previous sub-steps. Thus
it is enough to describe the ith sub-step, or, as the domains

{
Q̃

(α);i
j | j = 1, . . . , n, . . .

}
are pairwise disjoint, it is enough to describe how to modify X within one
such domain.

Observation 4. The bound we imposed in the Theorem divided by the
total number of sub-steps (i.e.

ε′ :=
ε∑

α∈A kα

)

provides a bound we should use in formula (4) in each sub-step.

Observation 5. For each triple (α, i, j) there is a bound ε
(α);i
j so that

if in the ith sub-step we choose the perturbing vector field with C1-norm
measured on domain Q̃

(α);i
j smaller than ε

(α);i
j , then its C1-norm defined

by formula (4) is smaller than ε′∗ (this is a well-known fact that follows
from relative compactness of the domains, see e.g. Sternberg [6]).
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Observation 6. The major difficulty is to ensure that after the final step
we end up with a C1 vector field. This will give us additional conditions on
the size of perturbation we can make in each sub-step. These conditions
are described in the Lemma below.

By the above observations it is enough to show that for arbitrary
indices (α, i, l) (that we fix and drop, using notation ε′′ := ε

(α);i
l ) the

following holds:

Proposition 2. Given a domain Q̃ = Q̃
(α);i
l with compact subset

K̃ = K̃
(α);i
l and ε′′ > 0, there exists an invariant vector field Y with

support in GQ̃ such that:

(i) Vector field X+ dηO(Y ) is gradient like for G-Morse function f .

(ii) ‖Y ‖1;Q̃ < ε′′ (i.e. the C1-norm on GQ̃ is smaller than ε′′.)
(iii) The intersection[

S−
α ∩ ĜK(α);i

l

]
∩
[
Σα ∩ ĜK(α);i

l

]
(notations stand for objects of the flow of vector field X|B + Y ) is

transverse in orbit type να, thus by formula (5) intersection[
W−

O ∩GK̃ ∩Mα

] ∩ [W+
O′ ∩GK̃ ∩Mα

]
(8)

is transverse in orbit type Mα for any other critical orbit O′.

Proof. Using notations as above, dim(V +) = 0 implies να = S−
α thus

transversality of intersections in formula (8) follow trivially.
Otherwise note that V ∩Σj is the fixed point set of subgroup Gα ⊂ Ĝ

for the action Ĝ× Σj → Σj, thus it is a submanifold of Σj . Let Q∗
p be an

α-slice at point p ∈ Σj∩V −
α (= Σj∩S−

α ) for action Nα×(V ∩Σj) → (V ∩Σj)
and let V ∗

p := TpQ
∗
p (it is an affine subspace of V ). Intersection (Σj)α∩S−

α

is α-transverse at p iff dim(V ∗+
p ) = dim(V +), or in other words if the origin

is a regular value of the projection to the second factor

P+|V ∩Σj : V ∩ Σj → V +

(see also formula (5)).
By Sard’s theorem the set of critical values of the above projection is

of measure-0 for j = 1, . . . , k thus the same holds for their union. This



A G-version of Smale’s theorem 23

means that we can choose an arbitrarily small vector v ∈ D+ so that the
constant section C(K(α);i∗

l ⊕ v) ∩ να intersects (Σj)α α-transversely (i.e.,
relative to να) for j = 1, . . . , k.

Choose cutoff function

φ : Q(α);i∗
l → [0, 1], φ

(
K

(α);i∗
l

)
= 1, supp(φ) ⊂ Q

(α);i∗
l

and let HD be an isotopy of disk D+ which moves the origin into v and
fixes a neighborhood of the boundary. Define isotopy

H :
(
Q

(α);i∗
l ⊕D+

)
×[0, 1] → Q

(α);i∗
l ⊕D+, H((p,w), t)= (p,HD(w, φ(p)t).

Using rays this defines an isotopy of set C(Q(α);i∗
l ⊕D+)∩ν. An application

of the argument in Milnor ([4], pp. 42–43) to the restriction XB |F where

F :=
{
q ∈ λp | p ∈ C

(
Q

(α);i∗
l ⊕D+

) ∩ ν and c− ε < f ◦ ηO(q) < c− ε′
}

produces a vector field Y ∗ which is tangent to F so that the difference
between moving along the flow-lines of vector fields XB |F and XB |F + Y ∗

shows up in the application of map H1 on level set (f = c − ε). Let Ŷ
be the extension of Y ∗ along the action onto set ĜF . This set is an open
subset of the α-part Bα of disk B = ⊥x(ε∗).

For a δ > 0 choose cutoff function

ψ : [0, δ] → [0, 1], ψ(0) = 1, ψ(δ) = (0),
dψ
dt

≤ 0.

Let Nα be the normal bundle of the α-part Bα ⊂ B (taken in ball B).
Consider the Levi–Civita connection of the Euclidean metric on vector
bundle Nα and let Y ′ be the horizontal lift of Ŷ (i.e. a vector field on Nα

with vertical components = 0 at each point so that dπ(Y ′|p) = Ŷ |π(p)).
Let

Y = exp∗(ψ(‖v‖)Y ′|v) (v ∈ Nα)

and extend Y via the action onto tube UO. Let Y be the 0 vector field
outside of set G exp(Nα(δ)|ĜF ). Then clauses (i) and (iii) hold for vector
field XB + Y (its restriction to a smaller neighborhood of critical orbit O
is gradient-like for f).
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As in Definition 5, choose a coordinate system (x2, . . . , xmα) on α-
slice Q(α);i∗

l ⊕D+. Use G-Morse function f ◦ ηO as the first coordinate x1.
As in clause (iv) of Definition 5, fixing an orthonormal frame bundle on
Nα|F introduces further coordinates xmα+1, . . . , xmα+m⊥

α . Finally, supple-
menting these with the coordinates in formula (2) provides a finite family
of coordinate charts on invariant open set GF . Note, that only the first
mα + m⊥

α coordinates of vector field Y are non-zero and the coordinates
themselves are bounded by ‖v‖. By relative compactness of set Q(α);i∗

l we
can choose an upper bound N for the absolute value of the derivatives of
cutoff functions φ and ψ. Then

2
(
N‖v‖ +

2‖v‖
ε− ε′

)

will serve as an upper bound for the absolute values of the first derivatives
of coordinates of vector field Y . This shows that by choosing ‖v‖ small
enough, one can arrange that clause (ii) of our proposition holds as well.

�

Differentiability of the final vector field can be ensured by choosing
‖v‖ according to how close the domain Q̃(α);i

j is from the boundary of Bα.
Let

Fr(Bα) := Bα \Bα

be the frontier of orbit type Bα and let d stand for the Euclidean distance
on ball B. Then, by relative compactness of set Q(α);i∗

j in Sα, the distance

dij := d
(
ĜQ̃

(α);i
j , Fr(Bα)

)
> 0.

In the ith substep the components of supp(Y ) are contained in subset

∞⋃
j=1

GQ̃
(α);i
j .

By invariance it is enough to prove differentiability of restriction Y |B . By
construction, Y is a smooth vector field in a tube about α-part Bα (i.e. on
a set

exp(Nα(ζ))
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where Nα(ζ) is an appropriate disk bundle of the normal bundle of Bα ⊂
B) and Y is the zero vector field outside of this tube. This shows that
we can have problems with differentiability of vector field Y only at the
points of the frontier Fr(Bα). We will prove that imposing an additional
condition ensures that vector field Y is of class C1 at points of Fr(Bα).
We will formulate this condition by utilizing the fact that B is a Euclidean
disk, thus its tangent bundle is trivial by natural identification

TB = B × Rn

(n = dim(B).) This way we can look at vector field Y |B as a map

YB : B → Rn.

Lemma. Vector field Y is of class C1 whenever

‖Y (q)‖ < d3
ij

(
q ∈ Q̃

(α);i
j , i = 1, . . . , kα, j ∈ N

)
Proof. A point q ∈ Fr(Bα) belongs to q ∈ Bβ for some orbit type

β ≺ α. By definition Y is differentiable at point q if

lim
p→q

‖Y (p) − Y (q)‖
‖p− q‖ = 0. (9)

Value Y (q) = 0 for points of the frontier, thus Y (p) �= 0 implies that
p ∈ ĜQ̃

(α);i
j for some indices i ∈ {1, . . . , kα}, j ∈ N. But then

‖Y (p)‖ < d3
ij ≤ ‖p− q‖3

thus the limit in formula (9) is indeed 0, together with the limit of the first
partial derivatives of Y . �

Remark. The proof of the lemma has been built heavily on the Eu-
cledian structure on disk B. In a general setting a somewhat more com-
plicated proof would work: one considers the isotopy induced by time-
dependent vector field

Yt := ξ(t)Y (t ∈ [0, 1])

where ξ : [0, 1] → [0, 1], ξ[0, ε) = 0 is some cutoff function. One puts the
analoguos condition on the displacement of this isotopy (measured in the
metric distance on B). Then a similar argument proves that the isotopy
is of class C1, consequently vector field Y is also of class C1.
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This paper is an improved version of Chapter 3 of my Ph.D. thesis [2].
I wish to express my gratitude to my advisor, Professor Dan Burghelea

for his help.
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