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Hausdorff quasi-uniformities inducing
the same hypertopologies

By JILING CAO (Auckland), HANS-PETER KUNZI (Rondebosch)
and IVAN REILLY (Auckland)

Abstract. The question is investigated when two quasi-uniformities on a set
X give rise to Hausdorff quasi-uniformities inducing the same topologies on the
set Po(X) of nonempty subsets of X. Some conditions are also given under which
such hypertopologies are induced by a unique Hausdorff quasi-uniformity. Our
results should be compared to investigations on H-equivalence of uniformities due
to Smith, Ward and others.

1. Introduction

Let X be a (nonempty) set, and let U and V be two uniformities on X.
Ward and Smith have obtained conditions on U and V under which the
corresponding Hausdorff uniformities induce the same topologies on the
set Po(X) of nonempty subsets of X. Such uniformities on X are now
called H-equivalent according to [24]. Various authors constructed pairs
of distinct H-equivalent uniformities, see [6], [7] and [23]. As HITCHCOCK
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[5] points out ALBRECHT [1] seems to be the first to study the question
of H-equivalence of uniformities, but his results similar to those of Ward
remained unnoticed. It is known that two uniformities on a set X that are
H-equivalent induce the same proximity. Hence, for instance, two distinct
metric uniformities on a set X cannot be H-equivalent, since a metric
uniformity is always the finest member of its proximity class [21]. SMITH
also noted in [21] that a totally bounded uniformity cannot be H-equivalent
to any other uniformity.

Similarly, in this article, given two quasi-uniformities U and V on a set
X we investigate when their corresponding Hausdorff quasi-uniformities in-
duce the same topologies on the set Py(X). While it is relatively difficult
to construct distinct H-equivalent uniformities, it turns out to be fairly
easy to give examples of two distinct quasi-uniformities whose Hausdorff
quasi-uniformities induce the same hyperspace topology. Accordingly, in
the quasi-uniform setting, it becomes more interesting to determine those
quasi-uniformities whose Hausdorff quasi-uniformity induces a hyperspace
topology that cannot be induced by Hausdorff quasi-uniformities originat-
ing from other quasi-uniformities. Let us note that special instances of
the stated problem have already been studied. For instance, the authors
in [20] characterized those compatible Hausdorff quasi-uniformities on a
topological space X that induce the Vietoris topology on Py(X). It fol-
lows from their characterization that for any topological space the Pervin
quasi-uniformity and the well-monotone quasi-uniformity each induce the
Vietoris topology. Obvious variants of our problem deal with appropriate
subspaces of Py(X) like the set Ko(X) of nonempty compact subsets of a
quasi-uniform space (X, U). We recall in this context that contrary to the
situation in the realm of uniform spaces, a Hausdorff quasi-uniformity on
Ko(X) need not induce the Vietoris topology of X [3]. In fact, according
to [20], the Hausdorff quasi-uniformity of a quasi-uniform space (X,U) is
compatible with the Vietoris topology on the family Ky(X) of nonempty
compact subsets of X if and only if for each K € Ko(X), U™! | K is
precompact.

The following definitions are discussed and studied in some detail in
[2], [15] and [17]. Let (X,U) be a quasi-uniform space. For any U € U, let

Uy = {(A,B) € Po(X) x Po(X) : BCU(A)}, and
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U.={(A,B) € Py(X) x Py(X): ACUYB)}.

Furthermore, set U, = U_- N U; whenever U € U. Then {U_ : U € U}
is a base for the lower quasi-uniformity on Po(X) and {U; : U € U} is a
base for the upper quasi-uniformity on Po(X). Moreover, U, = Uy VU_ is
the so-called Hausdorff-Bourbaki quasi-uniformity on Po(X). It is obvious
that the following equations hold for the conjugate quasi-uniformity U~! of
Ui (1) (U = (W)~ (i) (UY)y = (Uo)~Y, and (i) (U7Y), = ()7L,
Observe also that trivially if U and V are two quasi-uniformities on a
set X, then U C V implies that T(U_) C T(V_), T(U;) € T(V,), and
T(Uys) € T(Vs). Furthermore, U, V (Uy)™1 C (U VU,

Definition 1.1. Let U and V be two quasi-uniformities on a set X.
Then

(i) Uand V are called Q H-equivalentif T(U,) = T(V4) on Py(X) (similarly
we shall use the self-explanatory term QH-finer);

(ii) U and V are called doubly QH-equivalent if both T(U,) = T(V,) and
T(U™1).) = T((V71)s) on Po(X).

Given a quasi-uniformity U on a set X, we shall denote by Q(U)
the collection of all quasi-uniformities which are QQH-equivalent to U. A
straightforward application of Zorn’s lemma shows that Q(U) contains
maximal elements (with respect to set inclusion). Of course, two unifor-
mities U and V are H-equivalent if and only if they are QQH-equivalent.
Note that U and V are H-equivalent if and only if the restrictions of U,
and V, induce the same topology on the set 2% of nonempty closed sub-
sets of X. Two H-equivalent uniformities U and V are trivially doubly
Q) H-equivalent. Hence the examples of distinct H-equivalent uniformities
show that doubly () H-equivalent quasi-uniformities may differ.

For a quasi-uniform space (X,U), as usual, we shall denote by U,
(resp. dq() the finest totally bounded quasi-uniformity coarser than U (resp.
the quasi-proximity induced by U on X). If V is another quasi-uniformity
on X and 6y = dy, then we say that U and V are gp-equivalent. Let
m(U) denote the collection of all quasi-uniformities on X which are gp-
equivalent to U. We refer the reader to [4] for undefined notation and
basic facts about quasi-uniformities.
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2. Necessary conditions for (Q H-equivalence
of two quasi-uniformities

In this section, we shall provide some necessary conditions for the
(@ H-equivalence of two quasi-uniformities on the same set.

Lemma 2.1. Let U and V be two quasi-uniformities on a set X. Then
the following statements are equivalent.

(i) Vo C U,.
(i) T(V4) € T(Us) on Po(X).
(i) T(V,) C T(U) on Po(X).

PROOF. (i) = (ii): Let A € Po(X) and V € V. Then (4, X \V(A)) ¢
dy. Since V,, C U, we have (A, X \V(A)) ¢ dy. Thus, there exists a U €
U such that U(A) N (X NV (A)) = 0. We conclude that Uy (A) C Vi (A).
Hence T(V4) € T(U).

(ii) = (iii): This is obvious.

(iii) = (i): Suppose the contrary, that is, (iii) holds but V,, € U,.
Then there are A, B C X such that Vj(4) N B = ) for some V) € V, but
UA)NB # 0 for every U € U. Let B = {F € Py(X) : FN B # (}.
For each U € U, pick a point by € U(A) N B, and define Ay = AU {by}.
Then Ay € Us(A) N'B whenever U € U. Therefore A € cly,) B. On the
other hand, (Vp)+(A) N B = 0, thus A & clyy,)B. We have reached a
contradiction which implies that the assertion holds. ]

Corollary 2.2. Two quasi-uniformities U and V on the same set X
are gp-equivalent if and only if T(Uy) = T(V4) on Py(X). O

Let x be an infinite cardinal. A quasi-uniform space (X,U) is called
k-precompact if for every U € U, there exists a subset F' of X such that
|F| < k and X = U(F). As usual, we shall call w-precompact (resp. wi-
precompact) quasi-uniform spaces precompact [4] (resp. preLindeldf [14]).
Let P(k,U) denote the collection of all k-precompact subspaces of (X, U).

Theorem 2.3. Let U and V be two quasi-uniformities on a set X . If
U and V are QH-equivalent, then
(i) Uy = Vo, L.e., U and 'V are gp-equivalent; and
(i) P(k,U™1) = P(k, V1) for any cardinal k > w.
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PROOF. (i). This follows directly from Lemma 2.1.

(ii). Suppose the contrary, that is, P(x,U™!) # P(x,V~!) for some
infinite cardinal k. Without loss of generality, we may assume that there
exists some A € Py(X) such that A € P(k,U™!) \ P(k,V~1). For each
U € U, choose an Fy; C A such that |Fyy| < xk and A C U~(Fy). Then the
net (Fy)yey converges to A in T(U,), but there exists Vp € V such that
AL VO_l(FU) whenever U € U, since otherwise A would be k-precompact
in (X,V~1). Thus Fyy & (Vo)_(A) whenever U € U. Tt follows that the net
(Fu)ueu does not converge to A with respect to T(V_), so certainly not
with respect to T(V,) either. This is a contradiction. O

Let U and V be two quasi-uniformities on a set X, and A C X. We
say that U is quasi-uniformly finer, abbreviated as qu-finer, than V on A
if for any V' € V there is a U € U such that U(x) C V(x) whenever z € A.
For any V € V, A is called V -discrete if (z,y) € (Ax A)NV implies x = y.
Moreover, A is said to be V-discrete if it is V-discrete for some V € V.

Theorem 2.4. Let U and V be two quasi-uniformities on a set X. If
U and V are QQ H-equivalent, then

(i) U is qu-finer than 'V on each V-discrete set; and

(ii) V is qu-finer than U on each U-discrete set.

PROOF. Since (i) and (ii) are similar, we shall prove (i) only. Let A
be a V-discrete subset of X, where V € V. By our assumption, there
exists some U € U such that U,(A) C V_(A). Next, we shall show that
U(a) € V(a) for every a € A. To this end, let a € A and y € U(a). Let
B = {y} U (A~ {a}). It can be checked easily that B € U,(A) C V_(A).
Thus, a € A C V~Y(B). Since A is V-discrete, then we have a € V~1(y).
It follows that y € V(a). Thus, U is qu-finer than V on each V-discrete
set. t

Remark 2.5. In fact, to show Theorem 2.4 (i), we only need the con-
dition “T(V_) C T(U,)". O
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3. Sufficient conditions for QQ H-equivalence
of two quasi-uniformities

In this section, we shall provide some sufficient conditions that make
two quasi-uniformities on the same set () H-equivalent. First, we introduce
a notion which is slightly weaker than that of V-discreteness of a subset in
a quasi-uniform space (X,V). Let V be an entourage of a quasi-uniform
space (X,V). An indexed subset A = {z, : @ < v} of X is said to be
V'-separated provided that (zq,2g) € V and o < 8 < «y implies z, = x,
and is called V-separated if it is V-separated for some V € V.

Proposition 3.1. A subset A indexed by some ordinal of a quasi-
uniform space (X,V) is V-discrete if and only if it is both V-separated and
V~1_separated.

PRrOOF. The proof is straightforward, so it is omitted. ]

The next simple example shows that V-separatedness and V-discrete-
ness of a subset in a quasi-uniform space (X,V) are different.

Ezample 3.2. Let w be the set of nonnegative integers equipped with
the usual order <. Let V be the quasi-uniformity on w generated by the
base {D} where D=1 = < that is D is the order dual to <. Clearly w
with its usual order < is a V-separated set that is not V-discrete. O

Theorem 3.3. Let U and V be two quasi-uniformities on a set X . If
(i) Vo, € Uy, and
(ii) U is quasi-uniformly finer than V on each V~!-separated set,
then T(V,) C T(Uy).

PROOF. By (i) and Lemma 2.1, we have T(V,) C T(U,). Hence, it
suffices to show T(V_) C T(U_). To this end, let A € Py(X) and V € V.
Choose some W € V such that W? C V. Starting with any point xy € A,

by transfinite induction, we construct a subset Sy = {x, : @ < 7} of A
such that

(iif) 2o € AN W L({z5 : B < a}) for every a < ;

(iv) A C W=Y(S,).

It is clear from (iii) that S is W~ !-separated, and thus V~!-separated.
By (ii), there exists some U € U such that U(x) C W (z) whenever x € S4.
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Next, we shall show U_(A) C V_(A). Suppose B € U_(A), that is, A C
U~Y(B). For any point a € A, by (iv), there exists an x, € S4 such that
7o € W(a). Tt follows that W(x,) € W2(a) C V(a). On the other hand,
since z, € A, we have U(zy) N B # (). Thus, because U(x,) C W(xy),
also V(a) N B # 0. Therefore, A C V~Y(B) and B € V_(A). We conclude
that T(V_) C T(U_). Therefore, T(V,) C T(Uy). O

Corollary 3.4. Let U and V be two quasi-uniformities on a set X. If
(i) U = Vo,
(ii) U is quasi-uniformly finer than V on each V~!-separated set, and
(iii) 'V is quasi-uniformly finer than U on each U~ !-separated set,
then U and V are (QH-equivalent. ]

Corollary 3.5. Let U and V be two quasi-uniformities on a set X. If
(i) Uy = V., and
(ii) both U~! and V! are hereditarily precompact,
then U and V are QH-equivalent.

ProoF. If V7! is hereditarily precompact, then each V~!-separated
set must be finite. Since T(U) = T(V), then U is quasi-uniformly finer
than V on each finite subset of X. It follows from Theorem 3.3 that U is
QH-finer than V. In a similar way, V is QH-finer than U. Therefore, U
and V are (Q H-equivalent. O

4. QQH-singularity

According to [25], a uniformity U on a set X is called H-singular if
there exists no distinct uniformity on X which is H-equivalent to U. Simi-
larly, we say that a quasi-uniformity U on a set X is QH -singular (bi-QH -
singular) if there is no other quasi-uniformity on X which is Q H-equivalent
(doubly QH-equivalent) to it. We shall also say that a quasi-uniformity
U is doubly QH-singular provided that both U and U™! are QH-singular.
Of course, each doubly ) H-singular quasi-uniformity is Q H-singular and
each Q) H-singular quasi-uniformity is bi-Q) H-singular. Observe also that
each QH-singular uniformity is doubly @ H-singular. In [21], SMITH noted
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that each totally bounded uniformity is H-singular. Similarly we have the
following result.

Theorem 4.1. FEach totally bounded quasi-uniformity is bi-Q) H-sin-
gular.

Proor. Let U be a totally bounded quasi-uniformity on a set X and
suppose that V is a quasi-uniformity on X such that U and V are doubly
@ H-equivalent. It follows from Theorem 2.3 that V belongs to the quasi-
uniformity class of U and that both V and V~! are hereditarily precompact,
since both U and U~ are hereditarily precompact. We conclude that V is
totally bounded [10, Lemma 1.1] and thus equal to U. O

In the following, we consider when a given quasi-uniformity on a set
is (doubly) QH-singular.

Theorem 4.2. Let X be a nonempty set. Then
(i) The discrete uniformity D on X is doubly QH-singular;
(ii) For any quasi-uniformity U on X, if U, is QH-singular then every

quasi-uniformity in w(U) is hereditarily precompact.

PROOF. (i): Let H be a quasi-uniformity on X that is QQ H-equivalent
to D, but D # H. Then for each V € H, there is a point zyy € X such
that V=1(zy) # {zv}. Set Dy = {xy} U (X ~V~Y(zy)). Since

X =V zv)U X~V ay)) CV LDy,

we conclude that the net (Dy )y eg¢ converges to X with respect to T(H,).
However, for the entourage U = A € D, we have

U N Dy) ={zy}U(X Vi (zy)) # X.

It follows that the net (Dy)yeq¢ does not converge to X with respect to
T(Dy). Therefore, D and H are not QH-equivalent, which is a contradic-
tion. Hence, the uniformity D is doubly Q) H-singular.

(ii): If there exists a quasi-uniformity V € 7(U) which is not hereditar-
ily precompact, then according to the construction in [11], for every p-filter
o on w there is a quasi-uniformity £, on X such that U, C L, C V. Note
that L1 is hereditarily precompact, since the conjugates of the subbasic
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entourages are clearly hereditarily precompact. By Corollary 3.4, each L,
and U, are QH-equivalent. Since L, is not totally bounded, L, and U,
are distinct. So, U, is not QH-singular. This is a contradiction. ]

Corollary 4.3. Let U be a totally bounded quasi-uniformity on a
set X. Then U is the only member of its quasi-proximity class if and only
if W is doubly QQH-singular.

PRrROOF. (=) If U is totally bounded and the unique member of its
quasi-proximity class, then the same applies to U~!. By Theorem 2.3 (i),
both U and U~! are QH-singular.

(«=) Suppose that both U and U~! are QH-singular. Let V € 7(U)
be any member. Since U = U, and (U,)~' = (U™!),, by Theorem 4.2
(ii), V is doubly hereditarily precompact. Then, by [10, Lemma 1.1], V is
totally bounded. Thus, V = U. It follows that U is the only member of its
quasi-proximity class. ]

Ezample 4.4. There is a uniform space (X,U) such that U is H-
singular, but not Q H-singular. Let X = w, and define

Vo =A(a,a) :aen}U((X ~n)x(X\n))

for each n € w. Then {V,, : n € w} generates a transitive metrizable totally
bounded uniformity U on w. Since such a uniformity is at the same time
the finest as well as the coarsest member of its proximity class, it is H-
singular. Note that T = J,, ¢, {n} X (n+41) is a transitive reflexive relation
on w. Let V be the quasi-uniformity generated on X by {V,, : n € w}U{T}.
One checks that V belongs to the quasi-proximity class of U: Let H be the
quasi-uniformity generated by {T'} on X. Since for any B Cw, T'(B) =n
or w and for each subset n of w, we have V,,(n) = n, we conclude that
H, CU.

Hence, by [4, Proposition 1.40], we have U = UV H, = U, V H,, =
(UVH), = V.. Since the quasi-uniformity V~! is hereditarily precompact,
by Corollary 3.5, we conclude that V is Q H-equivalent to U. Hence, U is
not @ H-singular. O

Given a topological space X, let P be the Pervin quasi-uniformity [4].
Recall that a family L of subsets of X is well-monotone if the partial order
C of set inclusion is a well-order on £. The compatible quasi-uniformity
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M on X which has as a subbase the set of all binary relations that are as-
sociated with the well-monotone open covers of X under the Fletcher con-
struction is called the well-monotone quasi-uniformity of X [8], denoted by
M. Recall that X is said to be hereditarily compact [22] if every nonempty
subspace of X is compact. It is well-known that a space is hereditarily
compact if and only if each strictly increasing sequence of open subsets in
it is finite.

Theorem 4.5. Let X be a topological space. Then the following

statements (i)—(iii) are equivalent:

(i) P is QH-singular;

(ii) M is QH-singular;
(iii) X is hereditarily compact.

Furthermore, the following statements (iv)—(vi) are equivalent:
(iv) P is doubly QH-singular;

(v) M is doubly QH -singular;
(vi) X admits a unique compatible quasi-uniformity.

If X is Hausdorff, then all the above statements (i)—(vi) are equivalent.

PROOF. (i) = (ii): By Proposition 6 of [20], both P and M induce the
Vietoris topology. Thus, if P is (QH-singular, then P = M. This implies
that M is @ H-singular as well.

(ii) = (iii): Suppose that X is not hereditarily compact. Then the
well-monotone quasi-uniformity and the Pervin quasi-uniformity of X are
distinct, but both induce the Vietoris topology on Py(X). Hence, M is not
@ H-singular, a contradiction.

(iii) = (i): Let X be hereditarily compact, and let U be a quasi-
uniformity on X that is Q H-equivalent to P. Then U belongs to the Pervin
quasi-proximity class by Theorem 2.3 (i). (In fact, all compatible quasi-
uniformities of a hereditarily compact space belong to this quasi-proximity
class.) Now P is totally bounded, thus P~! is hereditarily precompact,
and hence according to Theorem 2.3 (i), U™! is hereditarily precompact.
Since X is hereditarily compact, U is hereditarily precompact. Because
doubly hereditarily precompact quasi-uniformities are totally bounded [10,
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Lemma 1.1], we conclude that U is totally bounded. It follows that U =
Uy, = P, = P. Hence, P is Q H-singular.

(iv) = (v): If both P and P~! are Q H-singular, then by Corollary 4.3,
P is the unique quasi-uniformity in its quasi-proximity class. Hence, P =
M, and thus both M and M~! are Q H-singular.

(v) = (vi): If both M and M~! are QH-singular, then by the equiv-
alence of (ii) and (iii) above, we conclude that X is hereditarily compact.
Thus, M = P [13, Remark 1], which implies that P is doubly Q H-singular.
By Corollary 4.3, P is the unique quasi-uniformity in its quasi-uniformity
class. Hence, the fine quasi-uniformity is totally bounded. It follows from
a result of [18] that X admits a unique quasi-uniformity.

(vi) = (iv): This is obvious.

Finally, if X is Hausdorff, then by Theorem 2.36 in [4], (iii) and (vi)
are equivalent; indeed X is finite. Hence, all the statements of (i)—(vi) are
equivalent. ]

Ezample 4.6. (a) If a quasi-uniformity is unique in its quasi-proximity
class, then it is doubly @ H-singular according to Corollary 4.3. So, for
instance, the coarsest quasi-uniformity of a locally compact Th-space X
is doubly @QH-singular provided that X is compact or non-Lindelof (see
[19]).

(b) The coarsest compatible quasi-uniformity of a topological space
need not be QQ H-singular: Just consider the Pervin quasi-uniformity of a
topological space X (see e.g. [16]) that admits a unique quasi-proximity,

but is not hereditarily compact. The assertion follows from Theorem 4.5.
O

Remark 4.7. 1t is shown in [21] that any two metrizable uniformities
on the same set cannot be H-equivalent, and any two uniformities on the
same set, at least one of which is totally bounded, cannot be H-equivalent.
However, there are no quasi-uniform analogues for these facts. First, note
that both U and V defined in Example 4.4 have a countable base, and
hence are quasi-metrizable. Second, P is always totally bounded for any
space X, and by Theorem 4.5, it is not () H-singular if X is not hereditarily
compact (see however Theorem 4.1). O
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Question 4.8. Is there a quasi-uniformity that is (doubly) Q H-singular,
but not totally bounded or discrete?

Each quasi-uniformity V such that T('V*) is pseudocompact is unique
in its quasi-proximity class and thus doubly QH-singular, since T(W*) =
T(V*) is pseudocompact and thus W* totally bounded for any quasi-
uniformity 'W which is () H-equivalent to V.

Question 4.9. Characterize those totally bounded quasi-uniformities
which are () H-singular.

5. (QH-equivalence classes

Ezample 5.1. There exists a quasi-uniform space (X,U) such that
Q(U) contains simultaneously transitive and nontransitive quasi-uniformit-
ies as well as bicomplete and nonbicomplete quasi-uniformities. Let X = w
be equipped with the lower topology T = {0,w} U {[0,n[: n € w}. It is
known that this space has a unique compatible quasi-proximity [9, Exam-
ple 1], since its topology is the unique base that is closed under finite unions
and finite intersections. Clearly, the well-monotone quasi-uniformity on X
is the fine quasi-uniformity and is bicomplete. Hence all quasi-uniformities
compatible with the given topology are () H-equivalent, since they induce
the Vietoris topology [20, Proposition 6]. Observe that the Pervin quasi-
proximity class contains nontransitive quasi-uniformities [12], while the
(nonbicomplete) Pervin quasi-uniformity is transitive. O

Question 5.2. Let V be a quasi-uniformity and let k be the number
of QH-equivalence classes into which the quasi-proximity class 7(V) of V
splits. Which cardinalities & can occur? Is |Q(V)| = 1 or |Q(V)| > 2207

Question 5.3. Can the fine transitive quasi-uniformity and the fine
quasi-uniformity of a topological space be distinct, but () H-equivalent?

6. Quasi-uniformities of algebraic structures

It is known that if the left and right uniformities of a topological group
are distinct, then they are not H-equivalent [21].
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Question 6.1. If the left and right quasi-uniformities of a paratopolog-
ical group are distinct, can they be (QH-equivalent?

Question 6.2. Ward [24] states that the left uniformity of a locally
compact topological group is H-singular. When is it () H-singular?

Remark 6.3. The (left) uniformity of a compact topological group is
@ H-singular, because it is the coarsest compatible quasi-uniformity [4,
Proposition 1.47] and thus its quasi-proximity class is a singleton according
to Example 4.6(a). O

Question 6.4. Is it possible that for a paratopological group, Uz, and
Ug are QH-equivalent, but Uy V Ur and Ug are not () H-equivalent?
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