Publ. Math. Debrecen 67/1-2 (2005), 27-40

Hausdorff quasi-uniformities inducing the same hypertopologies

By JILING CAO (Auckland), HANS-PETER KÜNZI (Rondebosch) and IVAN REILLY (Auckland)

Abstract. The question is investigated when two quasi-uniformities on a set X give rise to Hausdorff quasi-uniformities inducing the same topologies on the set $\mathcal{P}_0(X)$ of nonempty subsets of X. Some conditions are also given under which such hypertopologies are induced by a unique Hausdorff quasi-uniformity. Our results should be compared to investigations on H-equivalence of uniformities due to Smith, Ward and others.

1. Introduction

Let X be a (nonempty) set, and let \mathcal{U} and \mathcal{V} be two uniformities on X. Ward and Smith have obtained conditions on \mathcal{U} and \mathcal{V} under which the corresponding Hausdorff uniformities induce the same topologies on the set $\mathcal{P}_0(X)$ of nonempty subsets of X. Such uniformities on X are now called *H*-equivalent according to [24]. Various authors constructed pairs of distinct *H*-equivalent uniformities, see [6], [7] and [23]. As HITCHCOCK

Mathematics Subject Classification: Primary: 54E15; Secondary: 54E05, 54B20, 54E55. Key words and phrases: Hausdorff quasi-uniformity, QH-equivalence, QH-singular, quasi-proximity class.

The first author is supported by a New Zealand Science and Technology post-doctoral fellowship under the project number UOAX0240. The second author wishes to acknowledge support during his visit to the University of Auckland in June–July 2002 as a University of Auckland Foundation Visitor. He also acknowledges support of the South African National Research Foundation under Grant 2053741.

[5] points out ALBRECHT [1] seems to be the first to study the question of H-equivalence of uniformities, but his results similar to those of Ward remained unnoticed. It is known that two uniformities on a set X that are H-equivalent induce the same proximity. Hence, for instance, two distinct metric uniformities on a set X cannot be H-equivalent, since a metric uniformity is always the finest member of its proximity class [21]. SMITH also noted in [21] that a totally bounded uniformity cannot be H-equivalent to any other uniformity.

Similarly, in this article, given two quasi-uniformities \mathcal{U} and \mathcal{V} on a set X we investigate when their corresponding Hausdorff quasi-uniformities induce the same topologies on the set $\mathcal{P}_0(X)$. While it is relatively difficult to construct distinct H-equivalent uniformities, it turns out to be fairly easy to give examples of two distinct quasi-uniformities whose Hausdorff quasi-uniformities induce the same hyperspace topology. Accordingly, in the quasi-uniform setting, it becomes more interesting to determine those quasi-uniformities whose Hausdorff quasi-uniformity induces a hyperspace topology that cannot be induced by Hausdorff quasi-uniformities originating from other quasi-uniformities. Let us note that special instances of the stated problem have already been studied. For instance, the authors in [20] characterized those compatible Hausdorff quasi-uniformities on a topological space X that induce the Vietoris topology on $\mathcal{P}_0(X)$. It follows from their characterization that for any topological space the Pervin quasi-uniformity and the well-monotone quasi-uniformity each induce the Vietoris topology. Obvious variants of our problem deal with appropriate subspaces of $\mathcal{P}_0(X)$ like the set $\mathcal{K}_0(X)$ of nonempty compact subsets of a quasi-uniform space (X, \mathcal{U}) . We recall in this context that contrary to the situation in the realm of uniform spaces, a Hausdorff quasi-uniformity on $\mathcal{K}_0(X)$ need not induce the Vietoris topology of X [3]. In fact, according to [20], the Hausdorff quasi-uniformity of a quasi-uniform space (X, \mathcal{U}) is compatible with the Vietoris topology on the family $\mathcal{K}_0(X)$ of nonempty compact subsets of X if and only if for each $K \in \mathcal{K}_0(X), \ \mathcal{U}^{-1} \upharpoonright K$ is precompact.

The following definitions are discussed and studied in some detail in [2], [15] and [17]. Let (X, \mathcal{U}) be a quasi-uniform space. For any $U \in \mathcal{U}$, let

$$U_{+} = \{ (A, B) \in \mathcal{P}_{0}(X) \times \mathcal{P}_{0}(X) : B \subseteq U(A) \}, \text{ and}$$

Hausdorff quasi-uniformities ...

$$U_{-} = \{ (A, B) \in \mathcal{P}_{0}(X) \times \mathcal{P}_{0}(X) : A \subseteq U^{-1}(B) \}$$

Furthermore, set $U_* = U_- \cap U_+$ whenever $U \in \mathcal{U}$. Then $\{U_- : U \in \mathcal{U}\}$ is a base for the *lower quasi-uniformity* on $\mathcal{P}_0(X)$ and $\{U_+ : U \in \mathcal{U}\}$ is a base for the *upper quasi-uniformity* on $\mathcal{P}_0(X)$. Moreover, $\mathcal{U}_* = \mathcal{U}_+ \vee \mathcal{U}_-$ is the so-called *Hausdorff–Bourbaki quasi-uniformity* on $\mathcal{P}_0(X)$. It is obvious that the following equations hold for the conjugate quasi-uniformity \mathcal{U}^{-1} of \mathcal{U} : (i) $(\mathcal{U}^{-1})_- = (\mathcal{U}_+)^{-1}$, (ii) $(\mathcal{U}^{-1})_+ = (\mathcal{U}_-)^{-1}$, and (iii) $(\mathcal{U}^{-1})_* = (\mathcal{U}_*)^{-1}$. Observe also that trivially if \mathcal{U} and \mathcal{V} are two quasi-uniformities on a set X, then $\mathcal{U} \subseteq \mathcal{V}$ implies that $\mathcal{T}(\mathcal{U}_-) \subseteq \mathcal{T}(\mathcal{V}_-)$, $\mathcal{T}(\mathcal{U}_+) \subseteq \mathcal{T}(\mathcal{V}_+)$, and $\mathcal{T}(\mathcal{U}_*) \subseteq \mathcal{T}(\mathcal{V}_*)$. Furthermore, $\mathcal{U}_* \vee (\mathcal{U}_*)^{-1} \subseteq (\mathcal{U} \vee \mathcal{U}^{-1})_*$.

Definition 1.1. Let \mathcal{U} and \mathcal{V} be two quasi-uniformities on a set X. Then

- (i) \mathcal{U} and \mathcal{V} are called QH-equivalent if $\mathcal{T}(\mathcal{U}_*) = \mathcal{T}(\mathcal{V}_*)$ on $\mathcal{P}_0(X)$ (similarly we shall use the self-explanatory term QH-finer);
- (ii) \mathcal{U} and \mathcal{V} are called *doubly QH-equivalent* if both $\mathcal{T}(\mathcal{U}_*) = \mathcal{T}(\mathcal{V}_*)$ and $\mathcal{T}((\mathcal{U}^{-1})_*) = \mathcal{T}((\mathcal{V}^{-1})_*)$ on $\mathcal{P}_0(X)$.

Given a quasi-uniformity \mathcal{U} on a set X, we shall denote by $Q(\mathcal{U})$ the collection of all quasi-uniformities which are QH-equivalent to \mathcal{U} . A straightforward application of Zorn's lemma shows that $Q(\mathcal{U})$ contains maximal elements (with respect to set inclusion). Of course, two uniformities \mathcal{U} and \mathcal{V} are H-equivalent if and only if they are QH-equivalent. Note that \mathcal{U} and \mathcal{V} are H-equivalent if and only if the restrictions of \mathcal{U}_* and \mathcal{V}_* induce the same topology on the set 2^X of nonempty closed subsets of X. Two H-equivalent uniformities \mathcal{U} and \mathcal{V} are trivially doubly QH-equivalent. Hence the examples of distinct H-equivalent uniformities show that doubly QH-equivalent quasi-uniformities may differ.

For a quasi-uniform space (X, \mathcal{U}) , as usual, we shall denote by \mathcal{U}_{ω} (resp. $\delta_{\mathcal{U}}$) the finest totally bounded quasi-uniformity coarser than \mathcal{U} (resp. the quasi-proximity induced by \mathcal{U} on X). If \mathcal{V} is another quasi-uniformity on X and $\delta_{\mathcal{U}} = \delta_{\mathcal{V}}$, then we say that \mathcal{U} and \mathcal{V} are *qp*-equivalent. Let $\pi(\mathcal{U})$ denote the collection of all quasi-uniformities on X which are *qp*equivalent to \mathcal{U} . We refer the reader to [4] for undefined notation and basic facts about quasi-uniformities.

J. Cao, H. Künzi and I. Reilly

2. Necessary conditions for QH-equivalence of two quasi-uniformities

In this section, we shall provide some necessary conditions for the QH-equivalence of two quasi-uniformities on the same set.

Lemma 2.1. Let \mathcal{U} and \mathcal{V} be two quasi-uniformities on a set X. Then the following statements are equivalent.

(i) $\mathcal{V}_{\omega} \subseteq \mathcal{U}_{\omega}$.

(ii) $\mathfrak{T}(\mathcal{V}_+) \subseteq \mathfrak{T}(\mathfrak{U}_+)$ on $\mathfrak{P}_0(X)$.

(iii) $\mathfrak{T}(\mathcal{V}_+) \subseteq \mathfrak{T}(\mathcal{U}_*)$ on $\mathfrak{P}_0(X)$.

PROOF. (i) \Rightarrow (ii): Let $A \in \mathcal{P}_0(X)$ and $V \in \mathcal{V}$. Then $(A, X \smallsetminus V(A)) \notin \delta_{\mathcal{V}}$. Since $\mathcal{V}_{\omega} \subseteq \mathcal{U}_{\omega}$, we have $(A, X \smallsetminus V(A)) \notin \delta_{\mathcal{U}}$. Thus, there exists a $U \in \mathcal{U}$ such that $U(A) \cap (X \smallsetminus V(A)) = \emptyset$. We conclude that $U_+(A) \subseteq V_+(A)$. Hence $\mathcal{T}(\mathcal{V}_+) \subseteq \mathcal{T}(\mathcal{U}_+)$.

(ii) \Rightarrow (iii): This is obvious.

(iii) \Rightarrow (i): Suppose the contrary, that is, (iii) holds but $\mathcal{V}_{\omega} \not\subseteq \mathcal{U}_{\omega}$. Then there are $A, B \subseteq X$ such that $V_0(A) \cap B = \emptyset$ for some $V_0 \in \mathcal{V}$, but $U(A) \cap B \neq \emptyset$ for every $U \in \mathcal{U}$. Let $\mathcal{B} = \{F \in \mathcal{P}_0(X) : F \cap B \neq \emptyset\}$. For each $U \in \mathcal{U}$, pick a point $b_U \in U(A) \cap B$, and define $A_U = A \cup \{b_U\}$. Then $A_U \in U_*(A) \cap \mathcal{B}$ whenever $U \in \mathcal{U}$. Therefore $A \in cl_{\mathcal{T}(\mathcal{U}_*)} \mathcal{B}$. On the other hand, $(V_0)_+(A) \cap \mathcal{B} = \emptyset$, thus $A \notin cl_{\mathcal{T}(\mathcal{V}_+)} \mathcal{B}$. We have reached a contradiction which implies that the assertion holds.

Corollary 2.2. Two quasi-uniformities \mathcal{U} and \mathcal{V} on the same set X are *qp*-equivalent if and only if $\mathcal{T}(\mathcal{U}_+) = \mathcal{T}(\mathcal{V}_+)$ on $\mathcal{P}_0(X)$.

Let κ be an infinite cardinal. A quasi-uniform space (X, \mathcal{U}) is called κ -precompact if for every $U \in \mathcal{U}$, there exists a subset F of X such that $|F| < \kappa$ and X = U(F). As usual, we shall call ω -precompact (resp. ω_1 precompact) quasi-uniform spaces precompact [4] (resp. preLindelöf [14]). Let $P(\kappa, \mathcal{U})$ denote the collection of all κ -precompact subspaces of (X, \mathcal{U}) .

Theorem 2.3. Let \mathcal{U} and \mathcal{V} be two quasi-uniformities on a set X. If \mathcal{U} and \mathcal{V} are QH-equivalent, then

(i) $\mathcal{U}_{\omega} = \mathcal{V}_{\omega}$, i.e., \mathcal{U} and \mathcal{V} are *qp*-equivalent; and

(ii) $P(\kappa, \mathcal{U}^{-1}) = P(\kappa, \mathcal{V}^{-1})$ for any cardinal $\kappa \ge \omega$.

PROOF. (i). This follows directly from Lemma 2.1.

(ii). Suppose the contrary, that is, $P(\kappa, \mathcal{U}^{-1}) \neq P(\kappa, \mathcal{V}^{-1})$ for some infinite cardinal κ . Without loss of generality, we may assume that there exists some $A \in \mathcal{P}_0(X)$ such that $A \in P(\kappa, \mathcal{U}^{-1}) \setminus P(\kappa, \mathcal{V}^{-1})$. For each $U \in \mathcal{U}$, choose an $F_U \subseteq A$ such that $|F_U| < \kappa$ and $A \subseteq U^{-1}(F_U)$. Then the net $(F_U)_{U \in \mathcal{U}}$ converges to A in $\mathcal{T}(\mathcal{U}_*)$, but there exists $V_0 \in \mathcal{V}$ such that $A \not\subseteq V_0^{-1}(F_U)$ whenever $U \in \mathcal{U}$, since otherwise A would be κ -precompact in (X, \mathcal{V}^{-1}) . Thus $F_U \notin (V_0)_-(A)$ whenever $U \in \mathcal{U}$. It follows that the net $(F_U)_{U \in \mathcal{U}}$ does not converge to A with respect to $\mathcal{T}(\mathcal{V}_-)$, so certainly not with respect to $\mathcal{T}(\mathcal{V}_*)$ either. This is a contradiction. \Box

Let \mathcal{U} and \mathcal{V} be two quasi-uniformities on a set X, and $A \subseteq X$. We say that \mathcal{U} is *quasi-uniformly finer*, abbreviated as *qu-finer*, than \mathcal{V} on Aif for any $V \in \mathcal{V}$ there is a $U \in \mathcal{U}$ such that $U(x) \subseteq V(x)$ whenever $x \in A$. For any $V \in \mathcal{V}$, A is called V-discrete if $(x, y) \in (A \times A) \cap V$ implies x = y. Moreover, A is said to be \mathcal{V} -discrete if it is V-discrete for some $V \in \mathcal{V}$.

Theorem 2.4. Let \mathcal{U} and \mathcal{V} be two quasi-uniformities on a set X. If \mathcal{U} and \mathcal{V} are QH-equivalent, then

- (i) \mathcal{U} is qu-finer than \mathcal{V} on each \mathcal{V} -discrete set; and
- (ii) \mathcal{V} is qu-finer than \mathcal{U} on each \mathcal{U} -discrete set.

PROOF. Since (i) and (ii) are similar, we shall prove (i) only. Let A be a V-discrete subset of X, where $V \in \mathcal{V}$. By our assumption, there exists some $U \in \mathcal{U}$ such that $U_*(A) \subseteq V_-(A)$. Next, we shall show that $U(a) \subseteq V(a)$ for every $a \in A$. To this end, let $a \in A$ and $y \in U(a)$. Let $B = \{y\} \cup (A \setminus \{a\})$. It can be checked easily that $B \in U_*(A) \subseteq V_-(A)$. Thus, $a \in A \subseteq V^{-1}(B)$. Since A is V-discrete, then we have $a \in V^{-1}(y)$. It follows that $y \in V(a)$. Thus, \mathcal{U} is qu-finer than \mathcal{V} on each \mathcal{V} -discrete set.

Remark 2.5. In fact, to show Theorem 2.4 (i), we only need the condition " $\mathcal{T}(\mathcal{V}_{-}) \subseteq \mathcal{T}(\mathcal{U}_{*})$ ".

3. Sufficient conditions for *QH*-equivalence of two quasi-uniformities

In this section, we shall provide some sufficient conditions that make two quasi-uniformities on the same set QH-equivalent. First, we introduce a notion which is slightly weaker than that of \mathcal{V} -discreteness of a subset in a quasi-uniform space (X, \mathcal{V}) . Let V be an entourage of a quasi-uniform space (X, \mathcal{V}) . An indexed subset $A = \{x_{\alpha} : \alpha < \gamma\}$ of X is said to be V-separated provided that $(x_{\alpha}, x_{\beta}) \in V$ and $\alpha \leq \beta < \gamma$ implies $x_{\alpha} = x_{\beta}$, and is called \mathcal{V} -separated if it is V-separated for some $V \in \mathcal{V}$.

Proposition 3.1. A subset A indexed by some ordinal of a quasiuniform space (X, \mathcal{V}) is \mathcal{V} -discrete if and only if it is both \mathcal{V} -separated and \mathcal{V}^{-1} -separated.

PROOF. The proof is straightforward, so it is omitted. \Box

The next simple example shows that \mathcal{V} -separatedness and \mathcal{V} -discreteness of a subset in a quasi-uniform space (X, \mathcal{V}) are different.

Example 3.2. Let ω be the set of nonnegative integers equipped with the usual order \leq . Let \mathcal{V} be the quasi-uniformity on ω generated by the base $\{D\}$ where $D^{-1} = \leq$, that is D is the order dual to \leq . Clearly ω with its usual order \leq is a \mathcal{V} -separated set that is not \mathcal{V} -discrete. \Box

Theorem 3.3. Let \mathcal{U} and \mathcal{V} be two quasi-uniformities on a set X. If (i) $\mathcal{V}_{\omega} \subseteq \mathcal{U}_{\omega}$, and

(ii) \mathcal{U} is quasi-uniformly finer than \mathcal{V} on each \mathcal{V}^{-1} -separated set, then $\mathcal{T}(\mathcal{V}_*) \subseteq \mathcal{T}(\mathcal{U}_*)$.

PROOF. By (i) and Lemma 2.1, we have $\mathfrak{T}(\mathcal{V}_+) \subseteq \mathfrak{T}(\mathcal{U}_+)$. Hence, it suffices to show $\mathfrak{T}(\mathcal{V}_-) \subseteq \mathfrak{T}(\mathcal{U}_-)$. To this end, let $A \in \mathcal{P}_0(X)$ and $V \in \mathcal{V}$. Choose some $W \in \mathcal{V}$ such that $W^2 \subseteq V$. Starting with any point $x_0 \in A$, by transfinite induction, we construct a subset $S_A = \{x_\alpha : \alpha < \gamma\}$ of Asuch that

(iii) $x_{\alpha} \in A \setminus W^{-1}(\{x_{\beta} : \beta < \alpha\})$ for every $\alpha < \gamma$; (iv) $A \subset W^{-1}(S_A)$.

It is clear from (iii) that S_A is W^{-1} -separated, and thus \mathcal{V}^{-1} -separated. By (ii), there exists some $U \in \mathcal{U}$ such that $U(x) \subseteq W(x)$ whenever $x \in S_A$. Next, we shall show $U_{-}(A) \subseteq V_{-}(A)$. Suppose $B \in U_{-}(A)$, that is, $A \subseteq U^{-1}(B)$. For any point $a \in A$, by (iv), there exists an $x_{\alpha} \in S_{A}$ such that $x_{\alpha} \in W(a)$. It follows that $W(x_{\alpha}) \subseteq W^{2}(a) \subseteq V(a)$. On the other hand, since $x_{\alpha} \in A$, we have $U(x_{\alpha}) \cap B \neq \emptyset$. Thus, because $U(x_{\alpha}) \subseteq W(x_{\alpha})$, also $V(a) \cap B \neq \emptyset$. Therefore, $A \subseteq V^{-1}(B)$ and $B \in V_{-}(A)$. We conclude that $\mathfrak{T}(\mathcal{V}_{-}) \subseteq \mathfrak{T}(\mathcal{U}_{-})$. Therefore, $\mathfrak{T}(\mathcal{V}_{*}) \subseteq \mathfrak{T}(\mathcal{U}_{*})$.

Corollary 3.4. Let \mathcal{U} and \mathcal{V} be two quasi-uniformities on a set X. If (i) $\mathcal{U}_{\omega} = \mathcal{V}_{\omega}$,

(ii) U is quasi-uniformly finer than V on each V^{-1} -separated set, and

(iii) \mathcal{V} is quasi-uniformly finer than \mathcal{U} on each \mathcal{U}^{-1} -separated set,

then \mathcal{U} and \mathcal{V} are QH-equivalent.

Corollary 3.5. Let \mathcal{U} and \mathcal{V} be two quasi-uniformities on a set X. If

- (i) $\mathcal{U}_{\omega} = \mathcal{V}_{\omega}$, and
- (ii) both \mathcal{U}^{-1} and \mathcal{V}^{-1} are hereditarily precompact,

then \mathcal{U} and \mathcal{V} are QH-equivalent.

PROOF. If \mathcal{V}^{-1} is hereditarily precompact, then each \mathcal{V}^{-1} -separated set must be finite. Since $\mathcal{T}(\mathcal{U}) = \mathcal{T}(\mathcal{V})$, then \mathcal{U} is quasi-uniformly finer than \mathcal{V} on each finite subset of X. It follows from Theorem 3.3 that \mathcal{U} is QH-finer than \mathcal{V} . In a similar way, \mathcal{V} is QH-finer than \mathcal{U} . Therefore, \mathcal{U} and \mathcal{V} are QH-equivalent.

4. QH-singularity

According to [25], a uniformity \mathcal{U} on a set X is called *H*-singular if there exists no distinct uniformity on X which is *H*-equivalent to \mathcal{U} . Similarly, we say that a quasi-uniformity \mathcal{U} on a set X is *QH*-singular (*bi-QH*singular) if there is no other quasi-uniformity on X which is *QH*-equivalent (doubly *QH*-equivalent) to it. We shall also say that a quasi-uniformity \mathcal{U} is doubly *QH*-singular provided that both \mathcal{U} and \mathcal{U}^{-1} are *QH*-singular. Of course, each doubly *QH*-singular quasi-uniformity is *QH*-singular and each *QH*-singular quasi-uniformity is bi-*QH*-singular. Observe also that each *QH*-singular uniformity is doubly *QH*-singular. In [21], SMITH noted that each totally bounded uniformity is H-singular. Similarly we have the following result.

Theorem 4.1. Each totally bounded quasi-uniformity is bi-QH-singular.

PROOF. Let \mathcal{U} be a totally bounded quasi-uniformity on a set X and suppose that \mathcal{V} is a quasi-uniformity on X such that \mathcal{U} and \mathcal{V} are doubly QH-equivalent. It follows from Theorem 2.3 that \mathcal{V} belongs to the quasiuniformity class of \mathcal{U} and that both \mathcal{V} and \mathcal{V}^{-1} are hereditarily precompact, since both \mathcal{U} and \mathcal{U}^{-1} are hereditarily precompact. We conclude that \mathcal{V} is totally bounded [10, Lemma 1.1] and thus equal to \mathcal{U} .

In the following, we consider when a given quasi-uniformity on a set is (doubly) QH-singular.

Theorem 4.2. Let X be a nonempty set. Then

- (i) The discrete uniformity \mathcal{D} on X is doubly QH-singular;
- (ii) For any quasi-uniformity \mathcal{U} on X, if \mathcal{U}_{ω} is QH-singular then every quasi-uniformity in $\pi(\mathcal{U})$ is hereditarily precompact.

PROOF. (i): Let \mathcal{H} be a quasi-uniformity on X that is QH-equivalent to \mathcal{D} , but $\mathcal{D} \neq \mathcal{H}$. Then for each $V \in \mathcal{H}$, there is a point $x_V \in X$ such that $V^{-1}(x_V) \neq \{x_V\}$. Set $D_V = \{x_V\} \cup (X \smallsetminus V^{-1}(x_V))$. Since

$$X = V^{-1}(x_V) \cup (X \setminus V^{-1}(x_V)) \subseteq V^{-1}(D_V),$$

we conclude that the net $(D_V)_{V \in \mathcal{H}}$ converges to X with respect to $\mathcal{T}(\mathcal{H}_*)$. However, for the entourage $U = \Delta \in \mathcal{D}$, we have

$$U^{-1}(D_V) = \{x_V\} \cup (X \smallsetminus V^{-1}(x_V)) \neq X.$$

It follows that the net $(D_V)_{V \in \mathcal{H}}$ does not converge to X with respect to $\mathcal{T}(\mathcal{D}_*)$. Therefore, \mathcal{D} and \mathcal{H} are not QH-equivalent, which is a contradiction. Hence, the uniformity \mathcal{D} is doubly QH-singular.

(ii): If there exists a quasi-uniformity $\mathcal{V} \in \pi(\mathcal{U})$ which is not hereditarily precompact, then according to the construction in [11], for every *p*-filter σ on ω there is a quasi-uniformity \mathcal{L}_{σ} on X such that $\mathcal{U}_{\omega} \subseteq \mathcal{L}_{\sigma} \subseteq \mathcal{V}$. Note that $\mathcal{L}_{\sigma}^{-1}$ is hereditarily precompact, since the conjugates of the subbasic

34

entourages are clearly hereditarily precompact. By Corollary 3.4, each \mathcal{L}_{σ} and \mathcal{U}_{ω} are *QH*-equivalent. Since \mathcal{L}_{σ} is not totally bounded, \mathcal{L}_{σ} and \mathcal{U}_{ω} are distinct. So, \mathcal{U}_{ω} is not *QH*-singular. This is a contradiction.

Corollary 4.3. Let \mathcal{U} be a totally bounded quasi-uniformity on a set X. Then \mathcal{U} is the only member of its quasi-proximity class if and only if \mathcal{U} is doubly QH-singular.

PROOF. (\Rightarrow) If \mathcal{U} is totally bounded and the unique member of its quasi-proximity class, then the same applies to \mathcal{U}^{-1} . By Theorem 2.3 (i), both \mathcal{U} and \mathcal{U}^{-1} are *QH*-singular.

(\Leftarrow) Suppose that both \mathcal{U} and \mathcal{U}^{-1} are QH-singular. Let $\mathcal{V} \in \pi(\mathcal{U})$ be any member. Since $\mathcal{U} = \mathcal{U}_{\omega}$ and $(\mathcal{U}_{\omega})^{-1} = (\mathcal{U}^{-1})_{\omega}$, by Theorem 4.2 (ii), \mathcal{V} is doubly hereditarily precompact. Then, by [10, Lemma 1.1], \mathcal{V} is totally bounded. Thus, $\mathcal{V} = \mathcal{U}$. It follows that \mathcal{U} is the only member of its quasi-proximity class.

Example 4.4. There is a uniform space (X, \mathcal{U}) such that \mathcal{U} is *H*-singular, but not *QH*-singular. Let $X = \omega$, and define

$$V_n = \{(a, a) : a \in n\} \cup ((X \setminus n) \times (X \setminus n))$$

for each $n \in \omega$. Then $\{V_n : n \in \omega\}$ generates a transitive metrizable totally bounded uniformity \mathfrak{U} on ω . Since such a uniformity is at the same time the finest as well as the coarsest member of its proximity class, it is Hsingular. Note that $T = \bigcup_{n \in \omega} \{n\} \times (n+1)$ is a transitive reflexive relation on ω . Let \mathcal{V} be the quasi-uniformity generated on X by $\{V_n : n \in \omega\} \cup \{T\}$. One checks that \mathcal{V} belongs to the quasi-proximity class of \mathcal{U} : Let \mathcal{H} be the quasi-uniformity generated by $\{T\}$ on X. Since for any $B \subseteq \omega$, T(B) = nor ω and for each subset n of ω , we have $V_n(n) = n$, we conclude that $\mathcal{H}_{\omega} \subseteq \mathcal{U}$.

Hence, by [4, Proposition 1.40], we have $\mathcal{U} = \mathcal{U} \vee \mathcal{H}_{\omega} = \mathcal{U}_{\omega} \vee \mathcal{H}_{\omega} = (\mathcal{U} \vee \mathcal{H})_{\omega} = \mathcal{V}_{\omega}$. Since the quasi-uniformity \mathcal{V}^{-1} is hereditarily precompact, by Corollary 3.5, we conclude that \mathcal{V} is QH-equivalent to \mathcal{U} . Hence, \mathcal{U} is not QH-singular.

Given a topological space X, let \mathcal{P} be the *Pervin quasi-uniformity* [4]. Recall that a family \mathcal{L} of subsets of X is *well-monotone* if the partial order \subseteq of set inclusion is a well-order on \mathcal{L} . The compatible quasi-uniformity \mathcal{M} on X which has as a subbase the set of all binary relations that are associated with the well-monotone open covers of X under the Fletcher construction is called the *well-monotone quasi-uniformity* of X [8], denoted by \mathcal{M} . Recall that X is said to be *hereditarily compact* [22] if every nonempty subspace of X is compact. It is well-known that a space is hereditarily compact if and only if each strictly increasing sequence of open subsets in it is finite.

Theorem 4.5. Let X be a topological space. Then the following statements (i)–(iii) are equivalent:

- (i) \mathcal{P} is QH-singular;
- (ii) \mathcal{M} is QH-singular;

(iii) X is hereditarily compact.

Furthermore, the following statements (iv)–(vi) are equivalent:

- (iv) \mathcal{P} is doubly QH-singular;
- (v) \mathcal{M} is doubly *QH*-singular;
- (vi) X admits a unique compatible quasi-uniformity.

If X is Hausdorff, then all the above statements (i)-(vi) are equivalent.

PROOF. (i) \Rightarrow (ii): By Proposition 6 of [20], both \mathcal{P} and \mathcal{M} induce the Vietoris topology. Thus, if \mathcal{P} is QH-singular, then $\mathcal{P} = \mathcal{M}$. This implies that \mathcal{M} is QH-singular as well.

(ii) \Rightarrow (iii): Suppose that X is not hereditarily compact. Then the well-monotone quasi-uniformity and the Pervin quasi-uniformity of X are distinct, but both induce the Vietoris topology on $\mathcal{P}_0(X)$. Hence, \mathcal{M} is not QH-singular, a contradiction.

(iii) \Rightarrow (i): Let X be hereditarily compact, and let \mathcal{U} be a quasiuniformity on X that is QH-equivalent to \mathcal{P} . Then \mathcal{U} belongs to the Pervin quasi-proximity class by Theorem 2.3 (i). (In fact, all compatible quasiuniformities of a hereditarily compact space belong to this quasi-proximity class.) Now \mathcal{P} is totally bounded, thus \mathcal{P}^{-1} is hereditarily precompact, and hence according to Theorem 2.3 (i), \mathcal{U}^{-1} is hereditarily precompact. Since X is hereditarily compact, \mathcal{U} is hereditarily precompact. Because doubly hereditarily precompact quasi-uniformities are totally bounded [10,

36

Lemma 1.1], we conclude that \mathcal{U} is totally bounded. It follows that $\mathcal{U} = \mathcal{U}_{\omega} = \mathcal{P}_{\omega} = \mathcal{P}$. Hence, \mathcal{P} is *QH*-singular.

(iv) \Rightarrow (v): If both \mathcal{P} and \mathcal{P}^{-1} are QH-singular, then by Corollary 4.3, \mathcal{P} is the unique quasi-uniformity in its quasi-proximity class. Hence, $\mathcal{P} = \mathcal{M}$, and thus both \mathcal{M} and \mathcal{M}^{-1} are QH-singular.

 $(v) \Rightarrow (vi)$: If both \mathcal{M} and \mathcal{M}^{-1} are QH-singular, then by the equivalence of (ii) and (iii) above, we conclude that X is hereditarily compact. Thus, $\mathcal{M} = \mathcal{P}$ [13, Remark 1], which implies that \mathcal{P} is doubly QH-singular. By Corollary 4.3, \mathcal{P} is the unique quasi-uniformity in its quasi-uniformity class. Hence, the fine quasi-uniformity is totally bounded. It follows from a result of [18] that X admits a unique quasi-uniformity.

(vi) \Rightarrow (iv): This is obvious.

Finally, if X is Hausdorff, then by Theorem 2.36 in [4], (iii) and (vi) are equivalent; indeed X is finite. Hence, all the statements of (i)–(vi) are equivalent. \Box

Example 4.6. (a) If a quasi-uniformity is unique in its quasi-proximity class, then it is doubly QH-singular according to Corollary 4.3. So, for instance, the coarsest quasi-uniformity of a locally compact T_2 -space X is doubly QH-singular provided that X is compact or non-Lindelöf (see [19]).

(b) The coarsest compatible quasi-uniformity of a topological space need not be QH-singular: Just consider the Pervin quasi-uniformity of a topological space X (see e.g. [16]) that admits a unique quasi-proximity, but is not hereditarily compact. The assertion follows from Theorem 4.5.

Remark 4.7. It is shown in [21] that any two metrizable uniformities on the same set cannot be *H*-equivalent, and any two uniformities on the same set, at least one of which is totally bounded, cannot be *H*-equivalent. However, there are no quasi-uniform analogues for these facts. First, note that both \mathcal{U} and \mathcal{V} defined in Example 4.4 have a countable base, and hence are quasi-metrizable. Second, \mathcal{P} is always totally bounded for any space X, and by Theorem 4.5, it is not QH-singular if X is not hereditarily compact (see however Theorem 4.1). Question 4.8. Is there a quasi-uniformity that is (doubly) QH-singular, but not totally bounded or discrete?

Each quasi-uniformity \mathcal{V} such that $\mathcal{T}(\mathcal{V}^*)$ is pseudocompact is unique in its quasi-proximity class and thus doubly QH-singular, since $\mathcal{T}(\mathcal{W}^*) = \mathcal{T}(\mathcal{V}^*)$ is pseudocompact and thus \mathcal{W}^* totally bounded for any quasiuniformity \mathcal{W} which is QH-equivalent to \mathcal{V} .

Question 4.9. Characterize those totally bounded quasi-uniformities which are QH-singular.

5. QH-equivalence classes

Example 5.1. There exists a quasi-uniform space (X, \mathcal{U}) such that $Q(\mathcal{U})$ contains simultaneously transitive and nontransitive quasi-uniformities as well as bicomplete and nonbicomplete quasi-uniformities. Let $X = \omega$ be equipped with the lower topology $\mathcal{T} = \{\emptyset, \omega\} \cup \{[0, n[: n \in \omega\}]\}$. It is known that this space has a unique compatible quasi-proximity [9, Example 1], since its topology is the unique base that is closed under finite unions and finite intersections. Clearly, the well-monotone quasi-uniformity on Xis the fine quasi-uniformity and is bicomplete. Hence all quasi-uniformities compatible with the given topology are QH-equivalent, since they induce the Vietoris topology [20, Proposition 6]. Observe that the Pervin quasiproximity class contains nontransitive quasi-uniformities [12], while the (nonbicomplete) Pervin quasi-uniformity is transitive. \Box

Question 5.2. Let \mathcal{V} be a quasi-uniformity and let κ be the number of QH-equivalence classes into which the quasi-proximity class $\pi(\mathcal{V})$ of \mathcal{V} splits. Which cardinalities κ can occur? Is $|Q(\mathcal{V})| = 1$ or $|Q(\mathcal{V})| \ge 2^{2^{\aleph_0}}$?

Question 5.3. Can the fine transitive quasi-uniformity and the fine quasi-uniformity of a topological space be distinct, but QH-equivalent?

6. Quasi-uniformities of algebraic structures

It is known that if the left and right uniformities of a topological group are distinct, then they are not H-equivalent [21].

38

Question 6.1. If the left and right quasi-uniformities of a paratopological group are distinct, can they be QH-equivalent?

Question 6.2. Ward [24] states that the left uniformity of a locally compact topological group is H-singular. When is it QH-singular?

Remark 6.3. The (left) uniformity of a compact topological group is QH-singular, because it is the coarsest compatible quasi-uniformity [4, Proposition 1.47] and thus its quasi-proximity class is a singleton according to Example 4.6(a).

Question 6.4. Is it possible that for a paratopological group, \mathcal{U}_L and \mathcal{U}_R are QH-equivalent, but $\mathcal{U}_L \vee \mathcal{U}_R$ and \mathcal{U}_R are not QH-equivalent?

References

- F. ALBRECHT, Deux théorèmes sur l'espace des ensembles fermés, Com. Acad. R. P. Române 3 (1953), 193–196 (in Roumanian).
- [2] G. BERTHIAUME, On quasi-uniformities in hyperspaces, Proc. Amer. Math. Soc. 66 (1977), 335–343.
- [3] J. CAO, H. KÜNZI, I. REILLY and S. ROMAGUERA, Quasi-uniform hyperspaces of compact subsets, *Topology Appl.* 87 (1998), 117–126.
- [4] P. FLETCHER and W. LINDGREN, Quasi-uniform Spaces, Lecture Notes Pure Appl. Math. 77, Dekker, New York, 1982.
- [5] A. HITCHCOCK, Hyperspaces, *Quaestiones Math.* 2 (1977/78), 207–224.
- [6] J. ISBELL, Insufficiency of the hyperspace, Proc. Camb. Phil. Soc. 62 (1966), 685–686.
- [7] A. IVANOV, On spaces of subsets defined by uniform structures, Vestnik Leningrad. Univ. 21 (1966), 151–153 (in Russian).
- [8] H. JUNNILA, Covering properties and quasi-uniformities of topological spaces, PhD Thesis, Virginia Polytechnic Institute and State University, 1978.
- H. KÜNZI, Topological spaces with a unique compatible quasi-proximity, Arch. Math. (Basel) 43 (1984), 559–561.
- [10] H. KÜNZI, Functorial admissible quasi-uniformities on topological spaces, *Topology Appl.* 43 (1992), 27–36.
- [11] H. KÜNZI, Remark on a result of Losonczi, Stud. Sci. Math. Hung. 36 (2000), 367–370.
- [12] H. KÜNZI, Nontransitive quasi-uniformities in the Pervin quasi-proximity class, Proc. Amer. Math. Soc. 130 (2002), 3725–3730.
- [13] H. KÜNZI and N. FERRARIO, Bicompleteness of the fine quasi-uniformity, Math. Proc. Camb. Phil. Soc. 109 (1991), 167–186.

- 40 J. Cao, H. Künzi and I. Reilly : Hausdorff quasi-uniformities ...
- [14] H. KÜNZI, M. MRŠEVIĆ, I. REILLY and M. VAMANAMURTHY, Convergence, precompactness and symmetry in quasi-uniform spaces, *Math. Japonica* 38 (1993), 239–253.
- [15] H. KÜNZI and C. RYSER, The Bourbaki quasi-uniformity, Topology Proc. 20 (1995), 161–183.
- [16] H. KÜNZI and S. WATSON, A nontrivial T₁-space admitting a unique quasi-proximity, Glasgow Math. J. 38 (1996), 207–213.
- [17] N. LEVINE and W. STAGER JR., On the hyperspace of a quasi-uniform space, Math. J. Okayama Univ. 15 (1971–1972), 101–106.
- [18] W. LINDGREN, Topological spaces with a unique compatible quasi-uniformity, Canad. Math. Bull. 14 (1971), 369–372.
- [19] A. LOSONZCI, The cardinality of the coarsest quasi-proximity class of locally compact T_2 -spaces, *Topology Proc.* **23** (Spring 1998), 245–262.
- [20] J. RODRÍGUEZ-LÓPEZ and S. ROMAGUERA, The relationship between the Vietoris topology and the Hausdorff quasi-uniformity, *Topology Appl.* **124** (2002), 451–464.
- [21] D. SMITH, Hyperspaces of a uniformizable space, Proc. Camb. Phil. Soc. 62 (1966), 25–28.
- [22] A. STONE, Hereditarily compact spaces, Amer. J. Math. 82 (1960), 900–916.
- [23] A. WARD, A counter-example in uniformity theory, Proc. Camb. Phil. Soc. 62 (1966), 207–208.
- [24] A. WARD, On *H*-equivalence of uniformities (The Isbell–Smith problem), *Pacific J. Math.* 22 (1967), 189–196.
- [25] A. WARD, On *H*-equivalence of uniformities II, *Pacific J. Math.* 28 (1969), 207–215.

JILING CAO DEPARTMENT OF MATHEMATICS THE UNIVERSITY OF AUCKLAND PRIVATE BAG 92019, AUCKLAND NEW ZEALAND

E-mail: cao@math.auckland.ac.nz

HANS-PETER KÜNZI DEPARTMENT OF MATHEMATICS AND APPLIED MATHEMATICS UNIVERSITY OF CAPE TOWN RONDEBOSCH 7701 SOUTH AFRICA

E-mail: kunzi@maths.uct.ac.za

IVAN REILLY DEPARTMENT OF MATHEMATICS THE UNIVERSITY OF AUCKLAND PRIVATE BAG 92019, AUCKLAND NEW ZEALAND

E-mail: i.reilly@auckland.ac.nz

(Received June 17, 2003; revised April 19, 2004)