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Hausdorff quasi-uniformities inducing
the same hypertopologies

By JILING CAO (Auckland), HANS-PETER KÜNZI (Rondebosch)
and IVAN REILLY (Auckland)

Abstract. The question is investigated when two quasi-uniformities on a set
X give rise to Hausdorff quasi-uniformities inducing the same topologies on the
set P0(X) of nonempty subsets of X . Some conditions are also given under which
such hypertopologies are induced by a unique Hausdorff quasi-uniformity. Our
results should be compared to investigations on H-equivalence of uniformities due
to Smith, Ward and others.

1. Introduction

Let X be a (nonempty) set, and let U and V be two uniformities on X.
Ward and Smith have obtained conditions on U and V under which the
corresponding Hausdorff uniformities induce the same topologies on the
set P0(X) of nonempty subsets of X. Such uniformities on X are now
called H-equivalent according to [24]. Various authors constructed pairs
of distinct H-equivalent uniformities, see [6], [7] and [23]. As Hitchcock
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[5] points out Albrecht [1] seems to be the first to study the question
of H-equivalence of uniformities, but his results similar to those of Ward
remained unnoticed. It is known that two uniformities on a set X that are
H-equivalent induce the same proximity. Hence, for instance, two distinct
metric uniformities on a set X cannot be H-equivalent, since a metric
uniformity is always the finest member of its proximity class [21]. Smith

also noted in [21] that a totally bounded uniformity cannot be H-equivalent
to any other uniformity.

Similarly, in this article, given two quasi-uniformities U and V on a set
X we investigate when their corresponding Hausdorff quasi-uniformities in-
duce the same topologies on the set P0(X). While it is relatively difficult
to construct distinct H-equivalent uniformities, it turns out to be fairly
easy to give examples of two distinct quasi-uniformities whose Hausdorff
quasi-uniformities induce the same hyperspace topology. Accordingly, in
the quasi-uniform setting, it becomes more interesting to determine those
quasi-uniformities whose Hausdorff quasi-uniformity induces a hyperspace
topology that cannot be induced by Hausdorff quasi-uniformities originat-
ing from other quasi-uniformities. Let us note that special instances of
the stated problem have already been studied. For instance, the authors
in [20] characterized those compatible Hausdorff quasi-uniformities on a
topological space X that induce the Vietoris topology on P0(X). It fol-
lows from their characterization that for any topological space the Pervin
quasi-uniformity and the well-monotone quasi-uniformity each induce the
Vietoris topology. Obvious variants of our problem deal with appropriate
subspaces of P0(X) like the set K0(X) of nonempty compact subsets of a
quasi-uniform space (X,U). We recall in this context that contrary to the
situation in the realm of uniform spaces, a Hausdorff quasi-uniformity on
K0(X) need not induce the Vietoris topology of X [3]. In fact, according
to [20], the Hausdorff quasi-uniformity of a quasi-uniform space (X,U) is
compatible with the Vietoris topology on the family K0(X) of nonempty
compact subsets of X if and only if for each K ∈ K0(X), U−1 � K is
precompact.

The following definitions are discussed and studied in some detail in
[2], [15] and [17]. Let (X,U) be a quasi-uniform space. For any U ∈ U, let

U+ = {(A,B) ∈ P0(X) × P0(X) : B ⊆ U(A)}, and
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U− = {(A,B) ∈ P0(X) × P0(X) : A ⊆ U−1(B)}.

Furthermore, set U∗ = U− ∩ U+ whenever U ∈ U. Then {U− : U ∈ U}
is a base for the lower quasi-uniformity on P0(X) and {U+ : U ∈ U} is a
base for the upper quasi-uniformity on P0(X). Moreover, U∗ = U+∨U− is
the so-called Hausdorff–Bourbaki quasi-uniformity on P0(X). It is obvious
that the following equations hold for the conjugate quasi-uniformity U−1 of
U: (i) (U−1)− = (U+)−1, (ii) (U−1)+ = (U−)−1, and (iii) (U−1)∗ = (U∗)−1.
Observe also that trivially if U and V are two quasi-uniformities on a
set X, then U ⊆ V implies that T(U−) ⊆ T(V−), T(U+) ⊆ T(V+), and
T(U∗) ⊆ T(V∗). Furthermore, U∗ ∨ (U∗)−1 ⊆ (U ∨ U−1)∗.

Definition 1.1. Let U and V be two quasi-uniformities on a set X.
Then

(i) U and V are called QH-equivalent if T(U∗) = T(V∗) on P0(X) (similarly
we shall use the self-explanatory term QH-finer);

(ii) U and V are called doubly QH-equivalent if both T(U∗) = T(V∗) and
T((U−1)∗) = T((V−1)∗) on P0(X).

Given a quasi-uniformity U on a set X, we shall denote by Q(U)
the collection of all quasi-uniformities which are QH-equivalent to U. A
straightforward application of Zorn’s lemma shows that Q(U) contains
maximal elements (with respect to set inclusion). Of course, two unifor-
mities U and V are H-equivalent if and only if they are QH-equivalent.
Note that U and V are H-equivalent if and only if the restrictions of U∗
and V∗ induce the same topology on the set 2X of nonempty closed sub-
sets of X. Two H-equivalent uniformities U and V are trivially doubly
QH-equivalent. Hence the examples of distinct H-equivalent uniformities
show that doubly QH-equivalent quasi-uniformities may differ.

For a quasi-uniform space (X,U), as usual, we shall denote by Uω

(resp. δU) the finest totally bounded quasi-uniformity coarser than U (resp.
the quasi-proximity induced by U on X). If V is another quasi-uniformity
on X and δU = δV, then we say that U and V are qp-equivalent . Let
π(U) denote the collection of all quasi-uniformities on X which are qp-
equivalent to U. We refer the reader to [4] for undefined notation and
basic facts about quasi-uniformities.
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2. Necessary conditions for QH-equivalence
of two quasi-uniformities

In this section, we shall provide some necessary conditions for the
QH-equivalence of two quasi-uniformities on the same set.

Lemma 2.1. Let U and V be two quasi-uniformities on a set X. Then

the following statements are equivalent.

(i) Vω ⊆ Uω.

(ii) T(V+) ⊆ T(U+) on P0(X).

(iii) T(V+) ⊆ T(U∗) on P0(X).

Proof. (i) ⇒ (ii): Let A ∈ P0(X) and V ∈ V. Then (A,X �V (A)) /∈
δV. Since Vω ⊆ Uω, we have (A,X �V (A)) /∈ δU. Thus, there exists a U ∈
U such that U(A) ∩ (X � V (A)) = ∅. We conclude that U+(A) ⊆ V+(A).
Hence T(V+) ⊆ T(U+).

(ii) ⇒ (iii): This is obvious.

(iii) ⇒ (i): Suppose the contrary, that is, (iii) holds but Vω �⊆ Uω.
Then there are A,B ⊆ X such that V0(A) ∩ B = ∅ for some V0 ∈ V, but
U(A) ∩ B �= ∅ for every U ∈ U. Let B = {F ∈ P0(X) : F ∩ B �= ∅}.
For each U ∈ U, pick a point bU ∈ U(A) ∩ B, and define AU = A ∪ {bU}.
Then AU ∈ U∗(A) ∩ B whenever U ∈ U. Therefore A ∈ clT(U∗) B. On the
other hand, (V0)+(A) ∩ B = ∅, thus A �∈ clT(V+) B. We have reached a
contradiction which implies that the assertion holds. �

Corollary 2.2. Two quasi-uniformities U and V on the same set X

are qp-equivalent if and only if T(U+) = T(V+) on P0(X). �

Let κ be an infinite cardinal. A quasi-uniform space (X,U) is called
κ-precompact if for every U ∈ U, there exists a subset F of X such that
|F | < κ and X = U(F ). As usual, we shall call ω-precompact (resp. ω1-
precompact) quasi-uniform spaces precompact [4] (resp. preLindelöf [14]).
Let P (κ,U) denote the collection of all κ-precompact subspaces of (X,U).

Theorem 2.3. Let U and V be two quasi-uniformities on a set X. If

U and V are QH-equivalent, then

(i) Uω = Vω, i.e., U and V are qp-equivalent; and

(ii) P (κ,U−1) = P (κ,V−1) for any cardinal κ ≥ ω.
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Proof. (i). This follows directly from Lemma 2.1.

(ii). Suppose the contrary, that is, P (κ,U−1) �= P (κ,V−1) for some
infinite cardinal κ. Without loss of generality, we may assume that there
exists some A ∈ P0(X) such that A ∈ P (κ,U−1) � P (κ,V−1). For each
U ∈ U, choose an FU ⊆ A such that |FU | < κ and A ⊆ U−1(FU ). Then the
net (FU )U∈U converges to A in T(U∗), but there exists V0 ∈ V such that
A �⊆ V −1

0 (FU ) whenever U ∈ U, since otherwise A would be κ-precompact
in (X,V−1). Thus FU �∈ (V0)−(A) whenever U ∈ U. It follows that the net
(FU )U∈U does not converge to A with respect to T(V−), so certainly not
with respect to T(V∗) either. This is a contradiction. �

Let U and V be two quasi-uniformities on a set X, and A ⊆ X. We
say that U is quasi-uniformly finer , abbreviated as qu-finer , than V on A

if for any V ∈ V there is a U ∈ U such that U(x) ⊆ V (x) whenever x ∈ A.
For any V ∈ V, A is called V -discrete if (x, y) ∈ (A×A)∩V implies x = y.
Moreover, A is said to be V-discrete if it is V -discrete for some V ∈ V.

Theorem 2.4. Let U and V be two quasi-uniformities on a set X. If

U and V are QH-equivalent, then

(i) U is qu-finer than V on each V-discrete set; and

(ii) V is qu-finer than U on each U-discrete set.

Proof. Since (i) and (ii) are similar, we shall prove (i) only. Let A

be a V -discrete subset of X, where V ∈ V. By our assumption, there
exists some U ∈ U such that U∗(A) ⊆ V−(A). Next, we shall show that
U(a) ⊆ V (a) for every a ∈ A. To this end, let a ∈ A and y ∈ U(a). Let
B = {y} ∪ (A � {a}). It can be checked easily that B ∈ U∗(A) ⊆ V−(A).
Thus, a ∈ A ⊆ V −1(B). Since A is V -discrete, then we have a ∈ V −1(y).
It follows that y ∈ V (a). Thus, U is qu-finer than V on each V-discrete
set. �

Remark 2.5. In fact, to show Theorem 2.4 (i), we only need the con-
dition “T(V−) ⊆ T(U∗)”. �
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3. Sufficient conditions for QH-equivalence
of two quasi-uniformities

In this section, we shall provide some sufficient conditions that make
two quasi-uniformities on the same set QH-equivalent. First, we introduce
a notion which is slightly weaker than that of V-discreteness of a subset in
a quasi-uniform space (X,V). Let V be an entourage of a quasi-uniform
space (X,V). An indexed subset A = {xα : α < γ} of X is said to be
V -separated provided that (xα, xβ) ∈ V and α ≤ β < γ implies xα = xβ,
and is called V-separated if it is V -separated for some V ∈ V.

Proposition 3.1. A subset A indexed by some ordinal of a quasi-

uniform space (X,V) is V-discrete if and only if it is both V-separated and

V−1-separated.

Proof. The proof is straightforward, so it is omitted. �

The next simple example shows that V-separatedness and V-discrete-
ness of a subset in a quasi-uniform space (X,V) are different.

Example 3.2. Let ω be the set of nonnegative integers equipped with
the usual order ≤. Let V be the quasi-uniformity on ω generated by the
base {D} where D−1 = ≤, that is D is the order dual to ≤. Clearly ω

with its usual order ≤ is a V-separated set that is not V-discrete. �
Theorem 3.3. Let U and V be two quasi-uniformities on a set X. If

(i) Vω ⊆ Uω, and

(ii) U is quasi-uniformly finer than V on each V−1-separated set,

then T(V∗) ⊆ T(U∗).

Proof. By (i) and Lemma 2.1, we have T(V+) ⊆ T(U+). Hence, it
suffices to show T(V−) ⊆ T(U−). To this end, let A ∈ P0(X) and V ∈ V.
Choose some W ∈ V such that W 2 ⊆ V . Starting with any point x0 ∈ A,
by transfinite induction, we construct a subset SA = {xα : α < γ} of A

such that

(iii) xα ∈ A � W−1({xβ : β < α}) for every α < γ;

(iv) A ⊆ W−1(SA).

It is clear from (iii) that SA is W−1-separated, and thus V−1-separated.
By (ii), there exists some U ∈ U such that U(x) ⊆ W (x) whenever x ∈ SA.
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Next, we shall show U−(A) ⊆ V−(A). Suppose B ∈ U−(A), that is, A ⊆
U−1(B). For any point a ∈ A, by (iv), there exists an xα ∈ SA such that
xα ∈ W (a). It follows that W (xα) ⊆ W 2(a) ⊆ V (a). On the other hand,
since xα ∈ A, we have U(xα) ∩ B �= ∅. Thus, because U(xα) ⊆ W (xα),
also V (a) ∩ B �= ∅. Therefore, A ⊆ V −1(B) and B ∈ V−(A). We conclude
that T(V−) ⊆ T(U−). Therefore, T(V∗) ⊆ T(U∗). �

Corollary 3.4. Let U and V be two quasi-uniformities on a set X. If

(i) Uω = Vω,

(ii) U is quasi-uniformly finer than V on each V−1-separated set, and

(iii) V is quasi-uniformly finer than U on each U−1-separated set,

then U and V are QH-equivalent. �

Corollary 3.5. Let U and V be two quasi-uniformities on a set X. If

(i) Uω = Vω, and

(ii) both U−1 and V−1 are hereditarily precompact,

then U and V are QH-equivalent.

Proof. If V−1 is hereditarily precompact, then each V−1-separated
set must be finite. Since T(U) = T(V), then U is quasi-uniformly finer
than V on each finite subset of X. It follows from Theorem 3.3 that U is
QH-finer than V. In a similar way, V is QH-finer than U. Therefore, U

and V are QH-equivalent. �

4. QH-singularity

According to [25], a uniformity U on a set X is called H-singular if
there exists no distinct uniformity on X which is H-equivalent to U. Simi-
larly, we say that a quasi-uniformity U on a set X is QH-singular (bi-QH-
singular) if there is no other quasi-uniformity on X which is QH-equivalent
(doubly QH-equivalent) to it. We shall also say that a quasi-uniformity
U is doubly QH-singular provided that both U and U−1 are QH-singular.
Of course, each doubly QH-singular quasi-uniformity is QH-singular and
each QH-singular quasi-uniformity is bi-QH-singular. Observe also that
each QH-singular uniformity is doubly QH-singular. In [21], Smith noted
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that each totally bounded uniformity is H-singular. Similarly we have the
following result.

Theorem 4.1. Each totally bounded quasi-uniformity is bi-QH-sin-

gular.

Proof. Let U be a totally bounded quasi-uniformity on a set X and
suppose that V is a quasi-uniformity on X such that U and V are doubly
QH-equivalent. It follows from Theorem 2.3 that V belongs to the quasi-
uniformity class of U and that both V and V−1 are hereditarily precompact,
since both U and U−1 are hereditarily precompact. We conclude that V is
totally bounded [10, Lemma 1.1] and thus equal to U. �

In the following, we consider when a given quasi-uniformity on a set
is (doubly) QH-singular.

Theorem 4.2. Let X be a nonempty set. Then

(i) The discrete uniformity D on X is doubly QH-singular;

(ii) For any quasi-uniformity U on X, if Uω is QH-singular then every

quasi-uniformity in π(U) is hereditarily precompact.

Proof. (i): Let H be a quasi-uniformity on X that is QH-equivalent
to D, but D �= H. Then for each V ∈ H, there is a point xV ∈ X such
that V −1(xV ) �= {xV }. Set DV = {xV } ∪ (X � V −1(xV )). Since

X = V −1(xV ) ∪ (X � V −1(xV )) ⊆ V −1(DV ),

we conclude that the net (DV )V ∈H converges to X with respect to T(H∗).
However, for the entourage U = ∆ ∈ D, we have

U−1(DV ) = {xV } ∪ (X � V −1(xV )) �= X.

It follows that the net (DV )V ∈H does not converge to X with respect to
T(D∗). Therefore, D and H are not QH-equivalent, which is a contradic-
tion. Hence, the uniformity D is doubly QH-singular.

(ii): If there exists a quasi-uniformity V ∈ π(U) which is not hereditar-
ily precompact, then according to the construction in [11], for every p-filter
σ on ω there is a quasi-uniformity Lσ on X such that Uω ⊆ Lσ ⊆ V. Note
that L−1

σ is hereditarily precompact, since the conjugates of the subbasic
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entourages are clearly hereditarily precompact. By Corollary 3.4, each Lσ

and Uω are QH-equivalent. Since Lσ is not totally bounded, Lσ and Uω

are distinct. So, Uω is not QH-singular. This is a contradiction. �

Corollary 4.3. Let U be a totally bounded quasi-uniformity on a

set X. Then U is the only member of its quasi-proximity class if and only

if U is doubly QH-singular.

Proof. (⇒) If U is totally bounded and the unique member of its
quasi-proximity class, then the same applies to U−1. By Theorem 2.3 (i),
both U and U−1 are QH-singular.

(⇐) Suppose that both U and U−1 are QH-singular. Let V ∈ π(U)
be any member. Since U = Uω and (Uω)−1 = (U−1)ω, by Theorem 4.2
(ii), V is doubly hereditarily precompact. Then, by [10, Lemma 1.1], V is
totally bounded. Thus, V = U. It follows that U is the only member of its
quasi-proximity class. �

Example 4.4. There is a uniform space (X,U) such that U is H-
singular, but not QH-singular. Let X = ω, and define

Vn = {(a, a) : a ∈ n} ∪ ((X � n) × (X � n))

for each n ∈ ω. Then {Vn : n ∈ ω} generates a transitive metrizable totally
bounded uniformity U on ω. Since such a uniformity is at the same time
the finest as well as the coarsest member of its proximity class, it is H-
singular. Note that T =

⋃
n∈ω{n}×(n+1) is a transitive reflexive relation

on ω. Let V be the quasi-uniformity generated on X by {Vn : n ∈ ω}∪{T}.
One checks that V belongs to the quasi-proximity class of U: Let H be the
quasi-uniformity generated by {T} on X. Since for any B ⊆ ω, T (B) = n

or ω and for each subset n of ω, we have Vn(n) = n, we conclude that
Hω ⊆ U.

Hence, by [4, Proposition 1.40], we have U = U ∨ Hω = Uω ∨ Hω =
(U∨H)ω = Vω. Since the quasi-uniformity V−1 is hereditarily precompact,
by Corollary 3.5, we conclude that V is QH-equivalent to U. Hence, U is
not QH-singular. �

Given a topological space X, let P be the Pervin quasi-uniformity [4].
Recall that a family L of subsets of X is well-monotone if the partial order
⊆ of set inclusion is a well-order on L. The compatible quasi-uniformity
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M on X which has as a subbase the set of all binary relations that are as-
sociated with the well-monotone open covers of X under the Fletcher con-
struction is called the well-monotone quasi-uniformity of X [8], denoted by
M. Recall that X is said to be hereditarily compact [22] if every nonempty
subspace of X is compact. It is well-known that a space is hereditarily
compact if and only if each strictly increasing sequence of open subsets in
it is finite.

Theorem 4.5. Let X be a topological space. Then the following

statements (i)–(iii) are equivalent:

(i) P is QH-singular;

(ii) M is QH-singular;

(iii) X is hereditarily compact.

Furthermore, the following statements (iv)–(vi) are equivalent:

(iv) P is doubly QH-singular;

(v) M is doubly QH-singular;

(vi) X admits a unique compatible quasi-uniformity.

If X is Hausdorff, then all the above statements (i)–(vi) are equivalent.

Proof. (i) ⇒ (ii): By Proposition 6 of [20], both P and M induce the
Vietoris topology. Thus, if P is QH-singular, then P = M. This implies
that M is QH-singular as well.

(ii) ⇒ (iii): Suppose that X is not hereditarily compact. Then the
well-monotone quasi-uniformity and the Pervin quasi-uniformity of X are
distinct, but both induce the Vietoris topology on P0(X). Hence, M is not
QH-singular, a contradiction.

(iii) ⇒ (i): Let X be hereditarily compact, and let U be a quasi-
uniformity on X that is QH-equivalent to P. Then U belongs to the Pervin
quasi-proximity class by Theorem 2.3 (i). (In fact, all compatible quasi-
uniformities of a hereditarily compact space belong to this quasi-proximity
class.) Now P is totally bounded, thus P−1 is hereditarily precompact,
and hence according to Theorem 2.3 (i), U−1 is hereditarily precompact.
Since X is hereditarily compact, U is hereditarily precompact. Because
doubly hereditarily precompact quasi-uniformities are totally bounded [10,
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Lemma 1.1], we conclude that U is totally bounded. It follows that U =
Uω = Pω = P. Hence, P is QH-singular.

(iv) ⇒ (v): If both P and P−1 are QH-singular, then by Corollary 4.3,
P is the unique quasi-uniformity in its quasi-proximity class. Hence, P =
M, and thus both M and M−1 are QH-singular.

(v) ⇒ (vi): If both M and M−1 are QH-singular, then by the equiv-
alence of (ii) and (iii) above, we conclude that X is hereditarily compact.
Thus, M = P [13, Remark 1], which implies that P is doubly QH-singular.
By Corollary 4.3, P is the unique quasi-uniformity in its quasi-uniformity
class. Hence, the fine quasi-uniformity is totally bounded. It follows from
a result of [18] that X admits a unique quasi-uniformity.

(vi) ⇒ (iv): This is obvious.

Finally, if X is Hausdorff, then by Theorem 2.36 in [4], (iii) and (vi)
are equivalent; indeed X is finite. Hence, all the statements of (i)–(vi) are
equivalent. �

Example 4.6. (a) If a quasi-uniformity is unique in its quasi-proximity
class, then it is doubly QH-singular according to Corollary 4.3. So, for
instance, the coarsest quasi-uniformity of a locally compact T2-space X

is doubly QH-singular provided that X is compact or non-Lindelöf (see
[19]).

(b) The coarsest compatible quasi-uniformity of a topological space
need not be QH-singular: Just consider the Pervin quasi-uniformity of a
topological space X (see e.g. [16]) that admits a unique quasi-proximity,
but is not hereditarily compact. The assertion follows from Theorem 4.5.

�

Remark 4.7. It is shown in [21] that any two metrizable uniformities
on the same set cannot be H-equivalent, and any two uniformities on the
same set, at least one of which is totally bounded, cannot be H-equivalent.
However, there are no quasi-uniform analogues for these facts. First, note
that both U and V defined in Example 4.4 have a countable base, and
hence are quasi-metrizable. Second, P is always totally bounded for any
space X, and by Theorem 4.5, it is not QH-singular if X is not hereditarily
compact (see however Theorem 4.1). �
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Question 4.8. Is there a quasi-uniformity that is (doubly) QH-singular,
but not totally bounded or discrete?

Each quasi-uniformity V such that T(V∗) is pseudocompact is unique
in its quasi-proximity class and thus doubly QH-singular, since T(W∗) =
T(V∗) is pseudocompact and thus W∗ totally bounded for any quasi-
uniformity W which is QH-equivalent to V.

Question 4.9. Characterize those totally bounded quasi-uniformities
which are QH-singular.

5. QH-equivalence classes

Example 5.1. There exists a quasi-uniform space (X,U) such that
Q(U) contains simultaneously transitive and nontransitive quasi-uniformit-
ies as well as bicomplete and nonbicomplete quasi-uniformities. Let X = ω

be equipped with the lower topology T = {∅, ω} ∪ {[0, n[ : n ∈ ω}. It is
known that this space has a unique compatible quasi-proximity [9, Exam-
ple 1], since its topology is the unique base that is closed under finite unions
and finite intersections. Clearly, the well-monotone quasi-uniformity on X

is the fine quasi-uniformity and is bicomplete. Hence all quasi-uniformities
compatible with the given topology are QH-equivalent, since they induce
the Vietoris topology [20, Proposition 6]. Observe that the Pervin quasi-
proximity class contains nontransitive quasi-uniformities [12], while the
(nonbicomplete) Pervin quasi-uniformity is transitive. �

Question 5.2. Let V be a quasi-uniformity and let κ be the number
of QH-equivalence classes into which the quasi-proximity class π(V) of V

splits. Which cardinalities κ can occur? Is |Q(V)| = 1 or |Q(V)| ≥ 22ℵ0?

Question 5.3. Can the fine transitive quasi-uniformity and the fine
quasi-uniformity of a topological space be distinct, but QH-equivalent?

6. Quasi-uniformities of algebraic structures

It is known that if the left and right uniformities of a topological group
are distinct, then they are not H-equivalent [21].
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Question 6.1. If the left and right quasi-uniformities of a paratopolog-
ical group are distinct, can they be QH-equivalent?

Question 6.2. Ward [24] states that the left uniformity of a locally
compact topological group is H-singular. When is it QH-singular?

Remark 6.3. The (left) uniformity of a compact topological group is
QH-singular, because it is the coarsest compatible quasi-uniformity [4,
Proposition 1.47] and thus its quasi-proximity class is a singleton according
to Example 4.6(a). �

Question 6.4. Is it possible that for a paratopological group, UL and
UR are QH-equivalent, but UL ∨ UR and UR are not QH-equivalent?
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